《平面直角坐标系》典型例题解析
专题06 《平面直角坐标系》(解析版)七年级下学期数学(人教版)

专题06 平面直角坐标系考点一、平面直角坐标系例1、(2020·山东威海市·中考真题)如图①,某广场地面是用A.B.C三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:m n位置恰第一行的第一块(A型)地砖记作(1,1),第二块(B型)地时记作(2,1)…若(,)好为A型地砖,则正整数m,n须满足的条是__________.【答案】m、n同为奇数或m、n同为偶数【分析】几何图形,观察A型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m、n满足的条件.【详解】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n 同为偶数,故答案为:m、n同为奇数或m、n同为偶数.【点睛】本题考查了坐标表示位置:通过类比点的坐标考查解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.考点二、坐标方法的简单应用例2、(2020·甘肃金昌市·中考真题)如图,在平面直角坐标系中,OAB ∆的顶点A ,B 的坐标分别为,(4,0),把OAB ∆沿x 轴向右平移得到CDE ∆,如果点D 的坐标为,则点E 的坐标为__________.【答案】(7,0)【分析】根据B 点横坐标与A 点横坐标之差和E 点横坐标与D 点横坐标之差相等即可求解.【详解】解:由题意知:A 、B 两点之间的横坐标差为:431-=,由平移性质可知:E 、D 两点横坐标之差与B 、A 两点横坐标之差相等,设E 点横坐标为a ,则a -6=1,∴a=7,∴E 点坐标为(7,0) .故答案为:(7,0) .【点睛】本题考查了图形的平移规律,平移前后对应点的线段长度不发生变化,熟练掌握平移的性质是解决此题的关键.达标检测1.点(﹣4,2)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【详解】解:点(-4,2)所在的象限是第二象限.故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.已知点P 的坐标为(3,4)--,则点P 到y 的距离为( )A .3-B .3C .4D .4-【答案】B【分析】根据点到y 轴的距离等于横坐标的长度解答.【详解】解:∴点P 的坐标为(-3,-4),∴点P 到y 轴的距离为3.故选:B .【点睛】本题考查了点的坐标,熟记点到y 轴的距离等于横坐标的长度是解题的关键.3.在平面直角坐标系中,下列各点位于第三象限的是( )A .(0,3)B .(2,1)-C .(1,2)-D .(1,1)-- 【答案】D【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【详解】解:A 、(0,3)在y 轴上,故本选项不符合题意;B 、(−2,1)在第二象限,故本选项不符合题意;C 、(1,−2)在第四象限,故本选项不符合题意;D 、(-1,-1)在第三象限,故本选项符合题意.故选:D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.下列语句正确的是( )A .在平面直角坐标系中,(3,5)-与(5,3)-表示两个不同的点B .平行于x 轴的直线上所有点的横坐标都相同、C .若点(,)P a b 在y 轴上,则0b =D .点(3,4)P -到x 轴的距离为3【答案】A【分析】根据平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点逐一判断即可得.【详解】A.在平面直角坐标系中, (−3,5) 与 (5,−3) 表示两个不同的点,此选项正确;B.平行于 x 轴的直线上所有点的纵坐标都相同,此选项错误;C.若点 P (a ,b ) 在 y 轴上,则a =0 ,此选项错误;D.点 P (−3,4) 到 x 轴的距离为4,此选项错误;故选:A.【点睛】本题主要考查坐标与图形的性质,解题的关键是掌握平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点.5.将点A (2,1)向下平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(0,1)B .(2,﹣1)C .(4,1)D .(2,3) 【答案】B【分析】让点A 的横坐标不变,纵坐标减2即可得到平移后点A ′的坐标.【详解】解:将点A (2,1)向下平移2个单位长度得到点A ′,则点A ′的坐标是(2,1-2),即(2,-1).故选:B.【点睛】本题考查坐标与图形变化-平移,关键是要熟记:上下平移只改变点的纵坐标,上加下减.6.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【答案】D【分析】根据方位角的概念并结合平行线的性质,可得答案.【详解】解:过点B作BD∴AC,∴∴1=∴A=40°∴港口A相对货船B的位置可描述为(北偏东40°,35海里),故选:D.【点睛】本题考查了方向角的知识点,解答本题的关键是理解确定一个点的位置需要两个量应该是方向角,一个是距离.7.在平面直角坐标系中,将点A(x,y)向左平移3个单位长度,再向上平移5个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(0,﹣3)C.(﹣2,5)D.(5,﹣3)【答案】B【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【详解】解:∴点A(x,y)向左平移3个单位长度,再向上平移5个单位长度后与点B(﹣3,2)重合,∴x﹣3=﹣3,y+5=2,解得x=0,y=﹣3,所以,点A的坐标是(0,﹣3).故选:B.【点睛】本题考查了坐标平移变化规律;明白向左平移,横坐标减,向上平移纵坐标加是关键.8.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(﹣3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)【答案】B【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【详解】根据棋子“馬”和“車”的点的坐标可建立直角坐标系,如图所示:故棋子“炮”的点的坐标为:(0,2).故选:B .【点睛】本题主要考查了坐标确定位置,正确得出原点的位置建立直角坐标系是解题关键. 9.在直角坐标系中,点P (m ,2—2m )的横坐标与纵坐标互为相反数,则P 点在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据m +2-2m =0计算m 的值,后判定横坐标,纵坐标的正负求解即可【详解】∴点P (m ,2—2m )的横坐标与纵坐标互为相反数,∴m +2-2m =0,∴m =2,∴2-2m =-2,∴点P 位于第四象限,故选D【点睛】本题考查了坐标与象限的关系,利用相反数的性质构造等式计算m 的值是解题的关键. 10.如图,在平面直角坐标系中,已知点()2,1M ,()1,1N -,平移线段MN ,使点M 落在点()1,2M '-处,则点N 对应的点N '的坐标为( )A .()2,0-B .()0,2-C .()1,1-D .()3,1--【答案】A【分析】 根据()2,1M 平移后得到()1,2M '-,确定其平移规律是向左平移3个单位,后向上平移1个单位,根据规律确定点N 的平移坐标即可.【详解】∴()2,1M 平移后得到()1,2M '-,∴其平移规律是向左平移3个单位,后向上平移1个单位,∴()1,1N -,∴平移后的坐标为(1-3,-1+1)即()2,0-,故选A .【点睛】本题考查了坐标系中点的坐标平移,准确确定平移方向和平移距离,并熟记左减右加,上加下减的计算法则是解题的关键.二、填空题11.己知(82,1)P m m -+点在x 轴上,则点P 的坐标为___.【答案】(10,0)【分析】根据x 轴上点的横坐标为0列方程求出m 的值,然后求解即可.【详解】解:点(82,1)P m m -+在x 轴上,10m ∴+=,解得1m =-,828210m ∴-=+=,∴点P 的坐标为(10,0).故答案为:(10,0).【点睛】本题考查了点的坐标,熟记x 轴上点的横坐标为0是解题的关键.12.如图,点A 在射线OX 上,2OA =.若将OA 绕点O 按逆时针方向旋转30到OB ,那么点B 的位置可以用()2,30︒表示.若将OB 延长到C ,使5OC =,再将OC 按逆时针方向继续旋转45︒到OD ,那么点D 的位置可以用____表示.【答案】(5,75°)【分析】直接利用已知点的意义,进而得出点D 的位置表示方法.【详解】解:如图所示:由题意可得:OD =OC =5,∴AOD =75°,故点D 的位置可以用:(5,75°)表示.故答案为:(5,75°).【点睛】此题主要考查了坐标确定位置,正确得出坐标的意义是解题关键.13.已知点()2,3A --,将点A 先向右平移4个单位长度,再向上平移6个单位长度,得到A ',则A '的坐标为_________.【答案】()2,3【分析】根据平移规律左减右加,上加下减,进行平移计算即可;【详解】∴()2,3A --,向右平移4个单位长度,向上平移6个单位长度∴()24,36A '-+-+∴()2,3A '故答案为:()2,3【点睛】本题主要考查了平面直角坐标系坐标的平移变化,熟悉掌握坐标的变化规律是解题的关键.14.平面直角坐标系中,点(P 到x 轴的距离是_________.【答案】2【分析】根据点到x 轴的距离是纵坐标的绝对值,可得答案.【详解】解:点P (2)到x 轴的距离是|2|=2,故答案为:2.【点睛】本题考查了点的坐标,利用点到x 轴的距离是纵坐标的绝对值是解题关键.15.把点(2,3)-的向上平移4个单位长度,再向左平移3个单位长度,得到的点的坐标为________.【答案】(-5,7)【分析】根据点的平移方法可得把点(-2,3)的横坐标减3,纵坐标加4,然后计算即可.【详解】解:点(-2,3)向上平移4个单位长度单位再向左平移3个单位长度所到达点的坐标为(-2-3,3+4),即(-5,7),故答案为:(-5,7).【点睛】此题主要考查了点的平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.16.全英羽毛球公开赛混双决赛,中国组合鲁恺/ 黄雅琼,对阵马来西亚里约奥运亚军陈炳顺/吴柳萤,鲁恺/黄雅琼两名小将的完美配合结果获胜.如图是羽毛球场地示意图,x轴平行场地的中线,y轴平行场地的球网线,设定鲁恺的坐标是(3,1),黄雅琼的坐标是(0,-1),则坐标原点为__________.【答案】O1【分析】根据黄雅琼的位置即可确定坐标原点的位置.【详解】∴鲁恺的坐标是(3,1),黄雅琼的坐标是(0,−1),∴坐标原点为O1,故答案为:O1.【点睛】本题考查了坐标确定位置的知识,解题的关键是能够了解(0,−1)在坐标原点的下面一个单位,17.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步沿x轴向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度:当n被3除,余数为1时,则向右走1个单位长度:当n被3除,余数为2时,则向右走2个单位长度,当走完第6步时,棋子所处位置的坐标是,当走完第7步时,棋子所处位置的坐标是 ,当走完第2021步时,棋子所处位置的坐标是 . 【答案】A 6(6,2),A 7(7,2),(2021,673) 【分析】设走完第n 步,棋子的坐标用A n 来表示.列出部分A 点坐标,发现规律“A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n )”,根据该规律即可解决问题. 【详解】解:设走完第n 步,棋子的坐标用A n 来表示.观察,发现规律:A 0(0,0),A 1(1,0),A 2(3,0),A 3(3,1),A 4(4,1),A 5(6,1),A 6(6,2),A 7(7,2),…, …,∴A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n ). ∴2021=673×3+2, ∴A 2021(2021,673).故答案为:A 6(6,2),A 7(7,2),(2021,673). 【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n )”.本题属于基础题,难度不大,解决该题型题目时,根据棋子的运动情况,罗列出部分A 点的坐标,根据坐标的变化发现规律是关键.18.如图,四边形AOBC 是正方形,曲线123CPP P ⋅⋅⋅叫做“正方形的渐开线”,其中弧1CP ,弧12PP ,弧23P P ,弧34P P 的圆心依次按点A ,O ,B ,C 循环,点A 的坐标为()2,0,按此规律进行下去,则点2021P 的坐标为______.【答案】()4044,0 【分析】由题意可知,正方形的边长为2,每旋转一次半径增加2,每次旋转的角度为90°,据此解【详解】解:由题意可知:正方形的边长为2,∴A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,-12)…可发现点的位置是四个一循环,每旋转一次半径增加2,P在x轴正半轴,2021÷4=505……1,故点2021OP的长度为2021×2+2=4044,即:P2021的坐标是(4044,0),故答案为:(4044,0).【点睛】本题考查了直角坐标系内点的坐标运动变化规律,解题的关键是理解A点的坐标除符合变化之外,还由旋转半径确定,而且每旋转一次半径增加2.三、解答题19.在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(-5,0),(-4,3),(-3,0),(-2,3),(-1,0),(-5,0)【答案】见解析【分析】将坐标表示的点分别在坐标系中标出来,然后用线段依次连接起来即可.【详解】解:如图所示:本题考查了平面直角坐标系中的作图,正确地将点在坐标系中标出来是解题的关键.20.如图所示,在平面直角坐标系中点()30A -,,()5,0B ,()3,4C ,()2,3D -.(1)求四边形ABCD 的面积(2)点P 为y 轴上一点,且ABP △的面积等于四边形ABCD 的面积的一半,求点P 的坐标.【答案】(1)23;(2)90,4⎛⎫ ⎪⎝⎭或90,4⎛⎫- ⎪⎝⎭. 【分析】(1)分别过C 、D 作x 轴的垂线,垂足分别为E 、F ,分别计算AF 、DF 、BE 的长,根据三角形面积公式、梯形面积公式分别解得32ADF S =△,4BCE S =△,352CEFD S =梯形即可解题;(2)设()0,P b ,根据题意,结合三角形面积公式及绝对值的性质化简解题即可. 【详解】解:(1)分别过C 、D 作x 轴的垂线,垂足分别为E 、F ,因为()30A -,,()B 5,0,()34C ,,()23D -,, 所以1AF =,34DF CE ==,25BE EF ==,所以131322ADF S =⨯⨯=△, 所以12442BCE S =⨯⨯=△,所以()353452CEFD S =+⨯=梯形,所以33542322ABCD S ++==四边形.(2)设()0P b ,则有123=22ABP ABCD S S =△四边形 即11238222AB OP b ⨯⨯=⨯⨯=解得:23||8b = 所以238b =± 所以点P 的坐标为904⎛⎫ ⎪⎝⎭,或904⎛⎫- ⎪⎝⎭,. 【点睛】本题考查坐标与图形的性质、三角形面积、绝对值的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.在平面直角坐标系中,完成以下问题:(1)请在坐标系中标出点(3,2)A 、(2,3)B -;(2)若直线l 经过点B 且//l y 轴.点C 是直线l 上的一个动点,请画出当线段AC 最短时的简单图形,此时点C 的坐标为 ;(3)线段AC 最短时的依据为 .【答案】(1)见详解;(2)画图见详解,C (﹣2,2);(3)点到直线的距离垂线段最短 【分析】(1)根据点坐标的定义直接在坐标系中标出点即可;(2)根据点到直线的距离垂线段最短即可判断点C 的坐标; (3)依据点到直线的距离垂线段最短. 【详解】(1)A,B 两点如下图;(2)AC 最短时的图形如下图所示,此时C 点坐标为:(﹣2,2); (3)点到直线的距离垂线段最短.【点睛】本题考查了平面直角坐标系中点的坐标问题,及对点到直线的距离垂线段最短的理解与应用,解题关键在于理解应用点到直线的距离垂线段最短.22.如图,在直角坐标系中,已知A (﹣1,4),B (﹣2,1),C (﹣4,1),将ABC 向右平移3个单位再向下平移2个单位得到111A B C △,点A 、B 、C 的对应点分别是点A 1、B 1、C 1.(1)画出111A B C △;(2)直接写出点A 1、B 1、C 1的坐标; (3)直接写出111A B C △的面积.【答案】(1)见解析;(2)A 1(2,2),B 1(1,﹣1),C 1(﹣1,﹣1);(3)3. 【分析】(1)直接利用平移的性质得出对应点位置,画出图形即可; (2)利用(1)中图形,利用平移的性质得出对应点坐标; (3)利用三角形面积公式可得出答案. 【详解】解:(1)如图所示:111A B C △,即为所求;(2)由平移的性质结合图形可得:A 1(2,2),B 1(1,﹣1),C 1(﹣1,﹣1); (3)111A B C △的面积为:12×2×3=3.【点睛】本题考查的是平移的性质,图形与坐标,三角形面积的计算,掌握以上知识是解题的关键. 23.在边长为的方格纸中有一个ABC .(1)作出ABC 的高CD ,并求出ABC 面积;(2)将ABC 向上平移3个单位,再向左平移2个单位,得到111A B C △,请画出111A B C △; (3)请任意写出一组平移前后两个三角形中平行且相等的线段.【答案】(1)8,画图见解析;(2)画图见解析;(3)11//A B AB ,11A B AB =. 【分析】(1)直接作高,得到高的长度,利用三角形面积公式计算即可.(2)图形的平移关键是点的平移.按平移的法则确定了A 、B 、C 平移后的对应点A 1、B 1、C 1位置,连接即可得到111A B C △;(3)根据平移前后,对应线段(不在同一直线上的)互相平行且相等,举例即可. 【详解】 (1)1144822ABC S AB CD =⨯⨯=⨯⨯=△. 如图所示:(2)先将点A ,B ,C 分别向上平移3个单位,再向左平移2个单位确定点1A ,1B ,1C ,再连接11A B ,11B C ,11AC ,此时111A B C △即为所求.(3)11//A B AB ,11//AC AC ,11//B C BC .三组线段任写一组. 【点睛】本题主要考查了图形的平移,图形的平移实质是点的平移,正确的确定对应点的位置是正确作图的关键,同时平移前后,对应线段(不在同一直线上的)互相平行且相等这一平移性质的运用.24.综合与探究.如图1,在平面直角坐标系中,点O ,A 的坐标分别为()0,0,()02,,将线段OA 沿x 轴方向向右平移,得到线段CB ,点O 的对应点C 的坐标为3,0,连接AB .点P 是y 轴上一动点.(1)请你直接写出点B 的坐标____________.(2)如图1,当点P 在线段OA 上时(不与点O 、A 重合),分别连接BP ,CP .猜想BPC ∠,ABP ∠,OCP ∠之间的数量关系,并说明理由.(3)①如图2,当点P 在点A 上方时,猜想BPC ∠,ABP ∠,OCP ∠之间的数量关系,并说明理由.②如图3,当点P 在y 轴的负半轴上时,请你直接写出BPC ∠,ABP ∠,OCP ∠之间的数量关系.【答案】(1)()3,2;(2)BPC ABP OCP ∠=∠+∠,理由见解析;(3)(3)①BPC OCP ABP ∠=∠-∠,理由见解析;②BPC ABP OCP ∠=∠-∠.【分析】(1)根据平移的规律即可求解;(2)过点P 作//PD AB ,得到BPD ABP ∠=∠,再证明//PD OC ,得到CPD PCO ∠=∠,即可得到BPC BPD CPD ABP OCP ∠=∠+∠=∠+∠;(3)①过点P 作//PE AB ,得到BPE ABP ∠=∠,再证明//PE OC ,得到EPC OCP ∠=∠,即可证明BPC BPD CPD ABP OCP ∠=∠+∠=∠+∠;②过点P 作//PF AB ,得到BPF ABP ∠=∠,再证明//PF OC ,得到FPC OCP ∠=∠,即可证明BPC FPB FPC ABP OCP ∠=∠-∠=∠-∠. 【详解】解:(1)∴线段OA 沿x 轴方向向右平移,得到线段CB ,点O 的对应点为C 坐标为(3,0), ∴点A (0,2)的对应点B 的坐标为(3,2), 故答案为:()3,2;(2)BPC ABP OCP ∠=∠+∠,理由如下: 如图1,过点P 作//PD AB , ∴BPD ABP ∠=∠, 由平移可知,//AB OC , 又//PD AB , ∴//PD OC , ∴CPD PCO ∠=∠,∴BPC BPD CPD ABP OCP ∠=∠+∠=∠+∠;∠=∠-∠,理由如下:(3)①BPC OCP ABPPE AB,如图2,过点P作//∠=∠,∴BPE ABPAB OC,又∴//PE OC,∴//∠=∠,∴EPC OCP∠=∠-∠=∠-∠.∴BPC EPC EPB OCP ABP∠=∠-∠,理由如下:②BPC ABP OCPPF AB,如图3,过点P作//∠=∠,∴BPF ABPAB OC,又∴//PF OC,∴//∠=∠,∴FPC OCP∠=∠-∠=∠-∠.∴BPC FPB FPC ABP OCP 【点睛】本题考查了平面直角坐标系中平移的规律、平行线的性质与判定等知识,熟知相关知识点并根据题意灵活应用是解题关键.25.在平面直角坐标系xOy 中描出下列两组点,分别将每组里的点用线段依次连接起来. 第一组:()3,3A -、()4,3C ;第二组:()2,1D --、()2,1E -.(1)直接写出线段AC 与线段DE 的位置关系;(2)在(1)的条件下,线段AC ,DE 分别与y 轴交于点B ,F .若点M 为射线OB 上一动点(不与点O ,B 重合).①当点M 在线段OB 上运动时,连接AM 、DM ,补全图形,用等式表示CAM ∠、AMD ∠、MDE ∠之间的数量关系,并证明.②当ACM △与DEM △面积相等时,求点M 的坐标.【答案】(1)线段AC 与线段DE 的位置关系;AC∥DE ,证明见详解;(2)AMD ∠=CAM∠+MDE ∠,证明见详解;(3)M (0,1711). 【分析】(1)AC∥DE ,由()3,3A -、()4,3C 两点纵坐标相同,-3≠4,可得AC∥x 轴,由()2,1D --、()2,1E -两点纵坐标相同,-2≠2,可得DE∥x 轴,利用平行同一直线两直线平行可得AC∥DE ; (2)AMD ∠=CAM ∠+MDE ∠,过M 作MN∥AC ,内错角相等得∴CAM =∴AMN ,由AC∥DE ,可得MN∥DE ,内错角相等∴NMD =∴MDE ,可证AMD ∠=CAM ∠+MDE ∠;(3)由AC ∴y 轴于B ,DE ∴y 轴于F ,求出B (0,3),F (0,-1),,可确BF =4,设OM =m ,MB =3-m ,MF =4-(3-m )=m +1,AC =7,DE =4,用含m 的式子表示S ∴ACM =()1732m ⨯⨯-,S ∴DEM =()1412m ⨯⨯+,当ACM △与DEM △面积相等时,可列方程()()1173=4122m m ⨯⨯-⨯⨯+,解之即可. 【详解】解:(1)直接写出线段AC 与线段DE 的位置关系;AC∥DE∴()3,3A -、()4,3C 两点纵坐标相同,-3≠4∴AC∥x 轴,∴()2,1D --、()2,1E -两点纵坐标相同,-2≠2∴DE∥x 轴,∴AC∥DE ,(2)AMD ∠=CAM ∠+MDE ∠过M 作MN∥AC ,∴∴CAM =∴AMN ,∴AC∥DE ,∴MN∥DE ,∴∴NMD =∴MDE ,∴∴AMD =∴AMN +∴NMD =∴CAM +∴MDE ,∴AMD ∠=CAM ∠+MDE ∠,(3)∴AC ∴y 轴于B ,DE ∴y 轴于F ,∴B (0,3),F (0,-1),,∴BF =OB +OF =3+1=4,设OM =m ,∴MB =3-m ,MF =4-(3-m )=m +1,∴AC =4-(-3)=7,DE =2-(-2)=4,S ∴ACM =()117322AC MB m ⨯⋅=⨯⨯-,S ∴DEM =()114122DE MF m ⨯⋅=⨯⨯+, 当ACM △与DEM △面积相等时,即()()1173=4122m m ⨯⨯-⨯⨯+, 整理得21744m m -=+, 解得1711m =, ∴M (0,1711).【点睛】本题考查画图,平行线的判定与性质,角的互相关系,三角形面积,一元一次方程,掌握画图技巧,平行线的判定与性质,角的和差关系,三角形面积求法,一元一次方程的解法是解题关键.26.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,点A (a ,b )+|b ﹣3|=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .(1)a = ,b = ,点C 坐标为 ;(2)如图1,点D (m ,n )是射线CB 上一个动点.①连接OD ,利用OBC ,OBD ,OCD 的面积关系,可以得到m 、n 满足一个固定的关系式,请写出这个关系式: ;②过点A 作直线1⊥x 轴,在l 上取点M ,使得MA =2,若CDM 的面积为4,请直接写出点D 的坐标 .(3)如图2,以OB 为边作⊥BOG =⊥AOB ,交线段BC 于点G ,E 是线段OB 上一动点,连接CE 交OG 于点F ,当点E 在线段OB 上运动过程中,OFC FCG OEC∠+∠∠的值是否发生变化?若变化请说明理由,若不变,求出其值.【答案】(1)6,3,(0,-3);(2)①m -2n =6;②(2,-2)或(4,-1);(3)不变,理由见解析【分析】(1)利用非负数的性质求解即可.(2)①如图1,过点D 分别作DM x ⊥轴于点M ,DN y ⊥轴于点N ,连接OD ,利用面积法求解即可.②如图11-中,设直线AM 交y 轴于T ,连接DT ,CM ,CM '.分两种情形:当点M 在点A 的左侧时,设(,3)2m D m -,根据4CDM CTD MTD CTD S S S S ∆∆∆∆=+-=,构建方程求解,当点M '在点A 的右侧时,同法可得.(3)OFC FCG OEC∠+∠∠的值不变,值为2.利用平行线的性质,三角形的外角的性质证明即可.【详解】解:(1)|3|0b -=,60a ∴-=,30b -=,6a ∴=,3b =,3AB OC ==,且C 在y 轴负半轴上,(0,3)C ∴-,故答案为:6,3,(0,3)-.(2)①如图1-1,过点D 分别作DM x ⊥轴于点M ,DN y ⊥轴于点N ,连接OD .AB x ⊥轴于点B ,且点A ,D ,C 三点的坐标分别为:(6,3),(,)m n ,(0,3)-, 6OB ∴=,3OC =,MD n =-,ND m =,192BOC S OB OC ∆∴=⨯=, 又BOC BOD COD S S S ∆∆∆=+1122OB MD OC ND =⨯+⨯ 116()322n m =⨯⨯-+⨯⨯ 332m n =-, ∴3392m n -=,26m n ∴-=, m ∴、n 满足的关系式为26m n -=.故答案为:26m n -=.②如图12-中,设直线AM 交y 轴于T ,连接DT ,DM ,CM '.当点M 在点A 的左侧时,设(,3)2m D m -,4CDM CTD MTD CTD S S S S ∆∆∆∆=+-=, ∴11164(33)4642222m m ⨯⨯+⨯⨯-+-⨯⨯=, 解得2m =,(2,2)D ∴-, 当点M '在点A 的右侧时,同法可得(4,1)D -,综上所述,满足条件的点D 的坐标为(2,2)-或(4,)1-.故答案为:(2,2)-或(4,)1-.(3)OFC FCG OEC∠+∠∠的值不变,值为2.理由如下: 线段OC 是由线段AB 平移得到,//BC OA ∴,AOB OBC ∴∠=∠,又BOG AOB ∠=∠,BOG OBC ∴∠=∠,根据三角形外角性质,可得2OGC OBC ∠=∠,OFC FCG OGC ∠=∠+∠,22OFC FCG FCG OBC ∴∠+∠=∠+∠2()FCG OBC =∠+∠2OEC =∠, ∴22OFC FCG OEC OEC OEC∠+∠∠==∠∠. 【点睛】本题属于几何变换综合题,主要考查了非负数,坐标与图形,平行线的性质以及平移的性质,解决问题的关键是作辅助线,运用面积法,角的和差关系以及平行线的性质进行求解.。
七年级数学平面直角坐标系典型例题及答题技巧

七年级数学平面直角坐标系典型例题及答题技巧单选题1、点A(−3,−5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,−8)B.(1,−2)C.(−6,−1)D.(0,−1)答案:C解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.解:点A的坐标为(−3,−5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:−3−3=−6,纵坐标为:−5+4=−1,即(−6,−1).故选:C.小提示:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.2、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)答案:D解析:点P在y轴上则该点横坐标为0,据此解答即可.∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.3、在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)答案:B解析:在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选B.小提示:本题运用了点平移的坐标变化规律,关键是把握好规律.4、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.5、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.6、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.7、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.8、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)答案:C解析:不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,∵1+2+3+4+5+6+7+8+9=45,∴第46、47、48、49、50个有序数对依次是(1,10)、(2,9)、(3,8)、(4,7)、(5,6).所以C选项是正确的.小提示:本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.填空题9、如图是中国象棋棋盘的一部分,如果我们把“馬”所在的位置记作(2,1),“卒”所在的位置就是(3,4),那么“相”所在的位置是____________.答案:(5, 3) .解析:马在第2列第1行,表示为(2,1),“卒”所在的位置就是(3,4),可知数对中前面的数表示的是列,后面的数表示的是行.据此进行解答.故答案为(5, 3)由已知可得:数对中前面的数表示的是列,后面的数表示的是行.所以,“相”所在的位置是(5, 3).小提示:本题主要考查了学生用数对表示位置的知识.10、点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为_____.答案:(2,1).解析:将点A的纵坐标加4,横坐标不变,即可得出点A′的坐标.解:将点A(2,﹣3)向上平移4个单位得到点A′,则点A′的坐标是(2,﹣3+4),即(2,1).故答案为(2,1).小提示:本题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.11、与点(2,−7)关于y轴对称的点的坐标为_______,关于y=−1对称的点的坐标为_______.答案:(−2,−7)(2,5)解析:关于y轴对称的点的坐标特征是:纵坐标不变,横坐标变为原数的相反数;关于y=−1对称的点的坐标特征是:横坐标不变,纵坐标关于y=−1对称,据此解题.解:点(2,−7)关于y轴对称的点的坐标为(−2,−7),关于y=−1对称的点的坐标为(2,5),所以答案是:(−2,−7);(2,5).小提示:本题考查直角坐标系、关于y轴对称的点的坐标等知识,是基础考点,掌握相关知识是解题关键.12、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.13、请写出一个在第三象限内的点的坐标:__________(只写一个).答案:(−1,−1)解析:根据第三象限内的点的横坐标和纵坐标都是负数直接写出即可.解:因为第三象限内的点的横坐标和纵坐标都是负数,故坐标可以是(−1,−1)(答案不唯一).小提示:本题考查了平面直角坐标系内点的坐标的特征,解题关键是熟知在不同象限的点的坐标的符号特征.解答题14、已知点P(2a−2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ//y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.答案:(1)P(−12,0);(2)P(4,8);(3)2021解析:(1)根据x轴上点的坐标特征:纵坐标为0,列出方程即可求出结论;(2)根据与y轴平行的直线上两点坐标关系:横坐标相等、纵坐标不相等即可求出结论;(3)根据题意可得:点P的横纵坐标互为相反数,从而求出a的值,即可求出结论.解:(1)若点P在x轴上,∴a+5=0解得:a=-5∴P(−12,0);(2)∵点Q的坐标为(4,5),直线PQ//y轴∴2a−2=4解得:a=3∴P(4,8);(3)∵点P在第二象限,且它到x轴、y轴的距离相等∴2a−2+a+5=0解得:a=-1∴a2020+2020=(−1)2020+2020=2021小提示:此题考查的是根据题意,求点的坐标,掌握x轴上点的坐标特征、与y轴平行的直线上两点坐标关系和点到x 轴、y轴的距离与坐标关系是解题关键.15、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.。
平面直角坐标系例题讲解及答案

平面直角坐标系一. 重点、难点:1. 重点:认识并画出平面直角坐标系;建立适当的直角坐标系,描述物体的位置,能根据点的位置写出坐标,根据坐标描出点的位置。
2. 难点:根据具体问题建立合适的平面直角坐标系,确定点的位置或描述点的坐标。
二. 教学知识要点:1. 平面直角坐标系:在平面内画两条互相垂直且有公共原点的数轴,这样就组成了平面直角坐标系。
说明:一般把一条画成水平的,取向右的方向为正方向,称它为x 轴或横轴。
一条画成铅直的且取向上的方向为正方向,称它为y 轴或纵轴。
2. 坐标轴上的点及各种对称点的坐标特征。
(1)坐标轴上的点的坐标特征:x 轴上的点,纵坐标为0,可记为(x ,0)y 轴上的点,横坐标为0,可记为(0,y )原点O 的坐标为(0,0)(2)对称点的坐标特征:点P (a ,b )关于x 轴的对称点坐标为P 1(a ,-b )点P (a ,b )关于y 轴的对称点坐标为P 1(-a ,b )点P (a ,b )关于y 轴的对称点坐标为P 1(-a ,-b )(3)平行于坐标轴的直线的坐标特征:平行于x 轴的直线上的任意两点,纵坐标相同。
平行于y 轴的直线上的任意两点,横坐标相同。
3. 坐标平面内的点与有序实数对的一一对应关系有序实数对(x ,y )与平面内的点构成一一对应的关系。
4. 坐标平移公式若M 点的坐标为(x ,y ),将M 点平移到M'点的坐标为(x',y'),则 其中,当a >0时,M 点向右平移a 个单位到M'当a <0时,M 点向左平移|a|个单位到M'当b >0时,M 点向上平移b 个单位到M'当b <0时,M 点向下平移|b|个单位到M'【典型例题】例1. 已知两点A (0,2),B (4,1),点P 是x 轴上一点,求PA +PB 的最小值。
解:如图1,作B 点关于x 轴的对称点B',连AB',交x 轴于点P ,又作B'C ⊥y 轴于Cx x a y y b ''=+=+⎧⎨⎩图1 图2 图3由平面几何知识知,这时PA +PB 最小,且等于AB'的长度∵B 与B'关于x 轴对称∴B'的坐标为(4,-1)∴PA +PB 的最小值为5说明:若在Rt △ABC 中,两直角边长为a ,b ,斜边长为c ,则有c 2=a 2+b 2。
初一数学平面直角坐标系30道必做题(含答案和解析及考点)

初一数学平面直角坐标系30道必做题(含答案和解析及考点)1、如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成.答案:(2,1).解析:略.考点:函数——平面直角坐标系——点的位置与坐标.2、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校().A.(0,4)(0,0)(4,0)B.(0,4)(4,4)(4,0)C.(0,4)(1,4)(1,1)(4,1)(4,0)D.(0,4)(3,4)(4,2)(4,0)答案:D.解析:(3,4)(4,2)所走路线为斜线,不符合题意,不能正常到达学校.考点:函数——平面直角坐标系.3、如图,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么,黑棋的坐标应该分别是.答案:(-6,-6),(-4,-7).解析:黑棋①的坐标是(-6,-6),黑棋③的坐标是(-4,-7).考点:函数——平面直角坐标系——点的位置与坐标.4、如果点A(x,y)在第三象限,则点B(-x,y-1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案: D.解析:∵点A(x,y)在第三象限,∴{x<0y<0.∴-x>0,y-1<0.∴点B(-x,y-1)在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.5、如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点()落在第象限.答案:四.解析:由图象可知,b<5,a<7.∴6-b>0,a-10<0.∴点(6-b,a-10)落在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.6、已知A(-2,0),B(a,0)且AB=5,则B点坐标为.答案:(3,0)或(-7,0).解析:由题知︱a+2︱=5,∴a=3或-7.∴B点坐标为(3,0)或(-7,0).考点:函数——平面直角坐标系——坐标与距离.7、若点A(-2,n)在x轴上,则点B(n-1,n+1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.8、点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为().A.(1,-2)B.(2,0)C.(4,0)D.(0,-4)答案:B.解析:∵点P(m+3,m+1)在直角坐标系的轴上.∴m+1=0.∴m=-1.∴点P的坐标为(2,0).考点:函数——平面直角坐标系——点的位置与坐标.9、已知点M(3a-8,a-1).(1)若点M在第二象限,并且a为整数,则点M的坐标为.(2)若点N的坐标为(3,-6),并且直线MN∥x轴,则点M的坐标为.答案:(1)(-2,1).(2)(-23,-6).解析:(1)若点M在第二象限,3a<0,a-1>0.∴1<a<8,又a为整数.3∴a=2.∴M(-2,1).(2)若点N的坐标为(3,-6),并且直线MN∥x轴.∴a-1=-6,即a=7.∴点M(-23,-6).考点:函数——平面直角坐标系——点的位置与坐标.10、若点P(-1,a),Q(b,2),且PQ∥x轴,则a ,b .答案:a=2.b≠-1.解析:∵PQ∥x轴.∴PQ两点的纵坐标相同.∴a=2.又∵P、Q应为不重合的两点.∴b≠-1.考点:函数——平面直角坐标系——点的位置与坐标.11、点P(a,b)是平面直角坐标系内的点,请根据点的坐标判断点P的特征:(1)若a=b,则P点在.(2)若a+b=0,则P点在.答案:(1)一三象限坐标轴夹角平分线上.(2)二四象限坐标轴夹角平分线上.解析:(1)略.(2)略.考点:函数——平面直角坐标系——点的位置与坐标.12、若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是().A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2,-2)或(-2,2)答案:C.解析:略.考点:函数——平面直角坐标系——坐标与距离.13、已知点(3-2k2,4k-3)在第一象限的角平分线上,则k= .答案:1.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.14、若点M(5-a,2a-6)在第四象限,且点M到x轴与y轴的距离相等,试求(a-2)2014-a-2015的值.答案:0.解析:由题意得,5-a+2a-6=0.解得a=1.所以,(a-2)2014-a-2015=(1-2)2014-1-2015=1-1=0.考点:函数——平面直角坐标系——坐标与距离.15、若点P位于y轴左方,距y轴3个单位长,位于x轴上方,距x轴四个单位长,则点P的坐标是.答案:(-3,4).解析:略.考点:函数——平面直角坐标系——特殊点的坐标.16、在平面直角坐标系中,点P(-3,6)关于y轴的对称点的坐标为.答案:(3,6).解析:根据关于谁对称,谁不变,可知,点P(-3,6)关于y轴的对称点的坐标为(3,6). 考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.17、在平面直角坐标系中,点P(-1,2)关于y轴的对称点为.答案:(1,2).解析:由关于谁对称谁不变,可知点P(-1,2)关于y轴的对称点为(1,2).考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.18、在平面直角坐标系中,点P(-1,2)关于x轴的对称点在第象限.答案:三.解析:点P(-1,2)满足点在第二象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同,是-2.纵坐标互为相反数,是-3.则P关于x 轴的对称点是(-2,-3),在第三象限.考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.19、平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O 、A的对应点分别为点O1 、A1,则点O1 、A1的坐标分别是().A.(0,0),(1,4)B.(0,0),(3,4)C.(-2,0),(1,4)D.(-2,0),(-1,4)答案:D.解析:∵线段OA向左平移2个单位,点O(0,0),A(1,4).∴点O1,A1的坐标分别是(-2,0),(-1,4).考点:几何变换——图形的平移——坐标与图形变化:平移.20、已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,()是平移得到的.A.(0,3),(0,1),(-1,-1)B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3)D.(-1,3),(3,5),(-2,1)答案:D.解析:由(-2,1)→(-1,3),(2,3)→(3,5),(-3,-1)→(-2,1)可以看作点向右平移1个单位长度,向上平移2个单位长度,而图形的平移是相同的,所以D对,A、B、C错.考点:函数——平面直角坐标系——点的位置与坐标.几何变换——图形的平移——点的平移.21、线段CD是由线段AB平移得到的,点A(-1,4)的对应点为,则点B(-4,-1)的对应点D坐标为().A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)答案:C.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.22、已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积为6,则点C的坐标是.答案:(0,4)或(0,-4).解析:由题意可知1AC·AB=6.2∴AC=4.∴点C的坐标是(0,4)或(0,-4).考点:函数——平面直角坐标系——坐标与面积.23、如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为().A.3B.3+πC.6D.6+π答案:C.解析:扫过面积即为矩形ABDC的面积.∴扫过面积=2×3=6.考点:函数——平面直角坐标系——坐标与面积.24、在正方形网格上有一个△ABC ,网格上最小正方形的边长为1.(1) 把△ABC 平移,使点A 移动到点A’的位置,画出平移后的△A’B’C’,写出结论:__________.(2)△A’B’C’的面积为__________.(3)若点A 的坐标是(-5,2),点C’为坐标是(0,-2),在图中画出平面直角坐标系,点B’的坐标是__________.答案:(1) 结论:A’B’∥AB (答案不唯一).(2)△A’B’C’的面积是为5. (3)点B’的坐标是(-3,-3).解析:(1)平移后的△A’B’C’如图所示,结论:A’B’∥AB (答案不唯一).(2)观察图形可知,△A’B’C’内接在一个长为4,宽为3的长方形中.S △A’B’C’=4×3 −12×1×3−12×1×3−12×2×4=5. ∴△A’B’C’的面积是为5.(3)平面直角坐标系如图所示,点B’的坐标是(-3,-3).考点:三角形——三角形基础——三角形面积及等积变换.几何变换——图形的平移——平移的性质——坐标与图形变化:平移——作图:平移变换.25、定义:f (a,b )=(b,a ),g (m,n )=(-m,-n ).例如f (2,3)=(3,2),g (-1,-4)=(1,4).则g[f (-5,6)] 等于 . 答案:(-6,5).解析:根据所给定义,g[f (-5,6)]=g (6,-5)=(-6,5). 考点:式——探究规律——定义新运算.函数——平面直角坐标系.26、在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换①f (m ,n )=(m ,-n ),如f (2,1)=(2,-1);②g (m ,n )=(-m ,-n ),如g (2,1)=(-2,-1).按照以上变换有:f[g (3,4)]=f (-3,-4)=(-3,4),那么g[f (-3,2)] 等于( ). A.(3,2) B.(3,-2) C.(-3,2) D.(-3,-2) 答案:A.解析:∵f (-3,2)=(-3,-2).∴g[f (-3,2)]=g (-3,-2)=(3,2). 考点:式——探究规律——定义新运算.27、观察下列有规律的点的坐标:A 1(1,1),A 2(2,-4),A 3(3,4),A 4(4,-2),A 5(5,7),A 6(6,−43),A 7(7,10),A 8(8,-1)依此规律,A 11的坐标为 ,A 12的坐标为 . A.(12,16),(12,−23) B.(11,15),(11,−23)C.(11,16),(11,−23) D.(11,16),(12,−23)答案:D. 解析:略.考点:函数——平面直角坐标系——点的位置与坐标.28、如图,边长为1,2的长方形ABCD 以右下角的顶点为中心旋转90°,此时A 点的坐标为 ;依次旋转2011次,则顶点A 的坐标为 . A.(3,3),(3027,0) B.(3,3),(3017,0) C.(3,2),(3027,0) D.(3,2),(3017,0) 答案:D. 解析:略.考点:式——探究规律.方程与不等式.函数——平面直角坐标系.29、一个粒子在第一象限内及x 轴、y 轴上运动,在第1min 内它从原点运动到(1,0),而后接着按如图所示方式在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2011min 后,求这个粒子所处的位置坐标.A.(41,13)B.(41,14)C.(44,13)D.(44,14) 答案:C.解析:弄清粒子的运动规律,并求出靠近2011min 后粒子所在的特殊点的坐标,最后确定所求点的坐标.对于这种运算数较大的题目,我们首先来寻找规律,先观察横坐标与纵坐标相同的点:(0,0),粒子运动了0min. (1,1),粒子运动了1×2=2(min ),向左运动. (2,2),粒子运动了2×3=6(min ),向下运动.(3,3),粒子运动了3×4=12(min),向左运动.(4,4),粒子运动了4×5=20(min),向下运动.……于是点(44,44)处粒子运动了44×45=1980(min).这时粒子向下运动,从而在运动了2011后,粒子所在的位置是(44,44-31),即(44,13).考点:函数——平面直角坐标系.30、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.①填写下列各点的坐标:A1(,),A3(,),A12(,).②写出点A4n的坐标为(是正整数).③指出蚂蚁从点A100到A101的运动方向为.A. ①(1,1),(1,0),(5,0);②(2n,0);③ 从下到上.B. ①(1,1),(1,0),(6,0);②(2n,0);③ 从上到下.C. ①(0,1),(1,0),(5,0);②(2n,0);③ 从上到下.D. ①(0,1),(1,0),(6,0);②(2n,0);③ 从下到上.答案:D.解析:略.考点:函数——平面直角坐标系——点的位置与坐标——坐标与距离.。
专题03 平面直角坐标系(专题详解)(解析版)

专题03 平面直角坐标系专题03 平面直角坐标系 (1)7.1 平面直角坐标系 (2)知识框架 (2)一、基础知识点 (2)知识点1 有序数对 (2)知识点2 平面直角坐标系 (2)知识点3 点的坐标特点 (3)二、典型题型 (6)题型1 有序数对 (6)题型2 平面直角坐标系的概念 (6)题型3 点的坐标的特征 (6)一、点的位置与坐标 (7)二、点的坐标与距离 (8)三、点的坐标与平行于坐标轴的直线(数形结合思想) (8)四、点的坐标与图形的面积 (9)(1)知坐标,求面积 (9)(2)知面积,求坐标(方程思想) (10)(3)分类讨论 (12)三、难点题型 (14)题型1 确定点所在的象限 (14)题型2 点到坐标轴的距离 (14)题型3 探究平面直角坐标系坐标的变化规律 (15)7.2 坐标系的简单运用 (17)知识框架 (17)一、基础知识点 (17)知识点1 用坐标表示地理位置 (17)知识点2 用坐标表示平移 (18)二、典型题型 (20)题型1 用坐标表示地理位置 (20)题型2 用坐标表示平移 (21)一、点的平移 (21)(1)已知点和平移方式,求对应点 (21)(2)已知点和对应点,求平移方式 (21)二、图形的平移 (22)三、难点题型 (23)题型1 动点问题 (23)7.1 平面直角坐标系知识框架{基础知识点{有序数对平面直角坐标系点的坐标的特点典型题型{ 有序数对平面直角坐标系的概念点的坐标的特征{ 点的位置与坐标点的坐标与距离点的坐标与平行于坐标轴的直线(数形结合思想)点的坐标与图形的面积{知坐标,求面积知面积,求坐标(方程思想)分类讨论难点题型{确定点所在的象限点到坐标轴的距离探究平面直角坐标系坐标的变化规律 一、基础知识点知识点1 有序数对1)我们把有顺序的两个数a 与b 组成的数对,用于表示平面中某一确定位置的,叫作有序数对,记作(a ,b )注:①(a ,b )与(b ,a )表达的含义不同,注意有序数对的顺序②在表达有序数对时,一般行在前,列在后。
平面直角坐标系典型例题含答案

平面直角坐标系典型例题含答案平面直角坐标系是数学中非常重要的概念之一。
在平面直角坐标系中,有序数对是有顺序的两个数a与b组成的数对,记作(a,b)。
需要注意的是,a与b的先后顺序对位置有影响。
平面直角坐标系的定义是在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。
这个平面叫做坐标平面。
平面直角坐标系中点的坐标通常表示为有序实数对(a,b),其中a叫横坐标,b叫做纵坐标。
如果在平面直角坐标系中有一点A,过点A作横轴的垂线,垂足在横轴上的坐标为a,过点A作纵轴的垂线,垂足在纵轴上的坐标为b,那么点A的坐标就是(a,b)。
各象限内的点与坐标轴上的点的坐标特征如下:点P(x,y)在第一象限时,x和y均为正数;在第二象限时,x为负数,y为正数;在第三象限时,x和y均为负数;在第四象限时,x为正数,y为负数。
坐标轴上点P(x,y)的坐标特点也很简单,如果P在X轴上,那么它的纵坐标为0;如果P在Y轴上,那么它的横坐标为0;如果P在原点上,那么它的坐标为(0,0)。
特殊位置点的特殊坐标也需要掌握。
如果连线平行于坐标轴的点,那么平行于X轴的点纵坐标相同,横坐标不同,平行于Y轴的点横坐标相同,纵坐标不同。
如果点在象限角平分线上,那么在第一和第三象限,纵横坐标相同;在第二和第四象限,纵横坐标互为相反数。
对称点的坐标特征也需要掌握。
平面内任一点P(m,n)的关于X轴的对称点坐标为(m,-n),关于Y轴的对称点坐标为(-m,n),关于原点的对称点坐标为(-m,-n)。
点到坐标轴的距离也是重要的知识点之一。
点P(x,y)到X 轴距离为y,到Y轴的距离为x。
最后,点的平移坐标变化规律可以简单记为“左减右加,上加下减”。
在解题时,需要注意点的坐标与象限的关系。
例如,如果点P(-2,3)在第二象限,那么它的横坐标为负数,纵坐标为正数。
如果点P(a,a-2)在第四象限,那么a的取值范围为a<0.如果点P(-2,x^2+1)在第三象限,那么它的横坐标为负数,纵坐标为负数。
(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得:20 mm>⎧⎨->⎩,解得:m>2.故答案为:m>2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1 如果m是任意实数,则点P(m-4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(—,+);第三象限(-,—);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0) B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),故选:D.点评:此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.例2 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0)C.(6,4) D.(8,3)思路分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练2.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A .(1,﹣1)B . (﹣1,1)C . (﹣1,﹣2)D . (1,﹣2)分析: 根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答: 解:∵A(1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3, ∴绕四边形ABCD 一周的细线长度为2+3+2+3=10, 2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(﹣1,1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.例2 如图,在平面直角坐标系xOy 中,点P (-3,5)关于y 轴的对称点的坐标为( ) A .(—3,—5) B .(3,5) C .(3.—5) D .(5,—3) 答:B考点二:函数的概念及函数自变量的取值范围 例3 在函数1x y x+=中,自变量x 的取值范围是 . 思路分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x 的取值范围. 解:根据题意得:x+1≥0且x≠0 解得:x≥-1且x≠0. 例3 函数y=31x x +-中自变量x 的取值范围是( ) 思路分析:根据被开方数大于等于0,分母不等于0列式计算即可得解. 解:根据题意得,x+3≥0且x —1≠0, 解得x≥—3且x≠1. 故选D .点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数2y x =+中自变量x 的取值范围是( )A .x >—2B .x≥2 C.x≠—2 D .x≥-2 3.A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回思路分析:根据图象可知,有一段时间内时间在增加,而路程没有增加,意味着有停留,与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断.解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准确,错误;C 、从家出发,一直散步(没有停留),然后回家了,图形为上升和下降的两条折线,错误;D 、从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴表示的量,再根据函数图象用排除法判断.例5 如图,ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD 的顶点上,它们的各边与ABCD 的各边分别平行,且与ABCD 相似.若小平行四边形的一边长为x ,且0<x≤8,阴影部分的面积的和为y ,则y 与x 之间的函数关系的大致图象是( )A .B .C .D .思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形的面积,再根据相似多边形面积的比等于相似比的平方列式求出y 与x 之间的函数关系式,然后根据二次函数图象解答. 解:∵四个全等的小平行四边形对称中心分别在ABCD 的顶点上,∴阴影部分的面积等于一个小平行四边形的面积, ∵小平行四边形与ABCD 相似,∴2()328y x =, 整理得212y x =,又0<x≤8,纵观各选项,只有D 选项图象符合y 与x 之间的函数关系的大致图象. 故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0,6),点P为BC 边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t 的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与m= 16t2-116t+6,即可求得t的值.点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0。
平面直角坐标系典型例题含答案及解析

平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。
注意a 与b 的先后顺序对位置的影响。
2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。
这个平面叫做坐标平面。
(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。
3.各象限内的点与坐标轴上的点的坐标特征:4. 特殊位置点的特殊坐标5.对称点的坐标特征:6.点到坐标轴的距离:点)P到X轴距离为y,到y轴的距离为x。
x,(y7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2,3)在第( )象限. A .一 B .二 C .三 D .四2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )A. 02<<-aB.20<<aC.2>aD.0<a 3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( ) A .)2,0(- B.)0,2( C.)0,4( D.)4,0(-2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。
3.若点P (x ,y )的坐标满足xy=0(x ≠y ),则点P 必在( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上(除原点) 考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.(2,3)2.已知点A 的坐标为(-2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 3.若坐标平面上点P (a ,1)与点Q (-4,b )关于x 轴对称,则( ) A .a=4,b=-1 B .a=-4,b=1 C .a=-4,b=-1 D .a=4,b=1 考点4:点的平移1.已知点A (-2,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A ′,则点A ′的坐标是( )A .(-5,6)B .(1,2)C .(1,6)D .(-5,2)2.已知A (2,3),其关于x 轴的对称点是B ,B 关于y 轴对称点是C ,那么相当于将A 经过( )的平移到了C .A .向左平移4个单位,再向上平移6个单位B .向左平移4个单位,再向下平移6个单位C .向右平移4个单位,再向上平移6个单位D .向下平移6个单位,再向右平移4个单位3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5考点5:点到坐标轴的距离考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.33.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)考点7:角平分线的理解1.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a= .考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.3.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.考点10:根据坐标或面积的特点求未知点的坐标1.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A .2B .4C .0或4D .4或-4 2.如图,已知:)4,5(-A 、)2,2(--B 、)2,0(C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面直角坐标系》章节复习知识点1:点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在平面直角坐标中,点M(-2,3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、若点P(a,a-2)在第四象限,则a的取值范围是().A.-2<a<0 B.0<a<2 C.a>2 D.a <04、点P(m,1)在第二象限内,则点Q(-m,0)在()A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上5、若点P(a,b)在第四象限,则点M(b-a,a-b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在平面直角坐标系中,点(12)--,在第四象限,则实数x的取值范A x x围是.7、对任意实数x,点2,一定不在-(2)P x x x..()A .第一象限B .第二象限C .第三象限D .第四象限8、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.9、已知点A (1,b)在第一象限,则点B (1 – b ,1)在( )A 、第一象限B 、第二象限C 、第三象限D .第四象限10、点M (x ,y )在第二象限,且| x | – 2 = 0,y 2– 4 = 0,则点M 的坐标是( )A (– 2 ,2)B .( 2 ,– 2 )C .(—2, 2 )D 、(2,– 2 )11、若0<a <1,则点M (a – 1,a )在( )A 、第一象限B 、第二象限C 、第三象限D .第四象限12、已知点P (3k – 2,2k – 3 )在第四象限.那么k 的取值范围是( )A 、23 <k < 32B 、k <23C 、k >32D 、都不对 13. 下列各点中,在第二象限的点是( )A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)14. 点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5)D. (-3,-5)15. 若点P(a,b)在第四象限,则点M(b-a,a-b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限16. 点M(a,a-1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限17.点P(22a,-5)位于()A. 第一象限B. 第二象限C. 第三象限D.第四象限18. 一只小虫子在一个小方格的线路上爬行,它起始的位置是A (2,2),先爬到B (2,4),再爬到C(5,4),最后爬到D(5,5),则小虫一共爬行了()个单位.A. 7B. 6C. 5D. 419. 已知点M1(-1,0)、M2(0,-1)、M3(-2,-1)、M4(5,0)、 M5(0,5)、M6(-3,2),其中在x轴上的点的个数是().A. 1 个B. 2 个C. 3个D. 4个20、下列说法中正确的有()○1点(1,-a)一定在第四象限○2坐标轴上的点不属于任一象限○3横坐标为零的点在纵轴上,纵坐标为零的点在横轴上○4直角坐标系中到原点距离为5的点的坐标是(0, 5)A. 1个B. 2个C. 3个D. 4个21、已知点A的坐标是(a,b),若a+b<0,ab>0则它在()A. 第一象限B. 第二象限C. 第三象限D.第四象限22、下列说法中正确的有()○1若x表示有理数,则点P(12+-x)一定在第四象限x,4-○2若x表示有理数,则点P(2x-,4--x)一定在第三象限○3若ab>0,则点P(a , b)一定在第一象限○4若ab=0,则点P(a , b)表示原点A. 1个B. 2个C. 3个D. 4个23、已知点P的坐标为(2 – a,3a + 6),且点P到两坐标轴的距离相等,则点P坐标是( )A(3,3) B.(3,—3) C.(6,一6) D.(3,3)或(6,一6)24、在平面直角坐标系中,点()一定在()A. 第一象限B. 第二象限C. 第三象限 D. 第四象限25、若点P()在第二象限,则点Q()在()A. 第一象限B. 第二象限C. 第三象限 D. 第四象限26、若点A()在第二象限,则点B()在()A. 第一象限B. 第二象限C. 第三象限 D. 第四象限27、点P()不可能在()A. 第一象限B. 第二象限C. 第三象限 D. 第四象限28、点M()在第二象限,且,,则点M的坐标是()A. B. C. D.29、已知:)5aA,且点A到两坐标轴的距离相等,求A点坐标.+a1(-24,30、已知点)5mmM,则点M在平面直角坐标系中的什么位-n+114(2-,置?31、在平面直角坐标系中,已知点),(yy,在平|-=xxP横、纵坐标满足|1面直角坐标系中表示出点P的位置.知识点2:点在坐标轴上的特点x轴上的点纵坐标为0, y轴上的点横坐标为0.坐标原点(0,0)1、点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)2、已知点P(m,2m-1)在y轴上,则P点的坐标是。
3. 如果点M(a-1,a+1)在x轴上,则a的值为()A. a=1B. a=-1C. a>0D. a的值不能确定4.已知点P(2x-4,x+2)位于y轴上,则x的值等于()A. 2B. -2C. 2或-2D. 上述答案都不对知识点3:对称点的坐标知识解析:1、关于x轴对称: A(a,b)关于x轴对称的点的坐标为(a,-b)。
2、关于y轴对称: A(a,b)关于y轴对称的点的坐标为(-a,b)。
3、关于原点对称: A(a,b)关于原点对称的点的坐标为(-a,-b)。
1、点M(2-,1)关于x轴对称的点的坐标是().A. (2-,1-)B. (2,1) C.(2,1-) D. (1,2-)2、平面直角坐标系中,与点(2,-3)关于原点中心对称的点是().A.(-3,2) B.(3,-2) C.(-2,3) D.(2,3)3、如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形OABC绕点O旋转180°,旋转后的图形为矩形OA1B1C1,那么点B1的坐标为( ).A. (2,1)B.(-2,l)C.(-2,-l)D.(2,-1)4、若点A(2,a)关于x轴的对称点是B(b,-3)则ab的值是 .5、在平面直角坐标系中,点A(1,2)关于y轴对称的点为点B(a,2),则a=.6、点A(1-a,5),B(3,b)关于y轴对称,则a+b=______.7、如果点(45),关于y轴对称,则a的值为.Q a bP,和点()8.在直角坐标系中,A(1,2)点的横坐标乘以-1,纵坐标不变,得到A′点,则A与A′的关系是().A.关于x轴对称B.关于y轴对称C.关于原点对称D.将A点向x轴负方向平移一个单位9、点M (a,b – 2 )关于x轴对称的点N坐标是 ( )A.(– a.2 – b ) B.(– a ,b – 2 ) C.(a,2 – b ) D.(a,b – 2 )10、若点P(m,2)与点Q(3,n)关于原点对称,则的值分别是()A. B. C. D.11、若点P(– 1 – 2 a,2a – 4)关于原点对称的点在第一象限,则a的整数解有()A、1个B、2个C、3个D、4个12:点A(-1,2)关于y轴的对称点坐标是;点A关于原点的对称点的坐标是。
点A关于x轴对称的点的坐标为13:在平面直角坐标系中,已知:)2,1(A,)4,4(B,在x轴上确定点C,使得BCAC 最小.14:在平面直角坐标系中,已知点),(yP横、纵坐标互为相反数,在平x面直角坐标系中表示出点P的位置.知识点4:考平移后点的坐标知识解析:1、将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));2、将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).1、在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.2、在平面直角坐标系中,点P(-1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(-4,2)C.(-1,5)D.(-1,-1)3、将点P(-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P/,则点P/的坐标为。
4.将点A(-3,-2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A ,则点A' 的坐标是 .5. 将点A(-4,2)向上平移3个单位长度得到的点B的坐标是()A. (-1,2)B. (-1,5)C. (-4,-1)D. (-4,5)6. 在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比()A. 向右平移了3个单位长度B. 向左平移了3个单位长度C. 向上平移了3个单位长度D. 向下平移了3个单位长度7. 到x轴的距离等于2的点组成的图形是()A. 过点(0,2)且与x轴平行的直线B. 过点(2,0)且与y轴平行的直线8.平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比().A.横坐标不变,纵坐标加 3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘以 3D.纵坐标不变,横坐标乘以39.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的().A.东南方向B.东北方向C.西南方向D.西北方向10、将点P(-3,2)向下平移3个单位,向左平移2个单位后得到点Q(x,y),则xy=___________11、已知正方形ABCD的三个顶点坐标为A(2,1),B(5,1),D(2,4),现将该正方形向下平移3个单位长度,再向左平移4个单位长度,得到正方形A'B'C'D',则C’点的坐标为()A. (5,4)B. (5,1)C. (1,1)D. (-1,-1)12、在平面直角坐标系中,已知线段AB 的两个端点分别是A ( 4 ,-1). B (1, 1) 将线段AB 平移后得到线段A 'B ',若点A '的坐标为 (-2 , 2 ) ,则点 B '的坐标为( )A . ( -5 , 4 )B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1)13、如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b 的值为( )A .2B .3C .4D .514、在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .15、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( )A (3,3)B (5,3)C (3,5)D (5,5)16、在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1)17、如图所示,在平面直角坐标系中,ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点Cy O (01)B ,(20)A ,1(3)A b ,1(2)B a , x的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)知识点5:平行于X轴、Y轴的直线的特点平行于x轴的直线上点的纵坐标相同;平行于y轴的直线上点的横坐标相同1、已知点A(1,2),AC∥X轴, AC=5,则点C的坐标是 _____________.2、已知点A(1,2),AC∥y轴, AC=5,则点C的坐标是 _____________.3、如果点A()a-,点B(),32,b且AB//x轴,则_______4、如果点A()2,m,点B()n-且AB//y轴,则_______,65、已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是 .6、已知长方形ABCD中,AB=5,BC=8,并且AB∥x轴,若点A的坐标为(-2,4),则点C的坐标为__________________________.7.在下列各点中,与点A(-3,-2)的连线平行于y轴的是()A. (-3,2)B. (3,-2)C. (-2,3)D. (-2,-3)8:已知点)1,5mAB//轴,则m的值为多少?B,且直线y,4(+(-mA,点)1知识点6:角平分线的理解第一、三象限角平分线的点横纵坐标相同(y=x);第二、四象限角平分线的点横纵坐标互为相反数(x+y=0)1、若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是() A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2,-2)或(-2,2)2、在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则a=,点的坐标为。