cmos器件作业及思考题
数字电子技术基础CMOS图像传感器设计习题

数字电子技术基础CMOS图像传感器设计习题数字电子技术是现代电子科学与技术的重要组成部分,它在各个领域都有着广泛的运用。
其中,CMOS图像传感器作为数字摄像技术的核心之一,被广泛应用于手机、数码相机、安防监控等领域。
本文将从图像传感器的基本原理出发,探讨CMOS图像传感器的设计习题。
一、CMOS图像传感器的基本原理CMOS图像传感器是利用CMOS工艺制造的集成电路,它通过光电转换将光信号转化为电信号,并通过模拟数字转换器将模拟信号转换为数字信号。
其基本原理如下:1. 光电转换CMOS图像传感器的感光元件是一种光敏材料,当光线照射到感光元件上时,光子会激发其中的电子,使得电子从价带跃迁至导带。
该过程中产生的电子-空穴对将通过电场分离,并在感光元件上形成电荷。
这些电荷的积累量与光照强度呈正比关系。
2. 信号放大在感光元件周围,采用MOS场效应晶体管来放大感光元件产生的电荷信号。
这里的MOS晶体管被称为源随器(source follower),它能将输入信号放大并保持电流不变,提高信号传输的质量。
3. 数字信号处理放大后的模拟信号经过模数转换器(ADC)转化为数字信号,通过数字电路对图像信号进行处理、存储和传输。
二、CMOS图像传感器设计习题举例接下来,我们来解答几道关于CMOS图像传感器设计的习题,以加深对其原理和设计要点的理解。
1. 习题一设计一个128*128像素的CMOS图像传感器,要求采样频率为10MHz,图像传感器的面积限制为2mm*2mm。
请给出电路设计方案,并计算电路中所需的晶体管数目。
解答:为实现高采样频率,我们采用一种并行读取像素的方式。
我们将图像传感器划分为多个区域,每个区域包含若干像素。
为了满足面积限制,我们选择4个区域,每个区域的面积为1mm*1mm。
根据采样频率和像素数目,我们可以得知每个像素的采样时间为Ts = 1/(10MHz * 128 * 128)。
根据电路面积的限制,我们采用互补MOS(CMOS)结构作为像素感光元件和源随器。
模拟cmos集成电路设计课后题

模拟CMOS集成电路设计课后题在现代电子科学领域中,模拟CMOS集成电路设计是一门重要的课程,它涉及到电子工程中的基本原理和技术,对从事电子电路设计和集成电路制造的专业人员来说,具有非常重要的意义。
而课后题作为知识的巩固和扩展,对于深入理解和掌握这门课程也至关重要。
接下来,我将针对模拟CMOS集成电路设计课后题进行深度和广度兼具的全面评估,并据此撰写一篇有价值的文章。
一、基本概念解释1. 什么是模拟CMOS集成电路设计?模拟CMOS集成电路设计即使用CMOS工艺制作的模拟电路。
它在数字电路的基础上加入了模拟电路。
2. 课后题的重要性课后题是对课堂所学知识的巩固和拓展,通过解答课后题可以帮助学生更深入地理解和掌握课程内容,提高解决问题的能力。
二、课后题解析1. 请列举一些模拟CMOS集成电路设计的常见应用?模拟CMOS集成电路设计常见的应用包括放大电路、滤波电路、比较器、运算放大器等。
2. 什么是CMOS工艺?CMOS是指互补型金属氧化物半导体技术,它是当今集成电路工艺的主流之一。
CMOS工艺具有低功耗、高集成度和良好的抗干扰能力等特点。
3. 请解释CMOS集成电路的工作原理。
CMOS集成电路由N型金属氧化物半导体场效应晶体管和P型金属氧化物半导体场效应晶体管组成。
当输入电压改变时,两个晶体管的导通状态都会随之改变,从而实现信号的放大和处理。
4. 请说明模拟CMOS集成电路设计中需要考虑的主要因素?在模拟CMOS集成电路设计中,需要考虑的主要因素包括功耗、速度、噪声、线性度、稳定性等。
5. 如何进行模拟CMOS集成电路的性能指标评估?模拟CMOS集成电路的性能指标评估包括静态指标和动态指标两部分,静态指标包括增益、带宽、输入输出阻抗等;动态指标包括上升时间、下降时间、过冲、欠冲等。
三、个人观点和总结从我个人的观点来看,模拟CMOS集成电路设计是电子工程领域中非常重要的一门课程,通过课后题的解答可以更好地理解和掌握课程中的知识点,培养自己的问题解决能力。
华中科技大学CMOS拉扎维第二章课后作业答案中文版

CMOS Analog DesignHome work 1 SolutionBy: 张涛(tomjerry@ )2007年3月18日作业内容:一、书本上的习题2.22.5 (a)、(b)、(c)2.6 (a)、(b)2.72.152.82.182.24参考解答过程2.2.(1)对于NMOS ,工作在饱和区时,有: =()(1)OX GS TH DS W nC V V V L u λ-+≈=3.66mA V 1Dro I λ==20k ΩA=Gm ro =73.3(2)对于PMOS ,公式基本同上 =()(1)p OX GS TH DS W C V V V L u λ-+≈=1.96mA V 1Dro I λ==10k ΩA=Gm ro =19.62.5a.若不考虑二级效应,则 = 21()2X D OX GS TH W I I nC V V L u ==-实际情况下,由于衬偏效应会影响TH VIX~VX 曲线图b.(1)当0〈X V 〈1时,S 、D 反向VGS-VTH=1.2-VX 〉VDS此时,NMOS 处于S 、D 方向的三极管区(2)当1〈X V 〈1.2时,VGS-VTH=0.2>VDS=VX-1 (未考虑衬偏效应)此时,NMOS 处于正向导通的三极管区 IX=212*0.2(1)(1)2n OX W C Vx Vx L u ⎡⎤---⎣⎦(3)当VX ≥1.2时NMOS 处于饱和区 = 21(0.2)2OX W nC L uIX~VX 曲线图未考虑衬偏效应时的曲线若考虑衬偏效应,则VTH 增大,当衬偏效应比较小,反向后仍有VGS>VTH ,曲线同上,当衬偏效应比较大时,VGS<VTH ,则MOS 管在反向之后一直截止,曲线如下:IX~VX 曲线图考虑衬偏效应时的曲线(c )(1)0<Vx<0.3时,MOS 管反向导通。
(未考虑衬偏效应)VGS=1-VX VDS=1.9-VXVGS-VTH=0.3-VX<VDS=1.9-VXNMOS 处于反向导通的饱和区此时Ix=-21(0.3)2OX W nC Vx L u -(2)当VX >0.3 时,MOS 管截止IX~VX 曲线图考虑衬偏效应后,曲线与X 轴的交点会该变位置2.6 |VGS|=()112VDD VX R R R -+|VDS|=()VDD VX -所以|VDS|>|VGS|-|VTH|PMOS 处于饱区 =21()1||212DD X OX THp W V V pC R V L R R u -⎡⎤-⎢⎥+⎣⎦=()1||12DD X p OX THp W V V C R V L R R u -⎡⎤-⎢⎥+⎣⎦ID~VX 曲线图Gm 与VX 曲线图 |VGS|=()212VDD VX R R R -+|VDS|=()VDD VX -所以VDS>VGS-VTHPMOS 处于饱区 =21()2212DD X OX THN W V V nC R V L R R u -⎡⎤-⎢⎥+⎣⎦=()212DD X OX THN W V V nC R V L R R u -⎡⎤-⎢⎥+⎣⎦ID~VX 曲线图Gm 与VX 曲线图2.7 (为了简化运算和分析,这里没有考虑二级效应)1.VOUT 有电流通过R1产生,电路工作时,S 、D 反向。
模拟cmos集成电路设计课后题

模拟cmos集成电路设计课后题CMOS(Complementary Metal-Oxide-Semiconductor)集成电路设计是现代电子技术的关键领域之一。
该领域涉及到各种基本电路以及整个系统的设计与优化。
本文将模拟一篇CMOS集成电路设计的课后题,其中包括对基本电路的设计以及系统级优化的考察。
第一部分:基本电路设计(2000字左右)1. 设计一个2输入与门的CMOS电路。
给出电路图,并写出相应的布尔表达式。
2. 为了减小功耗并提高响应速度,经常需要将电路设计为动态逻辑电路。
请设计一个动态逻辑的非门电路,给出电路图,并写出相应的时钟脉冲控制信号。
第二部分:CMOS集成电路设计(2000字左右)3. 设计一个3输入与门的CMOS电路,并对其功耗进行优化。
4. 设计一个4位二进制全加器的CMOS电路,并考虑功耗和面积的优化。
第三部分:系统级优化(2000字左右)5. 将两个2输入与门和一个2输入或门组合成一个3输入与门。
请给出详细的设计流程和最终的电路图。
6. 设计一个8位互补码加法器的CMOS电路,并考虑功耗、面积和延迟的优化。
第一部分:基本电路设计1. 设计一个2输入与门的CMOS电路。
给出电路图,并写出相应的布尔表达式。
CMOS与门的基本电路由PMOS管和NMOS管组成。
在输入A和B分别接入与门电路的两个输入端,而输出则连接到NMOS管和PMOS管接口的并联电路的输出端。
当A和B同时为高电平时,输出才为高电平。
其布尔表达式可以写为:Z = A * B。
2. 为了减小功耗并提高响应速度,经常需要将电路设计为动态逻辑电路。
请设计一个动态逻辑的非门电路,给出电路图,并写出相应的时钟脉冲控制信号。
动态非门电路的设计可以采用PMOS管串联的结构。
当输入S 为高电平时,NMOS管导通,输出结果为0;当输入S为低电平时,PMOS管导通,输出结果为1。
其时钟脉冲控制信号可以表示为:NAND(A, A)。
重理工集成电路设计原理思考题、作业、提问答案大全

重理工集成电路设计原理思考题、作业、提问答案大全重理工集成电路设计原理思考题、作业、提问答案大全1-1思考题典型PN结隔离工艺与分立器件NPN管制造工艺有什么不同(增加了哪些主1-1-1.1-1-1.典型典型PNPN结隔离工艺与分立器件结隔离工艺与分立器件NPNNPN管制造工艺有什么不同管制造工艺有什么不同()要工序要工序)?增加工序的的目的是什么?答:分立器件NPN管制造工艺:外延→一氧→一次光刻→B掺杂→二氧→二次光刻→P掺杂→三氧→三次光刻→金属化→四次光刻。
典型PN结隔离工艺:氧化→埋层光刻→埋层扩散→外延→二氧→隔离光刻→隔离扩散、推进(氧化)→基区光刻→基区扩散、再分布(氧化)→发射区光刻→发射区扩散、氧化→引线孔光刻→淀积金属→反刻金属→淀积钝化层→光刻压焊点→合金化及后工序。
增加的主要工序:埋层的光刻及扩散、隔离墙的光刻及扩散。
目的:埋层:1、减小串联电阻;2、减小寄生PNP晶体管的影响。
隔离墙:将N型外延层隔离成若干个“岛”,并且岛与岛间形成两个背靠背的反偏二极管,从而实现PN结隔离。
管的电极是如何引出的?集电极引出有什么特殊要求?1-1-2.NPN1-1-2.NPN管的电极是如何引出的?集电极引出有什么特殊要求?答:集成电路中的各个电极均从上表面引出。
要求:形成欧姆接触电极:金属与参杂浓度较低的外延层相接触易形成整流接触(金半接触势垒二极管)。
因此,外延层电极引出处应增加浓扩散。
典型PN结隔离工艺中隔离扩散为什么放在基区扩散之前而不放在基区扩1-1-3.1-1-3.典型典型PNPN结隔离工艺中隔离扩散为什么放在基区扩散之前而不放在基区扩散或发射区扩散之后?答:由于隔离扩散深度较深,基区扩散深度相对较浅。
放在基区扩散之前,以防后工序对隔离扩散区产生影响。
1-1作业典型PN结隔离工艺中器件之间是如何实现隔离的?1-1-1.1-1-1.典型典型PNPN结隔离工艺中器件之间是如何实现隔离的?答:在N型外延层中进行隔离扩散,并且扩穿外延层,与P型衬底连通,从而将N型外延层划分为若干个“岛”;同时,将隔离区接最低电位,使岛与岛之间形成两个背靠背的反偏二极管,从而岛与岛互不干涉、互不影响。
cmos器件作业及思考题

NMOS 英文全称为:N-Mental-Oxide-Semiconductor 。
意思为金属-氧化物-半导体,而拥有这种结构的晶体管我们称之为MOS晶体管。
有P型MOS 管和N型MOS管之分。
由MOS管构成的集成电路称为MOS集成电路,由NMOS组成的电路就是NMOS集成电路,由PMOS管组成的电路就是PMOS集成电路,由NMOS和PMOS两种管子组成的互补MOS电路,即CMOS电路。
PMOS是指n型衬底、p沟道,靠空穴的流动运送电流的MOS管全称 : positive cha nnel Metal Oxide Semic on ductor别名:positive MOS金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类,P沟道硅MOS场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间不通导,源极上加有足够的正电压(栅极接地)时,栅极下的N型硅表面呈现P型反型层,成为连接源极和漏极的沟道。
改变栅压可以改变沟道中的电子密度,从而改变沟道的电阻。
这种MOS场效应晶体管称为P沟道增强型场效应晶体管。
如果N型硅衬底表面不加栅压就已存在P型反型层沟道,加上适当的偏压,可使沟道的电阻增大或减小。
这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。
统称为PMOS晶体管。
P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。
此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。
它的供电电源的电压大小和极性,与双极型晶体管一一晶体管逻辑电路不兼容。
PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属一氧化物一半导体集成电路)出现之后,多数已为NMOS电路所取代。
只是,因PMOS电路工艺简单,价格便宜,有些中规模和小规模数字控制电路仍采用PMOS电路技术。
华中科技大学CMOS拉扎维第二章课后作业答案中文版

CMOS Analog Design Home work 1 SolutionBy: 涛(tomjerry126.) 2007年3月18日作业容:一、书本上的习题 2.22.5 (a)、(b)、(c) 2.6 (a)、(b) 2.7 2.15 2.8 2.18 2.24参考解答过程2.2.(1)对于NMOS ,工作在饱和区时,有:21()(1)2D OX GS TH DS W I nC V V V L u λ=-+ DGSI Gm V ∂=∂ =()(1)OX GS TH DS WnC V V V L u λ-+≈=3.66mA V1Dro I λ==20k Ω A=Gm ro =73.3 (2)对于PMOS ,公式基本同上21()(1)2D p OX GS TH DS W I C V V V Lu λ=-+ DGSI Gm V ∂=∂ =()(1)p OX GS TH DS W C V V V Lu λ-+≈=1.96mAV1Dro I λ==10k Ω A=Gm ro =19.62.5a.若不考虑二级效应,则21()2X D OX GS TH W I I nC V V Lu ==- = 21()2X D OXGS TH WI I nC V V Lu ==- 实际情况下,由于衬偏效应会影响TH V GS DD X V V V -= DS DD X V V V -= SB X V V =0TH TH V V γ=+21()2X OX GS TH W I nC V V L u =- 201((22)2OX GS TH F X F WnC V V V Lu γ-=-∅+-∅IX~VX 曲线图b.(1)当0〈X V 〈1时,S 、D 反向 1.9GS X V V =- 1DS X V V =-VGS-VTH=1.2-VX 〉VDS此时,NMOS 处于S 、D 方向的三极管区X I =212(1.2)(1)(1)2n OX W C Vx Vx Vx Lu ⎡⎤-----⎣⎦ (2)当1〈X V 〈1.2时,VGS-VTH=0.2>VDS=VX-1 (未考虑衬偏效应) 此时,NMOS 处于正向导通的三极管区IX=212*0.2(1)(1)2n OX W C Vx Vx Lu ⎡⎤---⎣⎦ (3)当VX ≥1.2时NMOS 处于饱和区21()2X OX GS TH W I nC V V L u =- = 21(0.2)2OXWnC L uIX~VX 曲线图未考虑衬偏效应时的曲线若考虑衬偏效应,则VTH 增大,当衬偏效应比较小,反向后仍有VGS>VTH , 曲线同上,当衬偏效应比较大时,VGS<VTH ,则MOS 管在反向之后一直截止,曲线如下:IX~VX 曲线图考虑衬偏效应时的曲线(c )(1)0<Vx<0.3时,MOS 管反向导通。
华中科技大学CMOS拉扎维第二章课后作业答案中文版

CMOS Analog Design Home work 1 SolutionBy: 张涛() 2007年3月18日作业内容:一、书本上的习题(a)、(b)、(c) (a)、(b)参考解答过程.(1)对于NMOS ,工作在饱和区时,有:21()(1)2D OX GS TH DS W I nC V V V L u λ=-+ DGSI Gm V ∂=∂ =()(1)OX GS TH DS WnC V V V L u λ-+≈=1Dro I λ==20k Ω A=Gm ro = (2)对于PMOS ,公式基本同上21()(1)2D p OX GS TH DS W I C V V V Lu λ=-+ DGSI Gm V ∂=∂ =()(1)p OX GS TH DS WC V V V L u λ-+≈=1Dro I λ==10k Ω A=Gm ro =a.若不考虑二级效应,则21()2X D OX GS TH W I I nC V V Lu ==-= 21()2X D OX GS TH W I I nC V V Lu ==- 实际情况下,由于衬偏效应会影响TH VGS DD X V V V -= DS DD X V V V -=SB X V V =0(22)TH TH F SB F V V V γ=+∅+-∅21()2X OX GS TH W I nC V V L u =- 201((22)2OX GS TH F X F WnC V V V Lu γ-=-∅+-∅IX~VX 曲线图b.(1)当0〈X V 〈1时,S 、D 反向1.9GS X V V =- 1DS X V V =-VGS-VTH= 〉VDS此时,NMOS 处于S 、D 方向的三极管区X I =212(1.2)(1)(1)2n OX W C Vx Vx Vx Lu ⎡⎤-----⎣⎦ (2)当1〈X V 〈时,VGS-VTH=>VDS=VX-1 (未考虑衬偏效应) 此时,NMOS 处于正向导通的三极管区IX=212*0.2(1)(1)2n OX W C Vx Vx Lu ⎡⎤---⎣⎦ (3)当VX ≥时 NMOS 处于饱和区21()2X OX GS TH W I nC V V L u =- = 21(0.2)2OX W nC L uIX~VX 曲线图 未考虑衬偏效应时的曲线若考虑衬偏效应,则VTH 增大,当衬偏效应比较小,反向后仍有VGS>VTH , 曲线同上,当衬偏效应比较大时,VGS<VTH ,则MOS 管在反向之后一直截止,曲线如下:IX~VX 曲线图 考虑衬偏效应时的曲线(c )(1)0<Vx<时,MOS 管反向导通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NMOS英文全称为:N-Mental-Oxide-Semiconductor。
意思为金属-氧化物-半导体,而拥有这种结构的晶体管我们称之为MOS晶体管。
有P型MOS管和N型MOS管之分。
由MOS管构成的集成电路称为MOS集成电路,由NMOS组成的电路就是NMOS集成电路,由PMOS管组成的电路就是PMOS集成电路,由NMOS和PMOS两种管子组成的互补MOS电路,即CMOS电路。
全称:positive channel Metal Oxide Semiconductor别名:positive MOS金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类,P沟道硅MOS场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间不通导,源极上加有足够的正电压(栅极接地)时,栅极下的N型硅表面呈现P型反型层,成为连接源极和漏极的沟道。
改变栅压可以改变沟道中的电子密度,从而改变沟道的电阻。
这种MOS场效应晶体管称为P沟道增强型场效应晶体管。
如果N型硅衬底表面不加栅压就已存在P型反型层沟道,加上适当的偏压,可使沟道的电阻增大或减小。
这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。
统称为PMOS晶体管。
P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。
此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。
它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。
PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为NMOS电路所取代。
只是,因PMOS电路工艺简单,价格便宜,有些中规模和小规模数字控制电路仍采用PMOS电路技术。
MOSFET共有三个脚,一般为G、D、S,通过G、S间加控制信号时可以改变D、S间的导通和截止。
PMOS和NMOS在结构上完全相像,所不同的是衬底和源漏的掺杂类型。
简单地说,NMOS是在P 型硅的衬底上,通过选择掺杂形成N型的掺杂区,作为NMOS的源漏区;PMOS是在N型硅的衬底上,通过选择掺杂形成P型的掺杂区,作为PMOS的源漏区。
两块源漏掺杂区之间的距离称为沟道长度L,而垂直于沟道长度的有效源漏区尺寸称为沟道宽度W。
对于这种简单的结构,器件源漏是完全对称的,只有在应用中根据源漏电流的流向才能最后确认具体的源和漏。
PMOS的工作原理与NMOS相类似。
因为PMOS是N型硅衬底,其中的多数载流子是电子,少数载流子是空穴,源漏区的掺杂类型是P型,所以,PMOS的工作条件是在栅上相对于源极施加负电压,亦即在PMOS的栅上施加的是负电荷电子,而在衬底感应的是可运动的正电荷空穴和带固定正电荷的耗尽层,不考虑二氧化硅中存在的电荷的影响,衬底中感应的正电荷数量就等于PMOS栅上的负电荷的数量。
当达到强反型时,在相对于源端为负的漏源电压的作用下,源端的正电荷空穴经过导通的P型沟道到达漏端,形成从源到漏的源漏电流。
同样地,VGS越负(绝对值越大),沟道的导通电阻越小,电流的数值越大。
与NMOS一样,导通的PMOS的工作区域也分为非饱和区,临界饱和点和饱和区。
当然,不论NMOS还是PMOS,当未形成反型沟道时,都处于截止区,其电压条件是VGS<VTN (NMOS),VGS>VTP (PMOS),值得注意的是,PMOS的VGS和VTP都是负值。
PMOS集成电路是一种适合在低速、低频领域内应用的器件。
PMOS 集成电路采用-24V电压供电。
如图5所示的CMOS-PMOS接口电路采用两种电源供电。
采用直接接口方式,一般CMOS的电源电压选择在10~12V就能满足PMOS对输入电平的要求。
MOS场效应晶体管具有很高的输入阻抗,在电路中便于直接耦合,容易制成规模大的集成电路。
各种场效应管特性比较在2004年12月的国际电子器件会议(IEDM)上表示:双应力衬垫(DSL)方法导致NMOS和PMOS中的有效驱动电流分别增加15%和32%,饱和驱动电流分别增加11%和20%。
PMOS的空穴迁移率在不使用SiGe的情况下可以提高60%,这已经成为其他应变硅研究的焦点。
CMOS(Complementary Metal Oxide Semiconductor)指互补金属氧化物(PMOS管和NMOS管)共同构成的互补型MOS集成电路制造工艺,它的特点是低功耗。
由于CMOS中一对MOS组成的门电路在瞬间看,要么PMOS导通,要么NMOS导通,要么都截至,比线性的三极管(BJT)效率要高得多,因此功耗很低。
BiMOS浏览2297次双极金属氧化物半导体bipolar metal-oxide semiconductor双极工艺和半导体工艺在单一器件上的结合。
参见BiCMOS。
BiCMOS是继CMOS后的新一代高性能VLSI工艺。
CMOS以低功耗、高密度成为80年VLSI的主流工艺。
随着尺寸的逐步缩小,电路性能不断得到提高,但是当尺寸降到1um以下时,由于载流子速度饱和等原因,它的潜力受到很大的限制。
把CMOS和Bipolar集成在同一芯片上,发挥各自的优势,克服缺点,可以使电路达到高速度、低功耗。
BiCMOS工艺一般以CMOS工艺为基础,增加少量的工艺步骤而成。
BiCMOS(Bipolar CMOS)是CMOS和双极器件同时集成在同一块芯片上的技术,其基本思想是以CMOS器件为主要单元电路,而在要求驱动大电容负载之处加入双极器件或电路。
因此BiCMOS电路既具有CMOS电路高集成度、低功耗的优点,又获得了双极电路高速、强电流驱动能力的优势。
电子管,是一种最早期的电信号放大器件。
被封闭在玻璃容器(一般为玻璃管)中的阴极电子发射部分、控制栅极、加速栅极、阳极(屏极)引线被焊在管基上。
利用电场对真空中的控制栅极注入电子调制信号,并在阳极获得对信号放大或反馈振荡后的不同参数信号数据。
早期应用于电视机、收音机扩音机等电子产品中,近年来逐渐被半导体材料制作的放大器和集成电路取代,但目前在一些高保真的音响器材中,仍然使用低噪声、稳定系数高的电子管作为音频功率放大器件(香港人称使用电子管功率放大器为“胆机”)。
电子管功放(胆机)的音质明显优于晶体管功放。
晶体管功放(石机)听起来高频、中高频有偏多感觉,低频感觉偏少,晶体管功放听起来声音较硬,特别是低频声不够柔和,而高频声又显得尖刺、发燥,听起来有时感到高频段存在着交越畸变。
当频率增高而音量又很大时,这些现象就更加明显。
但晶体管功放的动态大、速度快,特别适宜于表现动态大一些的音乐。
至于表现枪炮和雷电声当然更优于电子管功放了。
电子管优缺点、结构和工作原理电子管是电子仪器仪表的重要器件之一,与晶体管、集成电路相比,虽然体积较大,工作时要首先加热灯丝,但它仍具有不可忽视的特点:同一型导电子管参数的一致性要优于晶体管,因此更换电子管时,不用重调参数、即可正常工作;电子管参数特性随环境温度变化也较小,因而工作稳定;电子管不太娇气,能承受较大的功轧过载能力强.因此,电了管在某些领域仍然发挥着重要的作用.电子管是基于热电子发射形成电流而工作的.如果将金属体加热至一定温跃部分电子就从金属体内发射出来.电子管的阴极就是用来发射热电子的.电子管工作时,热电子由阴极射向阳抵这是在灯丝加热和阴极阳极之问存在电压的条件下实现的.图9-1为二极和三极电子管的结构示意图及符号.电子管阴极按加热方式分为直热式和旁热式两种,直热式的灯丝就是阴极,旁热式的阴极是由另外的灯丝加热的,如图9-2和9-3所示.电子管阳极加有正电压,其作用主要是吸收电子.为了易于发射电子,阴极表面徐有一层易发射电子的物质.为了防止极板的氧化和正离子对阳极的轰击作用(因正离于质量大),电子管是抽成真空的.电子管根倾电极的数目.分为二极管、三极管,柬射四极管和五极管等./////////////////////电子管一般是玻璃管封装,耗电量大,阳极电压高,灵活应用性高,体积大。
现已被淘汰,但电子爱好者仍有应用。
晶体管有塑料封装和金属封装,耗电量小,电压可高可低,灵活应用性高,体积小。
现仍在应用。
集成电路一般是塑料封装,耗电量更小,电压低,灵活应用性低,体积小。
配合晶体管和其他电子元件被大量应用。
晶体管是集成电路的基本单元,比如pmos,nmos等,单个晶体管也可以称作集成电路,比如现在系统使用的开关管,比晶体管在高一级的门级电路比如与门,或门,反相器,多路选择器等都是由晶体管实现的。
现在说集成电路一般指很大规模的,比如你使用的公交卡内的芯片,手机的sim卡,cpu,dsp管芯等等,但再大规模的集成电路都可以分解为一个一个的晶体管。
(1)集成应用电路的特点①大部分应用电路不画出内电路方框图,这对识图不利,尤其对初学者进行电路工作分析时更为不利。
②对初学者而言,分析集成电路的应用电路比分析分立元器件的电路更为困难,这是对集成电路内部电路不了解的缘故。
实际上识图也好、修理也好,集成电路比分立元器件电路更为方便。
③对集成电路应用电路而言,大致了解集成电路内部电路和详细了解各引脚作用的情况下,识图是比较方便的。
这是因为同类型集成电路具有规律性,在掌握了它们的共性后,可以方便地分析许多同功能木同型号的集成电路应用电路。
(2)集成电路的主要优点集成电路有其独特的优点,归纳起来有以下几点。
①电路简单。
由于采用了集成电路,简化了整机电路的设计、调试和安装,特别是采用一些专用集成电路后,整机电路显得更为简单。
②性价比高。
相对于分立元器件电路而言,采用集成电路构成的整机电路性能指标更高,与分立电子元器件电路相比,集成电路的成本、价格更低。
例如,集成运放电路的增益之高、零点漂移之小是分立电子元器件电路无法比拟的。
③可靠性强。
集成电路具有可靠性高的优点,从而提高了整机电路工作的可靠性,提高了电路的工作性能和一致性。
另外,采用集成电路后,电路中的焊点大幅度减少,出现虚焊的可能性下降,使整机电路工作更为可靠。
④能耗较小。
集成电路还具有耗电小、体积小、经济等优点。
同一功能的电路,采用集成电路要比采用分立电子元器件的电路功耗小许多。
⑤故障率低。
由于集成电路的故障发生率相对分立元器件电路而言比较低,所以降低了整机电路的故障发生率。
(3)集成电路的主要缺点集成电路的主要缺点有下列几个方面。
①电路拆卸困难。
集成电路的引脚很多,给修理、拆卸集成电路带来了很大的困难,特别是引脚很多的四列集成电路,拆卸比辕困难。
②修理成本增加。
当集成电路内电路中的部分电路出现故障时,通常必须整块更换,增加了修理成本。
③故障判断不便。