第三次无线传感器网络实验

合集下载

无线传感器网络实验报告

无线传感器网络实验报告

一、实验背景随着物联网技术的飞速发展,无线传感器网络(Wireless Sensor Networks,WSN)作为一种重要的信息获取和传输手段,在军事、环境监测、智能交通、智能家居等领域得到了广泛应用。

为了深入了解无线传感器网络的工作原理和关键技术,我们进行了本次实验。

二、实验目的1. 熟悉无线传感器网络的基本概念和组成;2. 掌握无线传感器网络的通信协议和拓扑结构;3. 熟悉无线传感器网络的编程与调试方法;4. 通过实验,提高动手能力和实践能力。

三、实验内容1. 无线传感器网络概述无线传感器网络由传感器节点、汇聚节点和终端节点组成。

传感器节点负责感知环境信息,汇聚节点负责收集和转发数据,终端节点负责处理和显示数据。

传感器节点通常由微控制器、传感器、无线通信模块和电源模块组成。

2. 无线传感器网络通信协议无线传感器网络的通信协议主要包括物理层、数据链路层和网络层。

物理层负责无线信号的传输,数据链路层负责数据的可靠传输,网络层负责数据路由和传输。

3. 无线传感器网络拓扑结构无线传感器网络的拓扑结构主要有星形、树形、网状和混合形等。

星形拓扑结构简单,但易受中心节点故障影响;树形拓扑结构具有较高的路由效率,但节点间距离较长;网状拓扑结构具有较高的可靠性和路由效率,但节点间距离较远。

4. 无线传感器网络编程与调试本实验采用ZigBee模块作为无线通信模块,利用IAR Embedded WorkBench开发环境进行编程。

实验内容如下:(1)编写传感器节点程序,实现数据的采集和发送;(2)编写汇聚节点程序,实现数据的收集、处理和转发;(3)编写终端节点程序,实现数据的接收和显示。

5. 实验步骤(1)搭建实验平台,包括传感器节点、汇聚节点和终端节点;(2)编写传感器节点程序,实现数据的采集和发送;(3)编写汇聚节点程序,实现数据的收集、处理和转发;(4)编写终端节点程序,实现数据的接收和显示;(5)调试程序,确保各节点间通信正常;(6)观察实验结果,分析实验现象。

无线传感实验报告

无线传感实验报告

无线传感实验报告无线传感实验报告引言无线传感技术是一种基于无线通信的传感器网络技术,它可以实时地感知、采集和传输环境中的各种信息。

本实验旨在通过搭建一个简单的无线传感网络,探索其在实际应用中的潜力和限制。

实验目的1.了解无线传感技术的基本原理和应用领域。

2.学习搭建无线传感网络的基本步骤和方法。

3.研究无线传感网络在环境监测、智能家居等方面的实际应用。

实验步骤1.硬件准备:准备一台主控节点和多个从属节点,主控节点负责接收和处理从属节点发送的数据。

2.网络搭建:通过无线通信模块将主控节点和从属节点连接起来,形成一个无线传感网络。

3.传感器连接:将各个从属节点上的传感器与主控节点相连接,实现数据的采集和传输。

4.数据采集:设置从属节点的采样频率和采样范围,开始采集环境中的各种数据。

5.数据传输:从属节点将采集到的数据通过无线通信模块发送给主控节点。

6.数据处理:主控节点接收到数据后,进行数据处理和分析,得出有用的信息。

实验结果通过本实验,我们成功搭建了一个简单的无线传感网络,并实现了环境数据的采集和传输。

在实际应用中,无线传感技术可以广泛应用于环境监测、智能家居、农业等领域。

例如,在环境监测方面,我们可以通过无线传感网络实时监测空气质量、温湿度等参数,并及时采取相应措施保障人们的健康。

在智能家居方面,无线传感技术可以实现家庭设备的自动控制和远程监控,提高生活的便利性和舒适度。

在农业方面,无线传感技术可以监测土壤湿度、光照强度等参数,帮助农民科学种植,提高农作物的产量和质量。

实验总结通过本次实验,我们深入了解了无线传感技术的原理和应用。

无线传感网络可以实现分布式的数据采集和传输,具有灵活性和可扩展性。

然而,在实际应用中,我们也发现了一些问题和挑战。

首先,无线传感网络的能耗问题仍然存在,如何延长节点的电池寿命是一个需要解决的关键问题。

其次,无线传感网络的安全性也需要重视,如何保护数据的隐私和防止网络攻击是一个亟待解决的问题。

安徽工业大学WSN无线传感器网络实验报告

安徽工业大学WSN无线传感器网络实验报告

《无线传感器网络实验报告》指导教师:***班级:物联网131班实验箱序号:3,13等组员姓名学号:程少锋(注:报告中有部分实验截图)实验日期:2016年4月28日3,4节实验一、软硬件平台使用[1]感知 RF2 实验箱-WSN 系统结构该系统根据不同的情况可以由一台计算机,一套网关,一个或多个网络节点组成。

系统大小只受 PC 软件观测数量,路由深度,网络最大负载量限制。

感知 RF2 实验箱无线传感器实验平台内配置 ZigBee2007/PRO 协议栈在没有进行网络拓补修改之前支持 5 级路由,31101 个网络节点。

传感器网络系统结构图如下图所示。

[2]感知 RF2 实验箱-WSN 系统工作流程基于ZigBee2007/PRO 协议栈无线网络,在网络设备安装过程,架设过程中自动完成。

完成网络的架设后用户便可以由 PC 机发出命令读取网络中任何设备上挂接的传感器的数据,以及测试其电压。

[3]感知 RF2 实验箱-WSN 硬件介绍感知 RF2 物联网实验箱的无线传感器网络开发平台主要硬件包括:C51RF-CC2530-WSN 仿真器、ZigBee 无线高频模块、节点底板、传感器模块以及其它配套线缆等。

网关节点由节点底板+ZigBee 无线高频模块组成。

传感器节点由节点底板+ZigBee 无线高频模块组成+传感器模块组成。

路由节点硬件组成与传感器节点相同,软件实现功能不同。

[4]实验目的:熟悉实验平台前期架构,便于后面程序的烧写。

[5]实验步骤:1安装必要软件(实际实验室中软件已经下载安装完毕,只要通过仿真器C51RF-3进行程序在线下载、调试、仿真即可)1)在实验室机器E盘的《无线龙实验箱相关资料/无线传感器实验资料201604》中安装ZigBee 开发集成环境 IAR7.51A,详细请参考“\C51RF-CC2530-WSN 使用说明书\”目录下的“IAR 安装与使用”。

2)安装传感器网络 PC 显示软件环境,软件位于“\C51RF-CC2530-WSN 开发软件\C51RF-CC2530-WSN 监控软件”目录下的“Framework Version 2.0.exe”3)安装网关与计算机 USB 连接驱动,驱动位于“\C51RF-CC2530-WSN 开发软件\”目录下的“CP2102”。

无限传感网络实验报告

无限传感网络实验报告

一、实验目的1. 了解无线传感网络的基本概念、组成和结构。

2. 掌握无线传感网络的基本操作和实验方法。

3. 通过实验,验证无线传感网络在实际应用中的可靠性和有效性。

二、实验内容1. 无线传感网络基本概念及组成无线传感网络(Wireless Sensor Network,WSN)是一种由大量传感器节点组成的分布式网络系统,用于感知、采集和处理环境信息。

传感器节点负责采集环境信息,并通过无线通信方式将信息传输给其他节点或中心节点。

无线传感网络主要由以下几部分组成:(1)传感器节点:负责感知环境信息,如温度、湿度、光照等。

(2)汇聚节点:负责将多个传感器节点的信息进行融合、压缩,然后传输给中心节点。

(3)中心节点:负责收集各个汇聚节点的信息,进行处理和分析,并将结果传输给用户。

2. 无线传感网络实验(1)实验环境硬件平台:ZigBee模块、ZB-LINK调试器、USB3.0数据线、USB方口线两根、RJ11连接线;软件平台:WinXP/Win7、IAR开发环境、SmartRFFlashProgrammer、ZigBeeSensorMonitor。

(2)实验步骤① 连接硬件设备,搭建无线传感网络实验平台;② 编写传感器节点程序,实现环境信息的采集;③ 编写汇聚节点程序,实现信息融合和压缩;④ 编写中心节点程序,实现信息收集和处理;⑤ 测试无线传感网络性能,包括数据采集、传输、处理等。

(3)实验结果分析① 数据采集:传感器节点能够准确采集环境信息,如温度、湿度等;② 传输:汇聚节点将多个传感器节点的信息进行融合和压缩,传输给中心节点;③ 处理:中心节点对采集到的信息进行处理和分析,生成用户所需的结果;④ 性能:无线传感网络在实际应用中表现出较高的可靠性和有效性。

三、实验总结1. 无线传感网络是一种新型的网络技术,具有广泛的应用前景;2. 通过实验,我们掌握了无线传感网络的基本操作和实验方法;3. 无线传感网络在实际应用中具有较高的可靠性和有效性,能够满足各种环境监测需求。

无线传感网络实验报告

无线传感网络实验报告

无线传感网络实验报告无线传感网络实验报告引言:无线传感网络(Wireless Sensor Network,WSN)是一种由大量分布式的传感器节点组成的网络系统,用于收集、处理和传输环境信息。

WSN具有低成本、低功耗、自组织等特点,广泛应用于环境监测、智能交通、农业等领域。

本实验旨在通过搭建一个简单的无线传感网络,探索其工作原理和性能特点。

一、实验环境搭建1. 硬件准备:选用多个传感器节点和一个基站节点。

传感器节点包括传感器、微处理器、无线通信模块等;基站节点负责接收和处理传感器节点发送的数据。

2. 软件准备:选择适合的操作系统和开发工具,例如TinyOS、Contiki等。

编写传感器节点和基站节点的程序代码。

二、传感器节点部署1. 部署传感器节点:根据实验需求,在待监测区域内合理布置传感器节点。

节点之间的距离和布置密度需根据具体应用场景进行调整。

2. 传感器节点初始化:节点启动后,进行初始化工作,包括自身身份注册、与周围节点建立通信连接等。

三、无线传感网络通信1. 数据采集:传感器节点根据预设的采样频率,采集环境信息,并将数据存储到本地缓存中。

2. 数据传输:传感器节点通过无线通信模块将采集到的数据传输给基站节点。

传输方式可以是单跳或多跳,根据节点之间的距离和网络拓扑结构进行选择。

3. 数据处理:基站节点接收到传感器节点发送的数据后,进行数据处理和分析。

可以根据具体需求,对数据进行滤波、聚合等操作,提取有用信息。

四、无线传感网络能耗管理1. 能耗模型:根据传感器节点的工作状态和通信负载,建立能耗模型,评估节点的能耗情况。

2. 能耗优化:通过调整传感器节点的工作模式、通信协议等方式,降低节点的能耗。

例如,采用睡眠唤醒机制、自适应调整通信距离等。

五、实验结果与分析1. 数据传输性能:通过实验测试,评估无线传感网络的数据传输性能,包括数据传输延迟、传输成功率等指标。

2. 能耗分析:根据实验结果,分析传感器节点的能耗情况,探讨能耗优化策略的有效性和可行性。

无线传感网络实验报告

无线传感网络实验报告

-------无线传感网络实验报告学院:信息工程学院专业:网络工程学号:201216213姓名:张新龙LEACH协议LEACH协议简介分簇算法LEACH 协议是Wendi B. Heinzelman , AnanthaP. Chandrakasan , Hari Balakrishnan (MIT ,电子与计算机系) 2000 年提出的分层的传感器网络协议, 它采用分层的网络结构. LEACH,协议是通过基于簇的操作使WSN减少功耗,LEACH,协议的目的是在网络中动态地选择传感器节点作为簇头并形成簇。

在LEACH 算法中, 节点自组织成不同的簇, 每个簇只有一个簇首.各节点独立地按照一定概率决定自己是否做簇首,周期性的进行簇首选举和网络重组过程, 避免了簇首节点能耗过多, 影响网络寿命. LEACH 算法建立在所有节点都是平等且无线电信号在各个方向上能耗相同的假设上。

LEACH协议有时候也会动态地改变簇的活跃动态,如果采用高功率的方式使网络中的所有传感器节点与汇聚节点进行通信。

LEACH协议原理LEACH 协议分为两个阶段操作, 即簇准备阶段(set - up phase)和就绪阶段(ready phase). 为了使能耗最小化, 就绪阶段持续的时间比簇准备阶段长簇准备阶段和就绪阶段所持续的时间总和称为一轮(round). [ 7-8]在簇准备阶段, 随机选择一个传感器节点作为簇首节点(cluster head node), 随机性确保簇首与Sink 节点之间数据传输的高能耗成本均匀地分摊到所有传感器节点. 簇首节点选定后, 该簇首节点对网络中所有节点进行广播, 广播数据包含有该节点成为簇首节点的信息. 一旦传感器节点收到广播数据包, 根据接收到的各个簇首节点广播信号强度, 选择信号强度最大的簇首节点加入, 向其发送成为其成员的数据包.以便节省能量.簇头建立阶段:初始阶段,每个节点从0和1中随机产生一个数,如果这个数小于阀值T(n),该节点就成为当前轮的簇头。

无线传感器网络实验报告

无线传感器网络实验报告

无线传感器网络实验报告实验报告:无线传感器网络的应用与优化探究一、实验目的本次实验旨在探究无线传感器网络的应用与优化,具体包括传感器网络的组网方式、数据传输协议的选择与优化等。

二、实验原理及工具1.传感器网络组网方式传感器网络通常采用星型、树型、网状三种组网方式。

星型组网结构简单,但单点故障时整个系统会瘫痪;树型组网结构便于数据的传输与管理,但在拓扑结构发生变化时需要重新组网;网状组网结构形式多样,具有较强的灵活性,但网络维护复杂。

本实验将分别对比三种组网方式的性能差异。

2.数据传输协议的选择与优化实验将分别采用无线传感器网络中常用的LEACH、BCP、SPIN协议进行数据传输。

并通过测试比较它们在不同条件下的性能表现,优化协议选择与参数设置,提高网络的传输效率和能耗。

3.实验工具实验中将使用Contiki操作系统,该操作系统是专门为无线传感器网络设计的,支持多种协议,并提供了实验所需的模拟环境。

三、实验内容及步骤1.组网方式的测试(1)搭建星型、树型、网状三种不同的传感器网络拓扑结构。

(2)分别记录每种网络结构在传输运行时的稳定性、延迟、能耗等性能指标,并进行对比分析。

2.数据传输协议的测试及优化(1) 安装Contiki操作系统,选择LEACH、BCP、SPIN协议,并设置相应的参数进行数据传输实验。

(2)改变实验条件(如节点密度、网络负载等),测试和比较三种协议在不同条件下的性能表现。

(3)根据实验结果,优化协议的参数设置,并比较优化后的协议和原始协议的性能差异。

四、实验结果及讨论1.组网方式的测试实验结果显示,星型组网方式具有简单易实现、维护成本低的特点,但存在单点故障的风险,一旦发生节点故障,整个系统将瘫痪。

树型组网方式在数据传输和管理方面具有一定的优势,但拓扑结构变化时需要重新组网。

网状组网方式相对灵活,但也增加了网络维护的复杂性。

根据实验结果,可以根据具体应用场景的要求选择最适合的组网方式。

无线传感器网络实验报告

无线传感器网络实验报告

无线传感器网络实验报告Contiki mac协议与xmac协议的比较1.简介无线传感器网络(wireless sensor networks, WSN)节点由电池供电,其能力非常有限,同时由于工作环境恶劣以及其他各种因素,节点能源一般不可补充。

因而降低能耗、延长节点使用寿命是所有无线传感器网络研究的重点。

WSN中的能量能耗主要包括通信能耗、感知能耗和计算能耗,其中通信能耗所占的比重最大,因此,减少通信能耗是延长网络生存时间的有效手段。

同时,研究表明节点通信时Radio模块在数据收发和空闲侦听时的能耗几乎相同,所以要想节能就需要最大限度地减少Radio模块的侦听时间(收发时间不能减少),及减小占空比。

传统的无线网络中,主要考虑到问题是高吞吐量、低延时等,不需要考虑能量消耗,Radio 模块不需要关闭,所以传统无线网络MAC协议无法直接应用于WSN,各种针对传感器网络特点的MAC协议相继提出。

现有的WSN MAC协议按照不同的分类方式可以分成许多类型,其中根据信道访问策略的不同可以分为:X-MAC协议X-MAC协议也基于B-MAC协议的改进,改进了其前导序列过长的问题,将前导序列分割成许多频闪前导(strobed preamble),在每个频闪前导中嵌入目的地址信息,非接收节点尽早丢弃分组并睡眠。

X-MAC在发送两个相邻的频闪序列之间插入一个侦听信道间隔,用以侦听接收节点的唤醒标识。

接收节点利用频闪前导之间的时间间隔,向发送节点发送早期确认,发送节点收到早期确认后立即发送数据分组,避免发送节点过度前导和接收节点过度侦听。

X-MAC还设计了一种自适应算法,根据网络流量变化动态调整节点的占空比,以减少单跳延时。

优点:X-MAC最大的优点是不再需要发送一个完整长度的前导序列来唤醒接收节点,因而发送延时和收发能耗都比较小;节点只需监听一个频闪前导就能转入睡眠。

缺点:节点每次醒来探测信道的时间有所增加,这使得协议在低负载网络中能耗性比较差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌航空大学实验报告
二O 一六年四月20 日
课程名称:无线传感器网络实验名称:CC2530 串口指令控制LED灯
班级:姓名:
指导教师评定:签名:
一、实验目的
1.通过实验掌握CC2530 芯片串口配置与使用
2.观察底板上RX、TX串口发送指示灯的变化
3.接收串口发送过来的数据,通过数据内容分析控制LED
注:嵌入式开发中,当程序能跑起来后,串口是第一个要跑起来的设备,所有的工作状态,交互信息都会从串口输出。

二、实验内容
1. 查看数据手册,了解CC2530的串口功能,熟悉串口的相关配置寄存器;
2. 根据实验手册内容配置CC2530的串口相关寄存器,使用P0_2和P0_3
的外设功能将其配置为串口方式,并设置波特率为115200后处理串口的中断,使其允许接收数据并产生中断;
3. 配置所需LED灯的I/O口;
4. 编写串口的初始化、发送数据以及中断处理函数;
5. 在程序入口函数中,设置系统时钟源和主频,初始化完毕后,进入while
循环处理相应指令并控制LED灯。

三、实验相关电路图
图1 PL2303HX串口转换芯片电路原理图
P0_2、P0_3配置为外设功能时:P0_2为RX, P0_3为TX. USART0和USART1是串行通信接口,它们能够分别运行于异步UART模式或者同步SPI模式。

两个USART具有同样的功能,可以设置在单独的I/O 引脚。

四、实验过程
1. 串口的配置
1)配置IO,使用外部设备功能。

此处配置P0_2和P0_3用作串口UART0。

2)配置相应串口的控制和状态寄存器。

3)配置串口工作的波特率。

波特率由下式给出:
F 是系统时钟频率,等于16 MHz RCOSC 或者32 MHz XOSC。

2.中断的初始化
1)标志位清0;
2)处理串口的默认接收状态;
3)开启系统中断。

3. 使用串口调试助手对程序进行调试检验,注意发送的指令必须以字符串形式发送而不能以hex形式发送;
4. 源代码
#include <ioCC2530.h>
#include <string.h>
typedef unsigned char uchar;
typedef unsigned int uint;
#define UART0_RX 1
#define UART0_TX 2
#define CONTROL_LED 3
#define SIZE 4
#define ON 0
#define OFF 1
#define LED1 P1_0
#define LED2 P1_1
char RxBuf;
char UartState;
uchar count;
char RxData[SIZE]; //存储发送字符串
void DelayMS(uint msec)
{
uint i,j;
for (i=0; i<msec; i++)
for (j=0; j<1070; j++);
}
void InitLed(void)
{
P1DIR |= 0x03; //P1.0和P1.1定义为输出口}
void InitUart(void)
{
PERCFG = 0x00; //外设控制寄存器 USART 0的IO位置1
P0SEL = 0x0c; //P0_2,P0_3用作串口(外设功能) P2DIR &= ~0xC0; //P0优先作为UART0
U0CSR |= 0x80; //设置为UART方式
U0GCR |= 11;
U0BAUD |= 216; //波特率设为115200
UTX0IF = 0; //UART0 TX中断标志初始置位0
U0CSR |= 0x40; //允许接收
IEN0 |= 0x84; //开总中断允许接收中断
}
void UartSendString(char *Data, int len)
{
uint i;
for(i=0; i<len; i++)
{
U0DBUF = *Data++;
while(UTX0IF == 0);
UTX0IF = 0;
}
}
#pragma vector = URX0_VECTOR
__interrupt void UART0_ISR(void)
{
URX0IF = 0; // 清中断标志
RxBuf = U0DBUF;
}
void main(void)
{
CLKCONCMD &= ~0x40; //设置系统时钟源为32MHZ晶振 while(CLKCONSTA & 0x40); //等待晶振稳定为32M
CLKCONCMD &= ~0x47; //设置系统主时钟频率为32MHZ InitLed(); //设置LED灯相应的IO口
InitUart(); //串口初始化函数
UartState = UART0_RX; //串口0默认处于接收模式
memset(RxData, 0, SIZE);
while(1)
{
if(UartState == UART0_RX) //接收状态
{
if(RxBuf != 0)
{
if((RxBuf != '#')&&(count < 3))//以'#'为结束符 RxData[count++] = RxBuf;
else
{
if(count >= 3) //判断数据合法性,防止溢出 {
count = 0; //计数清0
memset(RxData, 0, SIZE);//清空接收缓冲 }
else
UartState = CONTROL_LED;//进入发送状态 }
RxBuf = 0;
}
}
if(UartState == CONTROL_LED) //控制LED灯 { //判断接收的数据合法性if((RxData[0]=='d'||RxData[0]=='D')&&(RxData[1]=='1'||RxData[1 ]=='2'))
{
if(RxData[1]=='1')
LED1 = ~LED1; //低电平点亮 else
LED2 = ~LED2;
}
else
if((RxData[0]=='a'||RxData[0]=='A')&&(RxData[1]=='0'||RxData[1 ]=='1'))
{
if(RxData[1]=='0')
{
LED1 = ON;
LED2 = ON;
}
else
{
LED1 = OFF;
LED2 = OFF;
}
}
UartState = UART0_RX;
count = 0;
memset(RxData, 0, SIZE); //清空接收缓冲区
}
}
}
五、实验心得
本次实验主要是熟悉串口功能的使用,通过实验弄清了串口相关的寄存器及配置方法,通过自己动手写代码配置寄存器加强了对串口功能的掌握,进一步熟悉了对于硬件编程的特点,即寄存器的配置,也巩固了对串口通信的理解和运用,还有一点是在调试程序过程中积累了经验,有助于后期对CC2530芯片编写程序和调试程序。

相关文档
最新文档