角和角的比较知识归纳及经典习题
小学数学知识归纳掌握角的大小比较和角的分类

小学数学知识归纳掌握角的大小比较和角的分类角是几何学中的重要概念,它既存在于图形中,也存在于现实生活中。
在小学数学中,我们需要掌握角的大小比较和角的分类,以便更好地理解和应用于解题。
本文将对这两个方面进行归纳总结。
一、角的大小比较1. 角的度量角的度量单位是度(°),一个圆周分为360°。
我们常见的角有直角(90°)、钝角(大于90°)和锐角(小于90°)。
2. 角的比较(1)相等角:两个角的度数相等,称为相等角。
(2)对顶角:两条直线相交时,两对相对的角称为对顶角,对顶角必定相等。
(3)邻补角:两个角是共同的一条边,且其他边分别在两个角的一侧时,这两个角的度数和为90°,称为邻补角。
二、角的分类1. 锐角锐角是小于90°的角,它的两条边夹角度数小于直角。
2. 直角直角是90°的角,它的两条边夹角度数为90°。
3. 钝角钝角是大于90°的角,它的两条边夹角度数大于直角。
4. 全角全角是一个圆的角,它的两条边夹角是一个圆的周长,即360°。
5. 邻补角邻补角是指两个角的度数和为90°的角,即互为补角的角。
6. 对顶角对顶角是指两条直线相交时,位于相对侧的两个角,它们的度数相等。
三、角的应用1. 角的度数估算通过比较指定角与已知角度的关系,可以估算未知角的度数。
例如,如果已知一个角是45°,另一个角比它大20°,我们可以估算该角的度数为65°。
2. 角的分类判断在解决问题时,有时需要根据已知条件判断角的分类,从而选择相应的定理或方法进行求解。
例如,当已知两条直线相交时,若求解的问题与对顶角有关,我们可以利用对顶角相等的性质来解决。
3. 角的大小关系比较掌握角的大小比较有助于我们进行角的排序和比较大小。
在解决问题时,我们可以利用角的大小关系来推导出一些结论。
高中数学角的性质及相关题目解析

高中数学角的性质及相关题目解析角是数学中常见的概念,它在几何学和三角学中都有重要的应用。
在高中数学中,我们需要掌握角的性质,并能够灵活运用这些性质解题。
本文将从角的定义、角的种类、角的性质以及相关题目解析等方面进行说明,帮助高中学生更好地理解和掌握角的知识。
一、角的定义和种类角是由两条射线共同确定的,其中一条射线称为角的边,另一条射线称为角的始边。
角的顶点是两条射线的公共端点。
根据角的大小,可以将角分为以下几类:1. 零角:两条射线重合,大小为0°。
2. 锐角:角的大小小于90°。
3. 直角:角的大小等于90°。
4. 钝角:角的大小大于90°但小于180°。
5. 平角:角的大小等于180°。
二、角的性质1. 余角:两个角的和等于180°时,这两个角互为余角。
例如,角A和角B是余角,那么A + B = 180°。
2. 互补角:两个角的和等于90°时,这两个角互为互补角。
例如,角C和角D 是互补角,那么C + D = 90°。
3. 对顶角:由两组对边所成的两个角互为对顶角。
对顶角的大小相等。
例如,在平行线AB和CD之间,角ACB和角CDA是对顶角,它们的大小相等。
4. 同位角:当两条直线被一条截线所交叉时,交叉的两组对应角互为同位角。
同位角的性质有以下几点:a. 同位角的和等于180°。
b. 同位角的对应角互为补角。
c. 同位角的对应角相等。
三、相关题目解析1. 例题一:已知角A的余角是30°,求角A的大小。
解析:根据余角的定义,角A的大小加上它的余角等于180°。
设角A的大小为x°,则有x° + 30° = 180°。
解方程得到x = 150°。
因此,角A的大小为150°。
2. 例题二:已知角B是角A的互补角,角A的大小是60°,求角B的大小。
《角的比较》 知识清单

《角的比较》知识清单一、角的定义角是由公共端点的两条射线所组成的图形。
这个公共端点叫做角的顶点,这两条射线叫做角的边。
角也可以看作是一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形。
二、角的表示方法1、用三个大写字母表示,例如∠AOB,其中 O 为顶点,A、B 为角的两条边的端点,顶点字母必须写在中间。
2、用一个大写字母表示,此时这个顶点处只有一个角,例如∠A,但当顶点处有多个角时,不能用这种方法。
3、用一个数字表示,例如∠1。
4、用一个希腊字母表示,例如∠α。
三、角的度量1、度、分、秒是常用的角的度量单位。
1 度= 60 分,1 分= 60 秒,1 周角= 360 度,1 平角= 180 度。
2、度量角的工具一般是量角器。
四、角的比较方法1、度量法用量角器分别量出两个角的度数,然后比较它们的大小。
2、叠合法把两个角的顶点和一条边重合,然后比较另一条边的位置。
如果另一条边也重合,说明两个角相等;如果另一条边在里边,说明这个角小;如果另一条边在外面,说明这个角大。
五、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
例如,若 OC 是∠AOB 的平分线,则∠AOC =∠BOC =1/2∠AOB。
六、角的和差1、角的和∠AOB +∠BOC =∠AOC2、角的差∠AOC ∠AOB =∠BOC七、余角和补角1、余角如果两个角的和等于 90 度(直角),就说这两个角互为余角,简称互余。
其中一个角是另一个角的余角。
例如,∠A +∠B = 90°,则∠A 是∠B 的余角,∠B 也是∠A 的余角。
2、补角如果两个角的和等于 180 度(平角),就说这两个角互为补角,简称互补。
其中一个角是另一个角的补角。
例如,∠C +∠D = 180°,则∠C 是∠D 的补角,∠D 也是∠C 的补角。
3、性质同角(或等角)的余角相等;同角(或等角)的补角相等。
角的认识、运算及比较专题训练

角一、角:由公共端点的两条射线所组成的图形叫做角.角的表示方法(四种方法)(1)用三个大写字母:表示角的顶点的字母写在中间∠AOB;(2)用数字:∠1,∠2;(3)用希腊字母:∠α,∠β;(4)用一个大写字母:表示角的顶点的字母∠O.二、角的度量及单位换算角的度量单位:度、分、秒是常用的角的度量单位,以度分秒为单位的角的度量制就是角度制,角的度数在进行运算时,是60进制的.填空:1周角= 0 1平角= 010= ′1′= ″三、余角和补角互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.四、方位角方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东300”,“南偏西400”等,方位角不能以正东,正西为基准,如不能说成“东偏北600,西偏南500”等,但有时如北偏东450时,我们可以说成东北方向.例 1 计算(1)1800 -(78036′- 25027′)(2)18015′×6(3)13010′÷4例 2 若时针由2点30分起到2点55分,问时针、分针各转过多少度数?例 3 (1)把3.620化为度、分、秒.(2)把50023′45″化成度.例 4 如图∠1:∠2:∠3=1:2:3,∠4=600,试求∠1、∠2、∠3的度数.例 5 已知一个角的余角比这个角的补角的一半还小120,求这个角余角和补角的度数?(可运用方程知识求解)例6 如图,(1)已知∠AOB是直角,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数。
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数。
(3)你从(1)、(2)的结果中能发现什么规律?《角》专题训练 姓名: 得分:一、选择题:1、一个角的补角是 ( )A 、锐角B 、直角C 、钝角D 、以上三种情况都有可能 2、一个锐角的补角比这个角的余角大 ( ) A 、30º B 、45º C 、60º D 、90º3、如图1所示,∠α+∠β=90°,∠β+∠γ=90°,则( ).A .∠α=βB .∠β=∠γC .∠α=∠β=∠γD .∠α=∠γ4、若∠1与∠2互补,∠3与∠1互余,∠2+∠3=240º,由∠2是∠1的 ( ) A 、251倍 B 、5倍 C 、11倍 D 、无法确定倍数 5、若∠1与∠2互为补角,且∠1<∠2,则∠1的余角是 ( ) A 、∠1 B 、∠1+∠2 C 、21(∠1+∠2) D 、21(∠2-∠1) 6、如果∠A 和∠B 互为余角,∠A 和∠C 互为补角,∠B 与∠C 的和等于120°,那么这三个角分别是( ).A .50°,30°,130°;B .75°,15°,105°;C .60°,30°,120°;D .70°,20°,110° 二、填空题1、如图,射线OA 表示北偏东_____,射线OB 表示_____30°,射线OD•表示南偏西_______,欲称西南方向,射线OC 表示________方向.2、将一副直角三角板(如图)叠在一起,使直角顶点重合于点O ,则∠AOB+∠DOC= 。
角及角的比较与运算

角一. 角的概念和表示方法引入:在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻(如图),当甲带球冲到A点时,乙已跟随冲到B点。
从数学角度看,此时甲是自己射门好,还是将球传给乙,让乙射门好?说明:事实上,在真正的比赛中,情况会很复杂。
如果A、B两点到球门的距离相差不大,要确定较好的射门位置,关键看这两点各自对球门MN的张角大小,当张角小时,求容易被守门员拦截。
角在我们的生活中无处不在,例如三角尺的三个角,扇子打开后形成的角,时针与分针形成角。
例1、角的定义角的静态定义:有公共端点的两条射线所组成的图形叫做角。
公共的端点叫做角的顶点,两条射线叫做角的角的两条边。
角的动态定义:把一条射线绕着它的端点旋转而成的图形叫做角。
开始的边叫做角的始边,终止的边叫做角的终边。
旋转经过的部分叫做角的内部,没有经过的部分叫做角的外部。
通常用一个小的弧线来表示角的内部。
例2、角的分类角的分类:(1)将一条射线OA绕着O旋转,当终止的位置OB与起始OA在一条线上时,所形成的角是平角=180°(平角不是直线,因为平角有顶点,直线没有顶点)。
(2)当射线OA绕着O旋转,当终止的位置OB与起始OA重合时,所形成的角是周角=360°(周角不是射线)(3)等于=90°的角叫做直角,小于90°的角叫做锐角,大于90°且小于180°的角叫做钝角。
练习:一个平角等于几个直角?例3、表示方法(1)用三个大写字母表示角,如图:∠AOB或∠BOA(∠的符号不要忘记,0为顶点一定要写在中间)(2)用一个大写字母,∠0,(只适用于以该点为顶点的角只有一个的情形),如下图就不可以:(3)编号法,在角的内部画一段弧线,并用1、2、3等阿拉伯数字进行编号,记做∠1,并依次排序,(用数字表示角不能跨界,一个数字只能表示一个角)(4)用小写的希腊字母α(阿尔法)、β(贝塔)、γ(伽马)表示角,将编号法的阿拉伯数字换成希腊字母。
角的比较重难点题型

角的比较--重难点题型【知识点1 角的比较与运算】【题型1 角的大小比较】∠COD=50°;小丽用叠合法比较,将两个角的顶点重合,边OB与OD重合,边OA 和OC置于重合边的同侧,则边OA.(填序号:①“在∠COD的内部”;②“在∠COD的外部”;③“与边OC重合”)【变式1-1】(2021春•呼和浩特期末)如图,∠AOB=∠COD,则∠AOC与∠DOB的大小关系是()A.∠AOC>∠DOBB.∠AOC<∠DOBC.∠AOC=∠DOBD.∠AOC与∠DOB无法比较大小【变式1-2】(2021秋•开封期末)如图所示,其中最大的角是,∠DOC,∠DOB,∠DOA的大小关系是.【变式1-3】(2021秋•门头沟区期末)如图所示的网格是正方形网格,点A,B,C,D,O 是网格线交点,那么∠AOB∠COD.(填“>”,“<”或“=”)【题型2 角的和差】【例2】(2021秋•安庆期末)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【变式2-1】(2021秋•五常市期末)用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°【变式2-2】2021秋•北碚区期末)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.若∠ABE=30°,则∠DBC为度.【变式2-3】(2021秋•荔湾区期末)把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°【题型3 n等分线】【例3】(2021秋•罗湖区校级期末)如图,已知O为直线AB上一点,过点O向直线AB 上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.【变式3-1】(2021秋•奉化区校级期末)OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D.1:4【变式3-2】(2021秋•江汉区期末)如图,射线OB、OC在∠AOD内部,其中OB为∠AOC 的三等分线,OE、OF分别平分∠BOD和∠COD,若∠EOF=14°,请直接写出∠AOC 的大小.【变式3-3】(2021秋•越秀区校级月考)如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=13∠AOC,∠BON=13∠BOD.(本题中所有角均大于0°且小于等于180°)(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,则∠MON =°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON 的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<180且n≠60a,其中a为正整数),直接写出所有使∠MON=2∠BOC的n值.【题型4 角平分线】【例4】(2021秋•武都区期末)如图所示,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,若∠AOC=68°,则∠BOF和∠EOF是多少度?【变式4-1】(2021秋•南山区期末)已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=12∠AOBA.1个B.2个C.3个D.4个【变式4-2】(2021秋•曲阳县期末)已知将一副三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是;(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是;(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON 平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【变式4-3】(2021秋•裕华区校级期中)如图1,∠AOB=40°,∠AOB的一边OB与射线OM重合,现将∠AOB绕着点O按顺时针方向旋转180°.在旋转过程中,当射线OA、OB或者直线MN是某一个角(小于180°)的平分线时,旋转角的度数为.【题型5 余角与补角的定义】【例5】(2021春•金山区期末)如果一个角的补角的2倍减去这个角的余角恰好等于这个角的4倍,求这个角的度数.【变式5-1】(2021•寻乌县模拟)已知∠A是锐角,∠A与∠B互补,∠A与∠C互余,则∠B﹣∠C的值等于()A.45°B.60°C.90°D.180°【变式5-2】(2020秋•麦积区期末)一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【变式5-3】(2021秋•沂水县期末)如图,已知∠AOB=130°,画∠AOB的平分线OC,画射线OD,使∠COD和∠AOC互余,并求∠BOD的度数.【题型6 利用余角或补角的性质得角相等】【例6】(2021秋•鹿邑县期末)如图,O为直线AB上一点,∠DOE=90°,OD是∠AOC 的角平分线,若∠AOC=70°.(1)求∠BOD的度数.(2)试判断OE是否平分∠BOC,并说明理由.【变式6-1】(2021秋•旌阳区期末)如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠AOD+∠BOC=180°;④若OB平分∠AOC,则OC平分∠BOD;⑤∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的有.(填序号)【变式6-2】(2021秋•芮城县期末)综合与实践已知直线AB 经过点O ,∠COD =90°,OE 是∠BOC 的平分线.(1)如图1,若∠AOC =30°,求∠DOE ;(2)如图1,若∠AOC =α,求∠DOE ;(用含α的式子表示)(3)将图1中的∠COD 绕顶点O 顺时针旋转到图2的位置,其它条件不变,(2)中的结论是否还成立?试说明理由;(4)将图1中的∠COD 绕顶点O 逆时针旋转到图3的位置,其它条件不变,直接用含α的式子表示∠DOE .【变式6-3】(2019秋•东西湖区期末)如图1,平面内一定点A 在直线EF 的上方,点O 为直线EF 上一动点,作射线OA 、OP 、OA ',当点O 在直线EF 上运动时,始终保持∠EOP =90°、∠AOP =∠A 'OP ,将射线OA 绕点O 顺时针旋转60°得到射线OB .(1)如图1,当点O 运动到使点A 在射线OP 的左侧,若OA '平分∠POB ,求∠BOF 的度数;(2)当点O 运动到使点A 在射线OP 的左侧,且∠AOE =3∠A 'OB 时,求∠AOF ∠AOP 的值;(3)当点O 运动到某一时刻时,∠A 'OB =130°,请直接写出∠BOP = 度.【题型7 求几何图形中互余或互补角的个数】【例7】(2021•娄星区模拟)如图,C 是直线AB 上一点,CD 是∠ACB 的平分线. ② 图中互余的角有 ;②图中互补的角有 ;③图中相等的角有 .【变式7-1】(2021秋•南开区期末)如图所示,已知O 是直线AB 上一点,∠BOE =∠FOD =90°,OB 平分∠COD .(1)图中与∠DOE 相等的角有 ;(2)图中与∠DOE 互余的角有 ;(3)图中与∠DOE 互补的角有 .【变式7-2】(2021秋•成都期中)如图,O 是直线AB 上的一点,∠AOD =120°,∠AOC =90°,OE 平分∠BOD .写出图中所有互补的角和互余的角.【变式7-3】(2021春•吴中区月考)如果∠α和∠β互补,且∠α>∠β,则下列式子中:①90°﹣∠β;②∠α﹣90°;③12(∠α+∠β);④12(∠α﹣∠β).可以表示∠β的余角的有( )A .①②B .①②③C .①②④D .①②③④【题型8 数学思想方法与角】【例8】(2021秋•河东区期末)已知∠AOB=90°,OC为一射线,OM,ON分别平分∠BOC和∠AOC,则∠MON是()A.45°B.90°C.45°或135°D.90°或135°【变式8-1】(2021秋•成华区期中)(1)如图1,射线OC、OD在∠AOB的内部,射线OM、ON分别平分∠AOD、∠BOC、且∠BON=50°,∠AOM=40°,∠COD=30°,求∠AOB的度数;(2)如图2,射线OC、OD在∠AOB的内部,射线OM、ON分别平分∠AOD、∠BOC、且∠AOB=150°,∠COD=30°,求∠MON的度数【变式8-2】(2021秋•无锡期末)如图,∠AOB=150°,∠COD=40°,OE平分∠AOC,则2∠BOE﹣∠BOD=°.【变式8-3】(2021秋•镇海区期末)新定义问题如图①,已知∠AOB,在∠AOB内部画射线OC,得到三个角,分别为∠AOC、∠BOC、∠AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为∠AOB的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,∠AOB=45°,射线OC为∠AOB的“幸运线”,则∠AOC的度数为;【解决问题】(3)如图②,已知∠AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t秒(0<t<9).若OM、ON、OA三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.。
角(知识点总结、例题解析)

第四章几何图形初步4.3 角一、知识考点知识点1【角】1、角的定义:(1)有公共端点的两条射线所组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
(2)角可以看成是由一条射线绕着它的端点旋转而成的图形(如图)。
【例题1】下列语句正确的是()A、两条直线相交,组成的图形叫做角B、两条具有公共端点的线段组成的图形叫做角C、两条具有公共端点的射线组成的图形叫做角D、过同一点的两条射线组成的图形叫做角【解析】根据角的定义判断【答案】C2、角的表示方法:角用符号“∠”表示,读做“角”,通常有以下几种表示方法:(1)用三个大写英文字母表示;(2)用一个大写英文字母表示;(3)用阿拉伯数字表示;(4)用小写希腊字母(如α,β,γ)表示。
【例题2】如图,由点0引射线OA、OB、OC,则这三条射线组成_________个角,分别是_________________________;其中∠AOB用数字表示为_________,∠2用三个字母表示为________________。
注意:∠2 (填“能”或“不能”)用∠0表示【答案】3;∠1,∠2,∠BOC;∠1;∠AOC【例题3】观察下图,回答下列问题:(1)在∠AOB内部画1条射线OC,则图中有_______个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图中有________个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE则图中有_______个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…则图中有_______个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…则图中有_______个不同的角。
【解析】在∠AO B的内部从O点引出n条射线,那么在图形中,以O为端点的射线共n+2条。
其中,每条射线都可以和其他射线形成(n+2-1)个角,总共形成了(n+2)(n+1)个角,但由于形成的每个角都被重复计算了1次,所以要除以2【答案】(1)2+1=3;(2)3+2+1=6;(3)4+3+2+1=10;(4)1+2+3+…+10+11=66;;(5)1+2+3+…+n+(n+1)=(n+1)(n+2)2不同的角。
角的度量及比较和运算

初一数学—角的度量及比较和运算一、知识要点1、角的定义:有公共端点的两条射线所组成的图形叫做角,角也可以看作由一条射线绕着它的端点,旋转而成的图形.2、角的度量:把一个周角360等分,每1份的角记作1°,1°=60分,1分=60秒.3、1周角=360°,1平角=180°, 1直角=90°.4、角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图,OC是∠AOB的平分线,则有以下写法:∵OC是∠AOB的平分线∴(1)∠AOC=∠BOC(2)或(3)∠AOB=2∠AOC或∠BOA=2∠BOC5、角的特殊关系(1)余角、补角的概念如果两个角的和等于90°(直角),那么就说这两个角互为余角,简称互余.如果两个角的和等于180°(平角),那么就说这两个角互为补角,简称互补.(2)余角、补角的性质:余角和补角的性质. 同角或等角的余角相等.同角或等角的补角相等.6、对顶角的性质:对顶角相等.三、典例剖析例1、57.32°是几度几分几秒?例2、计算:(1)39°48′+41°37′(2)48°2′÷5例3、画出表示下列方向的射线:(如图)(1)东南方向射线OA;(2)北偏东60°的射线OB;(3)南偏西30°的射线OC;(4)北偏西30°的射线OD.例4、如图,O为直线AB上一点,射线OD、OE分别平分∠AOC、∠BOC.求∠DOE的度数.例5、已知一个角的补角与一个直角的和比这个角的余角的5倍少44°,求这个角.一、选择题1、用一副三角板画角,不能画出的角的度数是()A.15°B.75° C.145°D.165°2、如果一个角是36°,那么()A.它的余角是64° B.它的补角是64° C.它的余角是144°D.它的补角是144°3、如图所示是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60°B.80° C.120°D.150°4、下列算式中,正确的是()A.①和②B.①和③ C.②和③D.②和④①33.33°=33°3′3″②33.33°=33°19′48″③50°40′33″=50.43°④50°40′33″=50.675°5、如图,射线OA表示的方向是()A.西北方向B.东南方向 C.西偏南30°D.南偏西30°6、∠1,∠2互为补角,且∠1>∠2,那么∠2的余角是()A.B. C.D.7、如图,已知∠ACB=90°,∠1=∠B,∠2=∠A,则下列说法错误的是()A.∠A与∠B不互为余角;B.∠1与∠2互为余角;C.∠2与∠B互为余角;D.∠1与∠A互为余角8、如图,射线OQ平分∠POR,OR平分∠QOS,以下结论:①∠POQ=∠QOR=∠ROS;②∠POR=∠QOS;③∠POR=2∠ROS;④∠POS=2∠POQ,其中正确的是()A.①、②和③B.①、②和④C.①、③和④D.①、②、③、④9、如图,AOB是直线,OD平分∠BOC,OE平分∠AOC,则下列说法中错误的是()A.∠DOE为直角 B.∠DOC和∠AOE互余C.∠AOE和∠BOC互补D.∠AOD和∠DOC互补10、∠1和∠2互余,∠2和∠3互补,∠1=63°,则∠3等于()A.117°B.27° C.153°D.37°11、如果一个角的补角是120°,那么这个角的余角为()A.30° B.60° C.90° D.120°12、两个角的比是7︰3,它们的差是72°,则这两个角的关系是()A.互为余角B.互为补角C.相等D.和为144°二、填空题1、如图,已知A、O、B在一条直线上,OE平分∠BOC,则∠BOE=_____度.2、如果一个角的补角是这个角的余角的4倍,则这个角为___________.3、若∠AOB=40°,∠BOC=60°,则∠AOC=________4、1点15分,时针与分针的夹角是_______度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角(基础)知识讲解【高清课堂:角397364 角的概念】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.1.下列语句正确的是( C )A.两条直线相交,组成的图形叫做角.B.两条具有公共端点的线段组成的图形叫做角.C.两条具有公共端点的射线组成的图形叫做角.D.过同一点的两条射线组成的图形叫做角.【答案】【解析】根据角的定义判断【总结升华】角不能仅仅看作是有公共端点的两条射线,角的两种描述中都隐含了组成角的一个重要元素,即两条射线间的相对位置关系,这是角与“有公共端点的两条射线”的重要区别.举一反三:【变式】判断下列说法是否正确(1)两条射线组成的图形叫做角( ×)(2)平角是一条直线( × )(3)周角是一条射线( × )2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.写出图中(1)能用一个字母表示的角;(2)以B为顶点的角;(3)图中共有几个角(小于180°).【答案与解析】解:(1)能用一个字母表示的角∠A、∠C.(2)以B为顶点的角∠ABE、∠ABC、∠CBE.(3)图中共有7个角.【总结升华】(1)顶点处只有一个角时,才可以用一个字母表示;(2)一般数角时不包括平角和大于平角的角.已知:如图,在∠AOE的内部从O引出3条射线,求图中共有多少个角?如果引出99条射线,则有多少个角?分析:在∠AOE的内部从O点引出3条射线,那么在图形中,以O为端点的射线共5条。
其中,任意一条射线与其他4条射线都必构成一个角(小于平角的角)。
数角的时候要按一定的顺序,从OE边开始数,这样可得到4+3+2+1个角,所以,这5条射线共组成角的个数为10个角。
公式为:2)1(nn。
同理,如果引出99条射线,那么,以O为顶点的射线共101条,构成的角的个数为5050个。
已知:如图,在∠AOE的内部从O引出3条射线,求图中共有多少个角?如果引出99条射线,则有多少个角?分析:在∠AOE的内部从O点引出3条射线,那么在图形中,以O为端点的射线共5条。
其中,任意一条射线与其他4条射线都必构成一个角(小于平角的角)。
数角的时候要按一定的顺序,从OE边开始数,这样可得到4+3+2+1个角,所以,这5条射线共组成角的个数为10个角。
公式为:2)1(nn。
同理,如果引出99条射线,那么,以O为顶点的射线共101条,构成的角的个数为5050个。
3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(3)角的和、差关系:利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示;(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”;(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向;(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.A看B的方向是北偏东30°,那么B看A的方向是( )A.南偏东60°B.南偏西60°C.南偏东30°D.南偏西30°【答案】D【解析】依题意画出示意图.由图可知,图中∠1即表示从A看B的北偏东30°,∠2是从B看A的方位角.由此可确定从B看A是南偏西30°.【总结升华】从本例的分析与结果来看,从A看B与从B看A正好是一对对立的观察过程,其方向是一种“相反”的对应关系.方位角的确定首先以什么点为基点(即人站在此处观察)要弄清楚,再由正南或正北到视线夹角测量出来.举一反三:【变式】小王从家出发向南偏东30°的方向走了1000米到达小军家,此时小王家在小军家的________方向.【答案】北偏西30°要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.4时15分时针与分针的夹角.【答案与解析】如图(1),∠AOC=30°×1=30°,∠BOC=0.5°×15=7.5°.所以∠AOB=37.5°.即4时15分时针与分针的夹角为37.5°【总结升华】求钟表中时针与分针的夹角有两种方法:第一种方法利用时针与分针的每分钟转速求解,比如解法一;第二种方法直接根据图形求夹角,如解法二.举一反三:【变式】2时48分时针与分针的夹角.【答案】解法2:如图(2)∠BOD =30°×4=120°,∠COD =2×6°=12°,∠AOB =48×0.5°=24°,所以∠AOC =∠BOD+∠COD+∠AOB =156°.即2时48分时针与分针的夹角为156°.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.(1)把25.72°分别用度、分、秒表示 (2)把45°12′30″化成度【思路点拨】第(1)题中25.72°中含有两部分25°和0.72°,只要把0.72°化成分、秒即可.第(2)题中,45°12′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.【答案与解析】解:(1)0.72°=0.72×60′=43.2′,0.2′=0.2×60″=12″,所以25.72°=25°43′12″.(2)130300.560'⎛⎫'''=⨯= ⎪⎝⎭,112.512.50.2160⎛⎫'=⨯ ⎪⎝⎭°≈°所以45°12′30″≈45.21°.【总结升华】无论由高级单位向低级化还是由低级单位向高级化,都必须逐级进行,“越级”化单位容易出错.举一反三:【变式】 (1)把26.29°转化为度、分、秒表示的形式;(2)把33°24′36″转化成度表示的形式.【答案】 (1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×160'⎛⎫ ⎪⎝⎭=33°+24′+0.6′ =33°+24.6′=33°+24.6×160⎛⎫ ⎪⎝⎭°=33.41° 【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后再进行计算。
3、已知:∠A=50º24’,∠B=50.24º,∠C =50º14’24”,那么下列各式正确的是( )A 、∠A>∠B>∠CB 、∠A>∠B=∠C C 、∠B>∠C>∠AD 、∠B=∠C>∠A2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小. 方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB 和∠A′O′B′的大小: 如下图,由图(1)可得∠AOB <∠A′O′B′;由图(2)可得∠AOB =∠A′O′B′;由图(3)可得∠AOB >∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB 与∠2的差,记作:∠1=∠AOB-∠2.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOB.∠AOC=∠BOC =12要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.如图所示,已知OC平分∠BOD,且∠BOC=20°,OB是∠AOD的平分线,求∠AOD的度数.【答案与解析】解:因为OC平分∠BOD,且∠BOC=20°,所以∠BOD=2∠BOC=2×20°=40°.又OB是∠AOD的平分线,所以∠AOD=2∠BOD=2×40°=80°.【总结升华】应用角的平分线的定义时根据两点:若OB是∠AOC的平分线,则①∠AOB=∠BOC=12∠AOC;②∠AOC=2∠AOB=2∠BOC,在解题时要学会灵活应用.举一反三:【变式】已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOC=80︒,求:∠MON.【答案】∵OM平分∠AOB,ON平分∠COB,∴∠MOB=12∠AOB,∠BON=12∠BOC.(角平分线的定义)∴∠MON=∠MOB+∠BON=1 2∠AOB+12∠BOC=12(∠AOB+∠BOC)=1 2∠AOC=12×80︒=40︒ .即∠MON=40︒.图中,∠AOB=∠BOC=∠COD=∠DOE,则有(1)∠=4∠AOB(2)∠=∠=3∠BOC(3)∠ =∠ =∠ =1/2∠AOE(4)∠ =∠ =∠COE=1/2∠ =2/3∠ =2/3∠如图,已知∠AOB =90°,∠BOC =30°,OM 平分∠AOC ,ON 平分∠BOC 。