九年级数学期中考试题卷

合集下载

2024-2025学年河北省石家庄东南实验中学九年级上学期期中数学试卷

2024-2025学年河北省石家庄东南实验中学九年级上学期期中数学试卷

2024-2025学年河北省石家庄东南实验中学九年级上学期期中数学试卷一、单选题1.已知⊙O 的半径为3,若PO =2,则点P 与⊙O 的位置关系是()A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法判断2.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB 的坡度是1:3,滑坡的水平宽度是6m ,则高BC 为()m .A .3B .5C .2D .43.半径为5的四个圆按如图所示位置摆放,若其中有一个圆的圆心到直线l 的距离为4,则这个圆可以是()A .⊙O 1B .⊙O 2C .⊙O 3D .⊙O 44.观察下列每组三角形,不能判定相似的是()A .B .C .D .5.反比例函数(0)k y k x =≠的图象如图所示,则k 的值可能是()A.5B.5-C.12D.156.在如图所示的正方形网格中,以点O为位似中心,作△ABC的位似图形,若点D是点C的对应点,则点A的对应点是()A.E B.F C.G D.H7.如图,AB是圆锥的母线,BC为底面直径,已知6cm15πcm,则BC=,圆锥的侧面积为2母线AB的长为()A.7B.6C.5D.48.为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公交车的车流量,则下列说法正确的是()A .小车的车流量比公交车的车流量稳定B .小车的车流量比公交车的方差较大C .小车与公交车车流量在同一时间段达到最小值D .小车与公交车车流量的变化趋势相同9.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A .B .C .D .10.综合实践课上,老师提出如下问题:在O 中作了两个内接三角形ABC V 和ABD △,经测量80C ∠=︒,求D ∠.嘉嘉回答:D ∠的度数是40︒;淇淇回答:D ∠的度数是80︒.下列判断正确的是()A .嘉嘉对B .淇淇对C .嘉嘉和淇淇合在一起才对D .嘉嘉和淇淇合在一起也不对11.如图,在6×6的正方形网格中,每个小正方形的边长都是1,点A ,B ,C 均在网格交点上,⊙O 是△ABC 的外接圆,则∠BAC 的正弦值为()A .5B .5C .12D .212.如图,已知ABC V 为等腰直角三角形,90,2BAC AC ∠=︒=,以点C 为圆心,1为半径作圆,点P 为C 上一动点,连接AP ,并绕点A 顺时针旋转90 得到'AP ,连接CP ',则CP '的最小值是()A .1B .1C .D 二、填空题13.计算:2cos30tan 60︒-︒=.14.某校举办学生说题比赛,某位学生选手的题目分析、解法讲解、题目拓展三个方面成绩如表所示:项目题目分析解法讲解题目拓展成绩908090若按照题目分析占40%,解法讲解占40%,题目拓展占20%来计算选手的综合成绩,则该选手的综合成绩为.15.如图,在Rt ABC △中,90,30,1C ABC AC ∠=∠=︒=.将ABC V 绕点B 按顺时针方向旋转到A BC ''△的位置,使A ,B ,C '三点在同一直线上,则AB 边扫过的面积为.16.如图,在平面直角坐标系中,边长为2的正方形ABCD 位于第二象限,且AB x ∥轴,点B 在点C 的正下方,双曲线(0)m y x x=<经过点C .(1)若点(1,1)B -,则m 的值是;(2)设点(,21)B a a +.若双曲线与边AB 有交点且||m 最大,则此时a 的值是.三、解答题17.已知关于x 的一元二次方程242(1)0x x k -+-=.(1)当2k =时,请用适当方法解此方程;(2)若方程有两个相等的实数根,则k 的值为________;(3)如果方程有一个实数根是1,那么另一个根是________,此时k 的值为________.18.如图,在平面直角坐标系xOy 中,直线:4AB y x =-与反比例函数k y x=的图象交于A 、B 两点,与x 轴相交于点C ,与y 轴相交于点D .已知点A 、B 的坐标分别为(6,2)n 和(,6)m -.(1)求反比例函数的解析式;(2)连接OB,求AOBV的面积;(3)直接写出不等式4kxx->的解集.19.为了解我校学生阅读的情况,现从各年级随机抽取了部分学生,对他们一周阅读的时间进行了调查,并将调查结果绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了________名学生;(2)请根据以上信息,直接在答题卡中补全扇形统计图和条形统计图;(3)请直接写出本次调查获取的学生~周阅读的总时间数据的众数为________h,中位数为________h,平均数为________h;(4)若该校有1500名学生,根据抽样调查的结果,请你估计该校有多少名学生一周阅读的时间小于6小时.20.将一量角器与矩形直尺按如图1位置放置,其中量角器的直径AB平行于直尺的边缘MN,与直尺的另一边缘相交于点C、D,且半径OP CD⊥于点E.已知点C、D在直尺上的读数分别为1cm,9cm,直尺的宽度PE为2cm.(1)在图1中,求量角器的半径;【操作】将图1中的量角器沿MN向右作无滑动的滚动,直尺保持固定,当量角器的端点B 恰好与直尺边缘上的交点D重合时停止滚动,如图2所示;(2)连接AC,求AC的长度.21.如图是海洋公园娱乐设施“水上滑梯”的侧面图,建立如图坐标系.其中OD为水面,滑梯BC段可看成是反比例函数图象的一段,矩形AOEB为向上攀爬的梯子,梯子高OA为6米,宽AB为1米,出口C点到BE的距离CF为4米,求:(1)BC段所在的反比例函数关系式是什么?(2)C点到x轴的距离CD长是多少?(3)若滑梯BC上有一个小球Q,Q距水面OD的高度不高于3米,则Q到BE的距离至少多少米?22.在数学活动课上,老师带领学生去测量某建筑物AB的高度.如图,在C处用高1米的测倾器测得建筑物顶部A的仰角为α,向建筑物的方向前进20米到达D处,在D处测得建筑物顶部A的仰角为β,此时与建筑物AB的距离(FG的长)是12米,经计算得知建筑物AB的高约为17米.(1)求线段AF的长度和tanα的值;∠的值.(2)求sin EAF23.甲、乙两位同学将两张全等的直角三角形纸片进行裁剪和拼接,尝试拼成一个尽可能大的正方形.要求:①直角三角形纸片的两条直角边长分别为6cm和8cm;②在两张直角三角形纸片中各裁剪出一个图形,使它们的形状和大小都相同;③将这两个图形无缝隙拼成一个正方形,正方形的边长尽可能大.甲同学的方案乙同学的方案请根据以上信息,完成下列问题:(1)甲同学的方案中,拼成的正方形边长是________cm ;(2)求出乙同学方案中拼成的正方形的边长;(3)以上两个同学的方案中,________(填“甲”或“乙”)拼成的正方形边长大;(4)请你设计一个新方案,使拼成的正方形的边长比甲、乙两位同学拼成的正方形都大.(要求:在答题卷上的两个直角三角形中分别画出裁剪线并直接写出这个正方形的边长)24.如图,O 半径为5,直径AB CD ,互相垂直,点P 为 CAD上一点,连接CP ,过点C 作CP 垂线交O 于点M ,连接BM ,设直线CP 与直线AB 相交于点Q .(1)当点P 位于 AD 中点时,则PCD ∠=________︒;(2)如图1,当:1:2PQ CQ =时:求点P 到AB 的距离;(3)如图2,若点P 为线段CQ 中点时,求此时 BM的长度;BM ,直接写出AQ的长.(4)若6。

江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省2025届九年级期中综合评估数学▶上册◀说明:共有六个大题,23个小题,满分120分,考试时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内错选、多选或未选均不得分.1.若关于的函数是二次函数,则的值为( )A.1B.2C.0D.32.以下是几种化学物质的结构式,其中文字上方的结构式图案属于中心对称图形的是( )A.甲醛B.甲烷 C.水 D.乙酸3.已知关于的一元二次方程有一个根为,则另一根为( )A.7B.3C.D.4.如图,四边形是的内接四边形,连接,,若,则的度数是( )A. B. C. D.5.在平面直角坐标系中,将抛物线绕顶点旋转得到新抛物线,再将新抛物线沿轴翻折得到抛物线,则,,的值分别是( )A.2,,11B.2,,5C.,,11D.,8,56.某校计划举办劳动之星颁奖典礼,想在颁奖现场设计一个如图1所示的抛物线型拱门入口.要在拱门上顺次粘贴“劳”“动”“之”“保”(分别记作点,,,)四个大字,要求与地面平行,且,抛物线最高点的五角星(点)到的距离为,,,如图2所示,则点到的距离为( )图1 图221.124.1~x 31my x x =-+m x 2520x x m -+=2-7-3-ABCD O OA OC 86AOC ∠=︒ADC ∠94︒127︒136︒137︒285y ax x =-+P 180︒x22y x bx c =++a b c 8-8-2-8-2-A B C D BC BC AD ∥E BC 0.6m 2m BC =4m AD =C ADA. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程的解为______.8.在平面直角坐标系中,点关于原点对称的点的坐标是______.9.如图,是半圆的直径,,为的中点,连接,,则的度数为______.10.《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲每单位时间走7步,乙每单位时间走3步.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?设甲走了步(步为古代长度单位,类似于现在的米),根据题意可列方程:____________.(结果化为一般式)11.在平面直角坐标系中,若抛物线向左平移2个单位长度后经过点,则的最大值为______.12.如图,在矩形中,连接,,,将线段绕点顺时针旋转,得到线段,连接,,当时,的周长为______三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程:.(2)如图,将绕点逆时针旋转得到,若,且于点,求的度数.14.某件夏天T 恤的售价为100元,因换季促销,在经过连续两次降价后,现售价为81元,求平均每次降价的百分率.15.自古以来,景德镇就是中国陶瓷文化的象征,生产的瓷器闻名四方,远销世界各地.如图,这是景德镇2m 1.8m 2.4m 1.5m290x -=()2,4-BC OAB AC =D AC OD BD BDO ∠x ()()220y a x c a =-+≠()1,6-ac ABCD AC 1AB =60BAC ∠=︒AB B ()0180a α︒<≤︒BP CP DP 12PCB BAC ∠=∠DPC △()()()2131x x x x +=++ABC △A 28︒AB C ''△40C ∠'=︒AB BC '⊥E BAC ∠生产的某种瓷碗正面的形状示意图,是的一部分,是的中点,连接,与弦交于点,连接,.已知,碗深,求的长.16.如图,是的直径,点,点在上,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)如图1,在上作一点,使得是以为底边的等腰三角形.(2)如图2,在上方作一点,使得为等边三角形.图1图217.在平面直角坐标系中,已知抛物线与轴没有交点.(1)求的取值范围.(2)请直接写出抛物线顶点所在的象限.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,在平面直角坐标系中,抛物线经过点.(1)求的值,并求出此抛物线的顶点坐标.(2)当时,请利用图象,直接写出的取值范围.(3)当时,请利用图象,直接写出的取值范围.19.如图,在中,,将绕点顺时针旋转,得到,连接,.(1)求证:点,,在同一条直线上.(2)若,,求的面积.AB O D AB OD AB C OA OB 18cm AB =6cm CD =OA AB O C D O 60COA ∠=︒OD AB ⊥OD E OCE △OC AB F ABF △214y x x c =-++x c 222y x xc c c =-+-24y x mx =-++()3,4A -m 20x -≤≤y 0y ≤x ABC △135BCA ︒∠=ACB △A 90︒ADE △CD CE B C D 2BC=AC =CDE △20.某主播销售一种商品,已知这种商品的成本价为20元/个,规定销售价格不低于成本价,且不高于成本价的2倍,通过前几天的销售发现,该商品每天的销售量(单位:个)与销售价格(单位:元/个)之间满足一次函数关系,部分对应数据如下表:/(元/个) (23252811)/个…540500440…(1)求出关于的函数关系式,并直接写出的取值范围.(2)求销售该商品每天的最大利润.五、解答题(本大题共2小题,每小题9分,共18分)21.追本溯源题(1)来自课本中的习题,请你完成解答,提炼方法并解答题(2).(1)如图1,,比较与的长度,并证明你的结论.方法应用(2)如图2,,是的两条弦,点,分别在,上,连接,,且,是的中点.①求证:.②若圆心到的距离为3,的半径是6,求的长.图1 图222.如图,在平面直角坐标系中,抛物线与轴相交于点和点(点在点的左侧),与轴相交于点,点与点关于轴对称,为该抛物线上一点,连接,,,.(1)求该抛物线的解析式.(2)若的面积与的面积相等,请直接写出点的横坐标.y x x y y x x AD BC = AB CDMB MD O A C MBMD AB CD AB CD =M AC BM DM =O DM O DM 25y x bx =-++x A ()5,0B A B y C D A y E AC CD DE BE BDE △ACD △E(3)当点在第一象限时,连接,设的面积为,求的最大值.六、解答题(本大题共12分)23.综合与实践如图,是等边内一点,,连接,将线段绕点顺时针旋转得到,连接.初步感知(1)如图1,的延长线与交于点,求的度数.特例应用(2)如图2,作点关于的对称点,若点在的角平分线上.①当点与点重合时,的长为______;②当点与点不重合时,判断四边形的形状,并证明.拓展延伸(3)如图2,在(2)的条件下,取的中点,记为,当点从点运动到点时,请直接写出点运动的路径长.图1图2E CE ECD △S S P ABC △2AB =CP CP C 60︒CE AE BP AE Q AQB ∠E ACF P ABC △BD P F BP P F BPEF FPG P B D G江西省2025届九年级期中综合评估数学参考答案1.B2.C3.A4.D5.A 提示:由旋转和翻折可知,,抛物线的顶点的坐标为.点关于轴的对称点的坐标为,最后得到的抛物线的解析式为,.故选A.6.B 提示:建立如图所示的平面直角坐标系.由题意易知点的坐标为,点的坐标为,则点的坐标为,故设抛物线的解析式为,将点的坐标代入上式,得,抛物线的解析式为.点的横坐标为2,点的纵坐标为,点到的距离为.故选B.7.8.9.10.11.912.3或或 提示:,,,,,.如图1,当时,此时.易证得为等边三角形,的周长为;2a =8b =-∴2285y x x =-+P ()2,3- ()2,3P -x ()2,3∴()222232811y x x x =-+=-+11c ∴=C ()1,0B ()1,0-E ()0,0.6()()11y a x x =+-E 0.6a =-∴()()0.611y x x =-+- D ∴D ()()0.62121 1.8-⨯+⨯-=-∴C AD 1.8m 3x =±()2,4-22.5︒24020049x x -=2+3+1AB = 90ABC ∠=︒60BAC ∠=︒1CD ∴=22AC AB ==BC ∴==60α=︒1302PCB BAC ∠=︒=∠DPC △DPC ∴△33CD =如图2,当时,此时,,.易证得,,的周长为;如图3,当时,此时,,,.的周长为.综上所述,的周长为3或或.图1 图2 图313.(1)(解法不唯一)解:,,,.(2)解:将绕点逆时针旋转得到.,.又,,.14.解:设平均每次降价的百分率为.由题意得,解得,(舍去).答:平均每次降价的百分率为.15.解:是的中点,,.设,则.在中,由勾股定理得,120α=︒1302PCB BAC ∠=︒=∠30PBC PCB ∴∠=∠=︒1PC BP ∴==DCP BPC ≌△△DP BC ∴==DPC ∴△2CD PC DP ++=+180a =︒1302PCB BAC ∠=︒=∠2PC AC ∴==22AP AB ==DP ∴===DPC ∴△123CD PC DP ++=+=+DPC △2+3+()()()2131x x x x +=++ ()()1230x x x ∴+--=11x ∴=-23x = ABC △A 28︒AB C ''△28BAE ∴∠=︒40C C ∠'=∠=︒AB BC '⊥ 9050EAC C ∴∠=︒-∠=︒285078BAC BAE EAC ∴∠=∠+∠=︒+︒=︒x ()2100181x -=10.110%x ==2 1.9x =10%DAB OD AB ∴⊥19cm 2AC BC AB ∴===cm OA r =()6cm OC r =-Rt OAC △222OC AC OA +=即,解得,的长为.16.解:(1)如图1,即所求.(2)如图2,即所求.图1 图217.解:(1)抛物线与轴没有交点,,即,解得.(2)第二象限.提示:,该抛物线的顶点坐标为.,,点在第二象限.18.解:(1)把代入,得,解得.,抛物线的顶点坐标为.(2)当时,的取值范围是.(3)当时,的取值范围是或.19.解:(1)证明:是由绕点顺时针旋转得到的,,,,.()22269r r -+=394r =OA ∴39cm 4OCE △ABF △ x 240b ac ∴∆=-<10c +<1c <-()2222y x xc c c x c c =-+-=-- ∴(),c c -1c <- 1c ∴->∴(),c c -()3,4A -24y x mx =-++9344m --+=3m =-223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭∴325,24⎛⎫- ⎪⎝⎭20x -≤≤y 2544y ≤≤0y ≤x 4x ≤-1x ≥ADE△ACB △A 90︒ACB ADE ∴≌△△90CAD ∠=︒AC AD ∴=()1180452ACD ADC CAD ∴∠=∠=︒-∠=︒又,,点,,在同一条直线上.(2)由(1)可知,,.,.,.20.解:(1)设关于的函数关系式为.将,代入上式.得解得.(2)设销售该商品每天的利润为元.由题意得.,,当时,取得最大值,且最大值为4500.答:销售该商品每天的最大利润为4500元.21.解:(1).证明:,,,即.(2)①证明:是的中点,.,,,,.②如图,过点作,是垂足,连接.135BCA ∠=︒ 13545180BCA ACD ∴∠+∠=︒+︒=︒∴B C D 90CAD ∠=︒AC AD=6CD ∴===135ADE BCA ︒∠=∠= 90CDE ADE ADC ︒∴∠=∠-∠=2DE BC == 1162622CDE S CD DE ∴=⋅=⨯⨯=△y x y kx b =+()23,540()25,50023540,25500,k b k b +=⎧⎨+=⎩20,1000,k b =-⎧⎨=⎩()2010002040y x x ∴=-+≤≤W ()()()22202010002014002000020354500W x x x x x =--+=-+-=--+200-< 203540<<∴35x =W AB CD=AD BC = AD BC∴= AD AC BC AC ∴+=+ AB CD=M AC AM CM∴=AB CD = AB CD∴= AB AM CMCD ∴+=+ BMDM ∴=BM DM ∴=O ON MD ⊥N OM在中,,,22.解:(1)∵抛物线与轴相交于点和点,,解得,该抛物线的解析式为.(2.(3),令,即,解得,,点的坐标为.点与点关于轴对称,点的坐标为.设点的坐标为.设直线的解析式为.由点,的坐标可知,解得直线的解析式为.如图,过点作轴,交于点.当时,,点的坐标为,, Rt OMN △3ON =6OM =MN ∴==2DM MN ∴==25y x bx =-++x A ()5,0B 25550b ∴-++=4b =∴245y x x =-++245y x x =-++ ∴0y =2450x x -++=11x =-25x =∴A ()1,0- D A y ∴D ()1,0-E ()2,45m m m -++CE y kx t =+()0,5C ()2,45E m m m -++25,45,t mk t m m =⎧⎨+=-++⎩4,5,k m t =-+⎧⎨=⎩∴CE ()45y m x =-++D DF y ∥CE F 1x =()459y m m =-++=-+∴F ()1,9m -+9DF m ∴=-则,当时,的值最大,且最大值为,故的最大值为.23.解:(1),,即.又,,(SAS ),.,.(2②四边形为平行四边形.证明:如图1,连接.图1在等边中,平分,.又,关于对称,,,,.在等边中,,,.在等边中,,,,,,,.平分,,,,为等边三角形,()2111981922228E S DF x m m m ⎛⎫=⋅⋅=-=--+ ⎪⎝⎭∴92m =S 818S 81860ACB PCE ∠=∠=︒ ACB ACP PCE ACP ∴∠-∠=∠-∠BCP ACE ∠=∠BC AC = CP CE =BCP ACE ∴≌△△CBP CAE ∴∠=∠CBP ACB CAE AQB ∠+∠=∠+∠ 60AQB ACB ︒∴∠=∠=BPEF CF ABC △BD ABC ∠BD AC ∴⊥E F AC AF AE ∴=CF CE =AC EF ∴⊥EF BP ∴∥ PCE △60PCE ∠=︒PC CE PE ==CF PC ∴= ABC △AC BC =60ACB ∠=︒ACB PCE ∴∠=∠PCB ACE ∴∠=∠()SAS BCP ACE ∴≌△△CAE CBP ∴∠=∠BP AE =BD ABC ∠30CBP ︒∴∠=30CAE FAC CBP ∴∠=∠=∠=︒60FAE ∴∠=︒AFE ∴△,.,,四边形为平行四边形.(3.提示:将图1中与的交点记为.由(2)易知.,,,即,易求得,,.如图2,当点从点运动到点时.图2,点的运动路径为图2中的长,为的中点,连接,.,同理可得,是等边三角形.是的中点,,易求得.AE EF ∴=BP EF ∴=BP EF ∥BP EF =∴BPEF AF BP M BP AF =30FAB ABP ∠=∠=︒ AM BM∴=BP BM AF AM ∴-=-PM FM =∴30MPF ∠=︒MPF ABP ∴∠=∠PF AB ∴∥P B D PF AB ∥∴G GH H AB DH HF 112DF AB == 1DH HF ==DFH ∴△G DF 1DH DF ==∴GH =。

四川省眉山市仁寿县2024届九年级上学期11月期中考试数学试卷(含答案)

四川省眉山市仁寿县2024届九年级上学期11月期中考试数学试卷(含答案)

A.∠D=∠B B.∠
10.学校图书馆去年年底有图书
平均增长率为x,则列出下列方程正确的是(
A.2:5B.2:3
12.如图,在菱形ABCD中,∠
一点(不与端点重合),连接线段
A.①②③B.①④
二、填空题(每小题4分,共
13.若3
x+是二次根式,则
17.若将一条线段AB 分割成长、短两条线段即PB AP AP AB =,则可得出这一比值等于段AB 的黄金分割点,黄金分割总能给人以美的享受,从人体审美学的角度看,若一个人上半身长与下半身长之比满足黄金比的话,则此人符合和谐完美的身体比例.一芭蕾舞演员的身高为18.如图,过线段34A A 、……1-n n A A 31n B B -=.
三、计算题(19题、20题各8分,19.(1)计算:()012132222
--++--()
(1)求证:2
=
CD AD
AC=,AB=
(2)若4
24.电商平台某服装销售商家在销售中发现某品牌童装平均每天可售出
了迎接“双11”,电商决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4
(1)求证:PBE QAB ∽△△.
(2)你认为PBE △和BAE 相似吗?如果相似,给出证明,如果不相似,请说明理由.
(3)如图(3),沿AG 折叠,使点E 落在AD 上为点H ,连结HG 交的中线等于斜边的一半)

1
2
OQ AB OB
==,OB=
∴OQ OB BQ
==,
∴BOQ
△是等边三角形,。

九年级上册数学期中考试试卷

九年级上册数学期中考试试卷

九年级上册数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 5D. 2x - 3 = 52. 已知等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 103. 函数y = 2x + 3的图像经过哪个象限?A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限4. 以下哪个是完全平方数?A. 16B. 18C. 20D. 225. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个6. 计算以下表达式的值:(2x - 3)(x + 2)。

A. 2x^2 - x - 6B. 2x^2 + x - 6C. 2x^2 - x + 6D. 2x^2 + x + 67. 以下哪个是一元二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. 2x - 3 = 0D. x^2 - 4 = 08. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π9. 以下哪个是正比例函数?A. y = 3x + 2B. y = 2xC. y = x^2D. y = 1/x10. 计算以下表达式的值:(a + b)(a - b)。

A. a^2 - b^2B. a^2 + b^2C. 2abD. a^2 + 2ab + b^2二、填空题(每题2分,共20分)11. 已知一个等差数列的首项是3,公差是2,那么第5项的值是_________。

12. 一个直角三角形的两直角边长分别为6和8,那么斜边的长度是_________。

13. 计算以下表达式的值:(3x + 2)(3x - 2) = _________。

14. 一个数的立方根是它本身的数有_________个。

15. 函数y = -x + 5与x轴的交点坐标是(_________, 0)。

2024-2025学年第一学期九年级数学期中测评卷(21-23章) 答案

2024-2025学年第一学期九年级数学期中测评卷(21-23章) 答案

2024-2025学年第一学期期中测评卷九年级数学(卷面分值:100分 考试时间:100分钟)一、选择题(每题3分,共27分,请将选择题的答案写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 答案1.下列是一元二次方程的是( )0.2=++c bx ax A 0.23=−x x B 052.=−y x C 01.2=−x D2.函数32+=x y 的图像经过点(-2,m ),则m 的值为( )1.A 7.B 5.C 4.D3.下列图形中,是中心对称图形但不是轴对称图形的是( )4.若抛物线142−+=x ax y 与x 轴有两个交点,则a 的取值范围是( )4.>a A 4.−>a B 04.≠−a a C 且> 4.−<a D5.如果将方程0262=+−x x 配方成b a x =+2)(的形式,则a-b 的值为( )10.−A 10.B 5.C 9.D6.关于函数342++=x x y 的图像和性质,下列说法错误的是( )A.函数图像开口向上B.当x >-2时,y 随x 的增大而增大C.函数图像的顶点坐标是(-2,-1)D.函数图像与x 轴没有交点7.三角形的两边长分别是3和6,第三边长是方程0862=+−x x 的根,则该三角形的周长等于( )11.A 13.B 1311.或C 12.D8.已知方程0252=+−x x 的两根分别是21x x ,,则2221x x +的值为( )18.A 19.B 20.C 21.D9.如图所示为长20米、宽 15米的矩形空地,现计划要在中间修建三条等宽的小道,其余面积种植绿植,种植面积为 400平方米,若设小道的宽为 xx 米,则根据题意,列方程为( )40021520.2=−×+x x A 40021520.=−×x B400)15)(220.(=−−x x C 400)215)(20.(=−−x x D二.填空题(每空3分,共18分)10.将方程1322+=−x x x 化为一般式,其结果是____________. 11.若m 是方程0752=−−x x 的根,则152+−m m 的值等于________.12.已知关于x 的方程0142=−+x kx 没有实数根,则k 的取值范围是________. 13.将二次函数2)1(3+−=x y 的图像先向右平移2个单位长度,再向下平移4个单位长度,所得到的函数解析式为____________.14.已知抛物线c ax y +=2与22x y =的形状相同,开口方向相反,且经过点(-1,5),则其解析式为_____________.15.超市搞促销活动,将某商品经过两次降价,售价由86元降至52元,若两次降价的百分率相同均为x,可列方程为_____________.三.解答题(共6小题,共55分) 16.(10分)解方程091012=+−x x )( 6)6()2(+=+x x x17.(8分)已知关于x 的一元二次方程024)12(2=−++−m x m x . 求证:无论 m 取何值,这个方程总有实数根.18.(10分)已知抛物线的顶点坐标为(-1,3),且经过点(2,12). (1)求函数解析式.(2)当21≤≤−x 时,求函数的最大值.19.(8分)冬季易引发流感,刚开始有2人患流感,经过两轮传染共有288人患病,求每轮传染中平均一个人传染几个人?20.(9分)某商品售价为每件60元,每周可卖出300件,为提高利润,商家决定涨价销售,经过一段时间发现,每涨价5元,每周少卖50件,已知商品的进价为每件40元,当售价定为多少时利润最大?求最大利润.21.(10分)如图为抛物线c=2,图像经过点(-1,8).直线3−y+x=axy与抛物+线交于B,C两点.点A,B在x轴上.(1)求抛物线与直线的函数解析式.(2)求△ABC的面积.。

河南省郑州外国语中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

河南省郑州外国语中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024--2025学年上期九年级期中考试数学试题考试范围:九年级上册考试时间:100分钟试卷满分:120分一、选择题(共10小题,每小题3分,共30分)1. 公元前5世纪,古希腊数学家毕达哥拉斯首次提出了关于一元二次方程的概念.下列关于x 的方程中,是一元二次方程的为( )A. x2+1xB.x²-xy=0C.x²+2x=1D.ax²+bx=0(a、b为常数)2.“斗”是我国古代称量粮食的量器,它无盖,其示意图如图所示,下列图形是“斗”的俯视图()3. 已知线段a 、b 、c, 作线段x, 使b:a=x:c, 则正确的作法是( )A B C D4.将标有“最”“美”“河”“南”的四个小球装在一个不透明的口袋中(每个小球上仅标一个汉字),这些小球除所标汉字不同外,其余均相同.从中随机摸出一个球,放回后再随机摸出一个球,则摸到的球上的汉字可以组成“河南”的概率是( )A. B. C. D5. 若把方程x²-4x-1=0 化为(x+m)²=n 的形式,则n的值是( )A.5B.2C.-2D.-56. 如图,已知矩形ABCD中,E 为BC 边上一点,DF⊥AE 于点F, 且AB=6,AD=12, AE=10, 则DF的长为( )A.5B.113 C.365D.8数学试卷第1页(共6页)7.如图是某地下停车场的平面示意图,停车场的长为40 m,宽 为22m. 停车场内车道的 宽都相等,若停车位的占地面积为520m ².求车道的宽度(单位:m). 设停车场内车道 的宽度为xm, 根据题意所列方程为( )A.(40-2x)(22-x)=520B.(40-x)(22-x)=520C.(40-x)(22-2x)=520D.(40x)(22+x)=520 8.下列给出的条件不能得出△ABD O △ACB 的是( )A.ADAB =BDBC B.∠ADB=∠ACB C.AB 2=AD.AC D.∠ADB=∠ABC9.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比13, 点A 、B 、E 在x 轴上,若正方形BEFG 的边长为6,则点D 的坐标为( )A. (12,2) B. (13,1) C. (14,2)D.(1,2)图一 图二第9题 第10题10.如图(1).正方形ABCD 的对角线相交于点O. 点 P 为OC 的中点,点M 为边BC 上的一个动点,连接OM,过 点O 作OM 的亚线交CD 于点N, 点 M 从点B 出发匀速 运动到点C, 设BM=x.PN=y.y 随 x 变化的图象如图(2)所示,图中m 的值为( )A.22B.1C.2D.2数学试卷第2页(共6页)二、填空题(共5小题,每小题3分,共15分)11.已 知x=1 是关于x 的一元二次方程x+kx-6=0 的一个根,则k 的值为12.工人师傅做铝合金窗框分下面三个步骤进行:先截出两对符合规格的铝合金窗料(如 图①),使AB=CD 、EF=GH:然后摆放成如图②四边形;将直角尺紧靠窗框的一 个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是 形,根据的数学原理是:13.如图,四边形ABCD 是菱形,∠DAB=46°, 对角线AC,BD 于点O ,DH ⊥AB 于H, 连接OH, 则∠DHO= 度.14.如图,在平行四边形ABCD 中 ,E 是线段AB 上一点,连接AC,DE,A C 与 DE 相交于点F,若AE EB=23则S △ADFS△AEF=15.如图,在矩形纸片ABCD 中,AD=22,AB=2, 点P 是AB 的中点,点Q 是BC边上的一个动点,将△PBQ 沿PQ 所在直线翻折,得到△PE Q,连 接DE,CE, 则当 △DEC 是以DE 为腰的等腰三角形时,BQ 的长是 三、解答题(共8小题,共75分) 16. (8分)解方程:(1)x ²-6x+3=0; (2)3x ²-2x-1=0.数学试卷第3页(共6页)17. (8分)在一个不透明的袋子里装了只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n1002003005008001000摸到黑球的次数m65118189310482602摸到黑球的频m0.590.630.620.6030.602n a(1)当n 很大时,摸到黑球的频率将会趋近(精确到0.1);(2)某小组成员从袋中拿出1个黑球,3个白球放入一个新的不透明袋子中,随机摸出两个球,请你用列表或树状图的方法求出随机摸出的两个球颜色不同的概率.18. (9分)一张矩形纸ABCD, 将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E. 将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F, 折叠出四边形AECF.(1)求证;AF//CE;(2)当∠BAC= _度时,四边形AECF是菱形.数学试卷第4页(共6页)19 . (9分)已知关于x 的一元二次方程x²-ax+a-1=0.(1)求证:该方程总有两个实数根;(2)若方程的两个实数根x1、x₂满足| x1-x₂|=3, 求a 的值;20 . (8分)2024年巴黎奥运会顺利闭幕,吉祥物“弗里热”深受奥运迷的喜爱,一商场以20元的进价进一批“弗里热”纪念品,以30元每个的价格售出,每周可以卖出500 个,经过市场调查发现,价格每涨10元,就少卖100个.若商场计划一周的利润达到 8000元,并且更大优惠让利消费者,售价应定为多少钱?21. (11分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A'B',∠A'(∠A'=∠A), 以线段A'B'为一边,在给出的图形上用尺规作出△AB'C, 使得△A'B'C'心△ABC, 不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线(不用尺规作图),并据此写出已知、求证和证明过程.数学试卷第5页(共6页)22. (10分)一数学兴趣小组为了测量校园内灯柱AB 的高度,设计了以下三个方案:方案一:在操场上点C 处放一面平面镜,从点C 处后退1m 到点D 处,恰好在平面镜中看到灯柱的顶部A 点的像;再将平面镜向后移动4m ( 即FC=4m)放 在F 处 . 从 点 F 处向后退1.8m 到 点H 处,恰好再次在平面镜中看到灯柱的顶部A 点的像,测得 的眼睛距地面的高度ED 、GH 为1.5m, 已 知 点B,C,D,F,H 在同一水平线上,且GH ⊥FH,ED ⊥CD,AB ⊥BH. (平面镜的大小忽略不计)方案二:利用标杆CD 测量灯柱的高度,已知标杆CD 高1.5m, 测 得DE=2m,CE= 2.5m.方案三:利用自制三角板的边CE 保持水平,并且边CE 与点M 在同一直线上,已知 两条边CE=0.4m,EF=0.2m,测得边CE 离地面距离DC=0.3m.三种方案中,方案 不可行,请根据可行的方案求出灯柱的高度.23 . (12分)在△ABC 中 ,AB=AC,∠BAC=α,点 D 为线段CA 延长线上一动点,连接 DB, 将线段DB 绕点D 逆时针旋转,旋转角为α,得到线段DE, 连 接 BE,CE.(1)如图1,当α=60°时, ADCE 的值是 ;∠DCE 的度数为 ;(2)如图2,当α=90°时,请写出 ADCE的值和∠DCE 的度数,并就图2的情形说明 理由;(3)如图3,当α=120°时,若AB=8,BD=7,请直接写出点E 到 CD 的距离.数学试卷第6页(共6页)参考答案1--10DCBDCBACB11.5 12.矩形 有一个角是90度的平行四边形是矩形 13.23度 14.5/2 15.1或216.x1=3+ 6 x2=3-617. (1)0.25 (2)略18.(1)【证明】∵四边形ABCD为矩形,∴AD//BC,∴∠DAC=∠BCA.由翻折知,, ∠BCE =∴∠HAF=∠MCE,∴AF//CE.(2)【解】当∠BAC=30° 时,四边形 A E CF 为菱形.理由如下:∵四边形AB CD是矩形,∴∠D=∠BAD=90°,AB// CD,由(1)得AF//CE,∴四边形A ECF 是平行四边形.∵当四边形AECF 是菱形时,CF=AF,∴∠FCA=∠FAC.∵FC//AE, ∴∠FCA=∠CAB.又∵∠DAF=∠FAC,∴∠DAF=∠FAC=∠CAB.∵∠DAB=90°,∴∠BAC=30° .(2)30度19.(1)证明:∵△=(-a)²-4(a- 1)=a²-4a+4=(a-2)²≥0,∴该方程总有两个实数根;……………(2)解:由根与系数的关系得x₁+x₂=a,x₁x₂= a-1,∵Ix₁-x₂I=√(x₁-x₂)²=√a²-4(a-1)=√(a-2)²=3, ∴a-2=3 或a-2=-3,解得a=5 或a=-1.20.(1)设售价应定为x元,由题意可得:c²-100x+2400=0,解得:x₁=40,X₂=60,更大优惠让利消费者,∴x=40,答:售价应定为40元;(2)设这两周的平均增长率为y,由题意:解得:y₁=0.1=10%,y2=-2.1 (不合题意舍去),答:这两周的平均增长率为10%.21.(1)如图所示,△A'B'C '即为所求;(2)已知,如图,△A B C∽△A'B'C',D 是AB 的中点,D'是A'B'的中点,求证:证明:∵·D是A B的中点,D'是A'B'的中点,△ABC∽△A'B'C',△A'C'D'△ACD,22. 方案二、三不可行选方案一,∵∠ECD=∠ACB,∠EDC=∠ABC, ∴△ABC∽△EDC,设BC=xm,则AB=1.5xm,同理可得△ABF∽△GHF,·AB=1.5cm,BF=BC+CF=(4+x)m,GH=1.5m ,FH=1.5m,解得:x=8,∴AB=1.5x=12(m).23.∴△ABC 是等边三角形,∴∠ACB=∠ABC=60°,AB=BC,同理可得:△BDE 是等边三角形,∴∠BDE=60°,BD=BE, ∴∠BDE=∠ABC,∴∠BDA=∠EBC,∴△ABD≌△CBE(SAS), ∴AD=CE,∠BCE=∠BAD=180°—∠BAC=120°,∠DCE=∠BCE一∠ACB=60°,故答案为:1,60;(2))∵AB=AC,∠BAC=90°, ∴∠ACB=∠ABC=45°,同理可得:∠BDE=40°,∴∠BDA=∠EBC, ∴△ABD∽△CBE,∠BCE=∠BAD=180°-∠BAC=90°, ∴∠DCE=∠BCE-∠ACB=45°;(3)如图1,图1作BF⊥CD于F,作EG⊥CD于G,作DHLCE, 交CE 的延长线于H,在Rt△AEF 中,AB=8,∠EAF=180°—∠BAC=60°, ∴AF=8·cos 60°=4,BF=8 sin 60°=4√3,在Rt△BDF 中,BD=7,BF=4√3,∵DF=√7²-(4√3)²=1,∴AD=AF 一DF=3, ∴CD=AD+AC=11,同理(2)可得:∠BCE=∠BAD=60°, ∴CE=√3AD=3√3,∠DCE=∠BCE—∠ACB=30°,在Rt△CDH 中,CD=11,∠DCE=30°,如图2,图2由上知:DF=1, AF=4,∴CD=13,AD=5,CE=√3AD=5√3,综上所述:点E 到CD 的距离为:。

湖北省荆州市监利市2024届九年级上学期期中考试数学试卷(含解析)

湖北省荆州市监利市2024届九年级上学期期中考试数学试卷(含解析)

2023~2024学年度上学期期中考试九年级数学试题注意事项:1.本卷满分为120分,考试时间为120分钟.2.本卷是试题卷,不能答题,答题必须写在答题卡上.解答题中添加的辅助线、字母和符号等务必标在答题卡对应的图形上.3.在答题卡上答题,选择题要用2B 铅笔填涂,非选择题要用0.5毫米黑色中性笔作答.★祝考试顺利★一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A .B .C .D .2.如图,将紫荆花图案绕中心旋转n 度后能与原来的图案互相重合,则n 的最小值为()A .45B .72C .30D .603.关于x 的方程230x x c -+=的一个根是2,则c 的值是()A .2B .4C .6D .84.已知二次函数()243y x =---,若y随x 的增大而减小,则x 的取值范围是()A .4x <-B .4x <C .4x >-D .4x >5.用配方法解一元二次方程2430x x --=时,方程变形正确的是()A .()221x -=B .()224x -=C .()227x -=D .()225x -=6.关于x 的一元二次方程2210ax x --=有实数根,则a 的取值范围是()A .1a >-B .1a ≥-且0a ≠C .1a ≥-D .1a >-且0a ≠7.已知拋物线()21y a x k =+-与x 轴交于点()()4,0,,0A B m ,则,A B 两点之间的距离是()A .4B .6C .8D .108.已知O 的弦16AB =,点C 是弦AB 的中点,作射线OC 交O 于点D ,若4CD =,则O 的半径长是()A .12B .10C .8D .169.若二次函数22y x x c =+-的自变量和函数值如下表所示,那么方程220x x c +-=的一个近似根是()x2-1-01y1-2-1-2A .1.4-B .0.5-C .0.4D .1.310.如图,一段抛物线()()404y xx x =--≤≤,记为1C ,它与x 轴交于点1,O A ;将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3;A ⋅⋅⋅,如此进行下去,若()2023,P m 是其中某段抛物线上一点,则m 的值为()A .3-B .3C .6-D .6二、填空题(本大题共6小题,每小题3分,共18分)11.在平面直角坐标系中,点()3,2-关于原点对称的点的坐标为______.12.已知O 的直径10cm,CD AB =是O 的弦,且AB CD ⊥,垂足为M ,若8cm AB =,则OM 的长为______cm .13.把抛物线23y x =-先向左平移2个单位长度,再向下平移1个单位长度后,得到的抛物线的解析式是______.14.已知12,x x 是关于x 的方程220x bx c +-=的两个实数根,且12123,2x x x x +=-⋅=,则b c 的值是______.15.如图是一座抛物线型拱桥,当拱顶到水面的距离为2米时,水面的宽度为4米;那么当水位下降1米时,水面的宽度为______米.(第15题图)16.某学校计划利用一片空地为学生建一个面积为2120m 的矩形车棚,其中一面靠墙(墙的可用长度为15m ),另外三面用29m 长的木板材料新建板墙.根据学校的要求,在与墙平行的一面开一个3m 宽的门,为了方便学生取车,施工方决定在车棚内修建几条等宽的小路(如图),使得停放自行车的面积为264m ,那么小路的宽度为______米.(第16题图)三、解答题(本大题共8小题,共72分)17.(本题满分8分)解方程:(1)2410x x --=(2)()()23430x x -+-=18.(本题满分8分)如图,CD 是O 的直径,弦AB 与CD 相交于点,E C 为劣弧AB 的中点,若2,8CE AB ==,(1)求O 的半径;(2)求弦AD 的长.19.(本题满分8分)如图,在方格网中已知格点ABC △,用无刻度直尺按要求画图.(1)在方格网中画出ABC △关于点A 对称的图形ADE △;(2)在方格网中画出ABC △以B 为旋转中心,沿顺时针方向旋转90︒后的图形MBN △.20.(本题满分8分)已知关于x 的一元二次方程2430x x c -++=有两个不相等的实数根.(1)若该方程的一个实数根为1-,求另一个实数根;(2)若该方程的两个不相等的实数根为α和β,且11c αβ+=,求c 的值.21.(本题满分8分)新能源汽车节能、环保,越来越受消费者喜爱,我国新能源汽车近几年出口量逐年增加,2020年出口量约为25万辆,2022年出口量约为64万辆.(1)求2020年到2022年新能源汽车出口量的年平均增长率是多少?(2)按照这个增长速度,预计2023年我国新能源汽车出口量约为多少万辆?22.(本题满分10分)在ABC △中,90,BAC AB AC ∠=︒=.图1图2(1)如图1,D 为BC 边上一点(不与点,B C 重合),将线段AD 绕点A 逆时针旋转90︒得到AE ,连接EC .求证:90BCE ∠=︒;(2)如图2,D 为ABC △外一点,且45ADC ∠=︒,仍将线段AD 绕点A 逆时针旋转90︒得到AE ,连接,,EC ED BD .若9,3BD CD ==,求AD 的长.23.(本题满分10分)某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x (元/件)的一次函数.其售价、月销售量、月销售利润w (元)的三组对应值如下表:售价x (元/件)150160180月销售量y件14012080月销售利润w 元420048004800注:月销售利润月销售量(售价进价)(1)根据上述信息求:①y关于x 的函数解析式;②当x 是多少时,月销售利润最大?最大利润是多少?(2)由于某种原因,该商品的进价提高了m 元/件()0m >,物价部门规定该商品的售价不得超过165元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数解析式.若月销售利润最大是4620元,求m 值.24.(本题满分12分)如图1,抛物线2y x bx c =-++与x 轴交于()5,0A -和B 两点,与y轴交于点()0,5C .图1图2(1)求该抛物线的函数表达式;(2)P 是抛物线上位于直线AC 上方的一个动点,过点P 作//P D y 轴交AC 于点D ,求PD 的最大值及此时点P 的坐标;(3)如图2,将原抛物线向左平移4个单位长度得到抛物线,y y ''与原抛物线相交于点M ,点N 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点H ,使以点,A M ,,N H 为顶点的四边形为矩形,若存在,请直接写出点H 的坐标;若不存在,请说明理由.2023~2024学年度上学期期中考试九年级数学试题参考答案(请各位教师在阅卷前先做题审答案)一、选择题1.C 2.B 3.A 4.D 5.C 6.B 7.D8.B9.C10.A二、填空题11.()3,2-12.313.()2321y x =-+-(一般式231213y xx =---)14.1-15.16.2三、解答题17.解:(1)1,4,1a b c ==-=- ()()2Δ441120∴=--⨯⨯-=422x ∴==1222x x ∴==(2)()()23430x x -+-= ()()310x x ∴-+=30,10x x ∴-=+=123,1x x ∴==-18.解:(1)连AOCD 是O 的直径,C 为劣弧AB 的中点1,42CD AB AE AB ∴⊥==设O 的半径为,则,2AO r OE r ==-在Rt AOE △中,222AO AE OE =+,即()22242r r =+-解得5r =即O 的半径为5(2)8,4,DE CD CE AE CD AB=-==⊥AD ∴==19.解:(1)如图,ADE △即为所求;(2)如图,MBN △即为所求;20.解:(1)设另一个实数根为m ,根据题意得14m -+=5m ∴=即另一个实数根为5(2)根据题意得,4,3c αβαβ+==+1143c c αβαβαβ+∴+===+解得4c =-或1当4c =-时,Δ2050=>当1c =时,Δ0=(舍)综上可得,c 的值为4-.21.解:(1)设2020年到2022年新能源汽车出口量的年平均增长率是x ,根据题意得()225164x +=解得120.6, 2.6x x ==-(舍)答:2020年到2022年新能源汽车出口量的年平均增长率是60%.(2)()6410.6102.4+=答:预计2023年我国新能源汽车出口量约为102.4万辆.22.(1)证明:由旋转的性质得,90,BAC DAE AE AD∠=∠==︒BAC DAC DAE DAC ∴∠-∠=∠-∠,即BAD CAE∠=∠AB AC = ()BAD CAE SAS ∴≌△△ABD ACE ∴∠=∠90,BAC AB AC ∠=︒= 45ABD ACB ACE ∴∠=∠=∠=︒90BCE ACB ACE ∴∠=∠+∠=︒(2)解:由旋转的性质得,90,BAC DAE AE AD∠=∠==︒BAC DAC DAE DAC ∴∠+∠=∠+∠,即BAD CAE∠=∠AB AC = ()BAD CAE SAS ∴≌△△9BD CE ∴==90,DAE AE AD ∠=︒= 45ADE AED ∴∠=∠=︒45ADC ∠=︒ 90EDC ADE ADC ∴∠=∠+∠=︒2262DE CE CD ∴-=6AD ∴=23.解:(1)①设y kx b =+,把150,140x y ==和160,120x y ==代入解析式得150140160120k b k b +=⎧⎨+=⎩解得2440k b =-⎧⎨=⎩y ∴关于x 的函数解析式为2440y x =-+②由题意可得,每件商品的进件为1504200140120-÷=元()()21202440268052800w x x x x ∴=--+=-+-∴当1702bx a=-=时,w 有最大值,最大值是5000当x 是170时,月销售利润最大,最大利润是5000元(2)由题意可得,()()()212024402680252800440w x m x x m x m=---+=-++--∴当17022b mx a =-=+时,w 有最大值0m > 1701702m ∴+>20a =-< ∴当165x ≤时,w 随x 的增大而增大∴当165x =时,w 取最大值4620即()()1651203304404620m ---+=解得3m =24.解:(1)解:将()5,0A-和()0,5C 代入2y x bx c =-++得25505b c c --+=⎧⎨=⎩解得4,5b c =-=∴抛物线的函数表达式为245y xx =--+(2)设AC 的解析式为y kx b =+,将()5,0A -和()0,5C 代入y kx b =+解得1,5k b AC ==∴的解析式为5y x =+ 点P 在抛物线上,//P D y 轴交AC 于点D ∴设()2,45P m m m --+,则()2,5,5Dm m PD m m +=--,其中50m -<<由二次函数的性质可得,当52m =-时,PD 的最大值为254此时点P 的坐标是535,24⎛⎫- ⎪⎝⎭(3)点H 的坐标为()3,0.3--或()1,4.4-或()7,2-或()7,3-.其他解法,正确即可.平移后函数解析式为()222491227y x x x =-+++=---,与原函数交点()4,5M -;①以A M 为边,当90AMN ∠=︒时,设()13,Hy -,在Rt AMH △中由勾股定理可求得10.3y =-②以A M 为边,当90MAN ∠=︒时,设()21,H y -,在Rt AMH △中由勾股定理可求得24.4y =③以A M 为对角线,当90AHM ∠=︒时,设()37,H y -,在Rt AMH △中由勾股定理可求得32y =或3。

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。

2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。

3.答案全部涂、写在答题卡上,写在本卷上无效。

考试结束后,将答题卡交回。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学期中考试题卷
一、选择题:(每小题2分,共30分)
1、下列图形中,既是轴对称图形又是中心对称图形的是( )
2、2)3(-的结果是( )
A. -3
B. 9
C. 3
D.-9
3、.若13-m 有意义,则m 能取的最小整数值是( )
A .m=0
B .m=1
C .m=2
D .m=3 4、下列各式中是最简二次根式的是( ).
A .3a
B .8a
C .1
2
a D .2a 5、下列等式不成立的是( )
A 、66326=⋅
B 、428=÷
C 、
D 、228=-
6、方程2
(2)9x -=的解是( ) A .1251x x ==-,
B .1251x x =-=,
C .1211
7x x ==-, D .12117x x =-=,
7、用配方法解方程2
250x x --=时,原方程应变形为( )
A 、2
(1)6x += B 、2
(1)6x -= C 、2
(2)9x += D 、2
(2)9x -=
8、已知关于x 的一元二次方程22
(1)10a x x a -++-=一个根为0,则a 的值为( )
A .1
B .-1
C .1或-1
D .
12
9、.已知点(,3)A a -是点(2,)B b -关于原点O 的对称点,则a +b 的值为( ) A 、6 B 、5- C 、5 D 、6±
10、在平面直角坐标系中,点A (3,20)绕原点旋转180°后所得点的坐标为( )
A.(-3,20)
B.(3,-20)
C.(-3,-20)
D.(20,-3) 11、如图,⊙O 是△ABC 的外接圆,BOC ∠=100°,则∠A 的度数等于( )
A 、60°
B 、50°
C 、40°
D 、30°
12、如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )
A .4
B .6
C .7
D .8 13、已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a+b)x+
4
c
=0的根的情况是( ). A .没有实数根 B .有两个不相等的实数根 C .有两个相等的实数根 D .有实数根
14、三角形两边的长分别是8和6,第三边的长是方程x ²-12x +20=0的一个实数根,则三角形的周长是( )
A . 24
B . 26或16
C . 26
D . 16
15、在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一
幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2
,设金色纸边的宽为x cm ,
那么x 满足的方程是( ) A .2
13014000x x +-= B .2
653500x x +-= C .213014000x x --=
D .2
653500x x --=
二、填空题(每小题3分,共45分) 16、计算=-⨯863_______.
17、一元二次方程:x x 22=的解是: ; 18、 在函数y=3x +中,自变量x 的取值范围是
19、如图,将Rt △ABC(其中∠B =300,∠C =900
)绕A 点按顺时针方向旋转到 △AB 1 C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角最小等于_______° 20、如图,BD 是⊙O 的直径,∠A=30°,则∠CBD=_________. 21、若x x m -m
+-2
2
2)(-3=0是关于x 的一元二次方程,则点(m-2,2-m )
关于原点对称的点是______.
22、圆中与半径相等的弦所对的圆周角等于 .
23、关于x 的一元二次方程()02m x 1-m -x 2
=-+有两个相等的实数根,则m =
____________
24、、若2<x<3,化简x x -+-3)2(2
=____________
25、方程29180x x -+=的两根是等腰三角形的底和腰,则这个等腰三角形的周长
是 。

26、 如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( )
A .30°
B .45°
C .90°
D .135° 27、为了改善市区人民的生活环境,某市建设污水管网工程,某圆柱型水管的直径为100cm ,
截面如图7所示,若管内的污水的面宽60AB cm =,则污水的最大深度为______. 28、某中学摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互
赠了182张,若全组有x 名学生,则根据题意列出的方程是______________________。

29、已知411+=-+-y x x ,24n n +是整数,则正整数n 的最小值与x y
的平方根
的积为______.
30、如图,△ABC 的三个顶点都在5 × 5的网格(每个小正方形的边长均为1 个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A′BC′的位置,且点
A′、C′仍落在格点上,则线段AB 扫过的图形的面积是_______平方单位(结果保留π). 三、解答题:
30、.计算:(1)322748+- (2)
2
1
2
)31()23)(23(0
+---+
(5×2分)
31、解方程:(1)22150x x --= (2)
(23)46x x x +=+
(5×2分)
31、(5分)如图,方格纸中的每个小方格都是正方形,△ABC 的顶点均在格点上,
建立平面直角坐标系
(1)以原点O 为对称中心,画出与△ABC 关于原点O 对称的△A 1B 1C 1,并写出
B
O
C
D
A 1 的坐标______
(2)将原来的△ABC 绕着点B 顺时针旋转90° 得到△A 2B 2C 2,试在图上画出△A 2B 2C 2的图形, 并写出A 2的坐标______
32、(5分)如图,O ⊙的弦CD 与直线径AB 相交,若50BAD ∠=°,求∠AOD 、
ACD ∠的度数.
33、(7分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.
34、(8分)如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB
CD 于点E .连接AC 、OC 、
BC .
(1)求证:ACO =BCD .
(2)若E B =,CD =
,求⊙O 的直径.
第8题图
O
B
D
A
C 第19题。

相关文档
最新文档