人教版九年级上册数学期中试卷(优选.)
人教版2024-2025学年九年级数学上册期中检测考试试卷[含答案]
![人教版2024-2025学年九年级数学上册期中检测考试试卷[含答案]](https://img.taocdn.com/s3/m/bfdd7c88185f312b3169a45177232f60dccce771.png)
2024-2025学年人教版九年级数学上册期中检测考试试卷同学,你好!答题前请认真阅读以下内容:1.本卷为物理卷,全卷共4页,满分150分,答题时长120分钟,考试形式为闭卷.2.请在答题卡相应位置作答,在试卷上答题视为无效.3.不得使用计算器.一、选择题(每题3分,共计36分,每题只有唯一选项正确,请把正确答案填入答题卡指定位置)1.下列图形中,不属于中心对称图形的是( )A .B .C .D .2.若一元二次方程2440mx x ++=没有实数根,则m 的取值范围是( )A .1m < B .1m <-C .1m ³-D .1m >3.抛物线()21112y x =-+-的顶点坐标为( )A .()1,1--B .()1,1C .()1,1-D .()1,1-4.已知1x ,2x 是方程2440x x ++=的两个根,则12x x +的值为( )A .4-B .4C .2-D .25.如图,在Rt ABC △中,已知9030BAC C Ð=°Ð=°,,将ABC V 绕点A 顺时针旋转70°得到AB C ¢¢△,则CAC ¢Ð的度数是( )A .60°B .70°C .80°D .90°6.二次函数()20y ax bx a =+¹的图象如图所示,则关于x 的一元二次方程20ax bx +=的根的情况是( ) A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.若二次函数2y ax =的图象经过()2,4P -,则该图象必经过点( )A .()2,4B .()2,4--C .()4,2--D .()4,2-8.电影《志愿军》不仅讲述了中国人民志愿军抗美援朝的故事,更是通过鲜活生动的人物塑造,让观众体会到历史事件背后的人性和情感,一上映就获得全国人民的追捧.某地第一天票房约3亿元,若以后每天票房按相同的增长率增长,三天后票房收入累计达18亿元,若把增长率记作x ,则方程可以列为( )A .()3118x +=B .()23118x +=C .()233118x +=+D .()()23313118x x +++=+9.为方便市民进行垃圾分类投放,某环保公司第一个月投放1000个垃圾桶,计划第三个月投放垃圾桶y 个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x ,那么y 与x 的函数关系是( )A .()210001y x =+B .()210001y x =-C .()211000y x =-+D .21000y x =+10.若方程20x px q -++=的一个根大于1,另一根小于1,则p q +的值( )A .不大于1B .大于1C .小于1D .不小于111.函数2y x bx c =++与y x =的图象如图所示,有以下结论:①240b c ->;②1b c +=-;③360b c ++=;④当13x <<时,()210x b x c +-+<,其中正确的个数是( )A .1B .2C .3D .412.如图,在ABC V 中,90BAC Ð=°,AB AC =,2BC =.点D 在BC 上,且13BD CD =∶∶.连接AD ,将线段AD 绕点A 顺时针旋转90°得到线段AE ,连接BE ,DE .则BDE V 的面积是( )A .14B .38C .34D .32二、填空题(每题4分,共计24分,把答案填在答题卡指定位置上)13.一元二次方程260x x m -+=有两个实数根1x ,2x .若12x =,则2x 的值为 14.若二次函数()232y x =-+,则此二次函数图象的对称轴是 .15.若点(),1A a -关于原点对称的点为()5,B b ,则点(),C a b 关于y 轴对称的点D 的坐标为.16.已知,a b 是一元二次方程2310x x -+=的两个根.则22ba b a b-+=+.17.小明推铅球,铅球行进高度()m y (与水平距离()m x 之间的关系式为()21184105y x =--+,当铅球行进的高度为16m 5时,铅球行进的水平距离x = .18.如图,在Rt ABC △中,90ACB Ð=°,30B Ð=°,AC =P 是BC 边上一动点,连接AP ,把线段AP 绕点A 逆时针旋转60°到线段AQ ,连接CQ ,则线段CQ 的最小值为.三、解答题(19、20、21题每题10分;22-26题每题12分,共计90分;请在答题卡指定位置作答,并写出别要的解答过程和步骤才给分)19.解方程(1)()22250x --=;(2)2520x x +-=.20.如图,在平面直角坐标系中,已知ABC V 的三个顶点的坐标分别为()()()5,4,0,3,2,1A B C .(1)画出ABC V 关于原点成中心对称的111A B C △,并写出点1C 的坐标;(2)画出将111A B C △绕点1C 按顺时针方向旋转90°所得到的221A B C △.21.已知关于x 的一元二次方程()()21360x m x m ---+=.(1)利用判别式判断方程实数根的情况;(2)若该方程只有一个根小于2,求m 的取值范围.22.如图,在ABC V 中,点E 在BC 边上,AE AB =,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE Ð=Ð,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若63ABC Ð=°,25ACB Ð=°,求FGC Ð的度数.23.已知抛物线2y ax bx c =++经过()2,0A -、()4,0B 、()2,8C 三点.(1)求抛物线的解析式,并写出抛物线的顶点M 的坐标;(2)该抛物线经过平移后得到新抛物线241y x x =-++,求原抛物线平移的方向和距离.24.近年来,湖北省某地致力打造特色乡村旅游,发展以“农家乐”“高端民宿”为代表的旅游度假区.为迎接旅游旺季的到来,某民宿准备重新调整房间价格,已知该民宿有20个房间,当每个房间每天的定价为500元时,所有房间全部住满;当每个房间每天的定价每增加50元时,就会有一个房间无人入住,如果有游客居住房间,民宿每天需要对每个房间各支出100元的其他费用.设每个房间每天的定价增加x 个50元(020x ££,且x 为整数),该民宿每天游客居住的房间数量为y 间,所获利润为W 元.为吸引游客,该地物价部门要求民宿尽最大可能让利游客.(1)分别求出y 与x ,W 与x 之间的函数关系式;(2)当定价为多少元时,民宿每天获得的利润可以达到9600元;(3)求当每个房间的定价为多少元时,民宿每天获得的利润最大,最大利润是多少?25.素材一:秦、汉时期是中国古代桥梁的创建发展时期,此时期创造了以砖石为材料主体的拱券结构,为后来拱桥的出现创造了先决条件.如图(1)是位于某市中心的一座大桥,已知该桥的桥拱呈抛物线形.在正常水位时测得桥拱处水面宽度OB 为40米,桥拱最高点到水面的距离为10米.素材二:在正常水位时,一艘货船在水面上航行,已知货船的宽DE 为16米,露出水面的高DG 为7米.四边形DEFG 为矩形,OD BE =.现以点O 为原点,以OB 所在直线为x 轴建立如图(2)所示的平面直角坐标系,将桥拱抽象为一条抛物线.(1)求此抛物线的解析式.(2)这艘货船能否安全过桥?(3)受天气影响,水位上升0.5米,若货船露出水面的高度不变,此时该货船能否安全过桥?26.如图①,在直角三角形纸片ABC 中,90BAC Ð=°,6AB =,8AC =.【数学活动】将三角形纸片ABC 进行以下操作:①折叠三角形纸片ABC ,使点C 与点A 重合,得到折痕DE ,然后展开铺平;②将DEC V 绕点D 顺时针方向旋转得到DFG V ,点E ,C 的对应点分别是点F ,G ,直线GF 与边AC 交于点M (点M 不与点A 重合),与边AB 交于点N .【数学思考】(1)折痕DE 的长为______;(2)在DEC V 绕点D 旋转的过程中,试判断MF 与ME 的数量关系,并证明你的结论;【数学探究】;(3)如图②,在DEC V 绕点D 旋转的过程中,当直线GF 经过点B 时,求AM 的长;【问题延伸】;(4)在DEC V 绕点D 旋转的过程中,连接AF ,则AF 的取值范围是______.【分析】本题主要考查了中心对称图形,解题的关键是找出对称中心.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据定义逐一判断即可.【详解】解:A .是中心对称图形,故本选项不合题意;B .不是中心对称图形,故本选项符合题意;C .是中心对称图形,故本选项不合题意;D .是中心对称图形,故本选项不合题意.故选:B .2.D【分析】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.由方程无实数根即240b ac D =-<,从而得出关于m 的不等式,解之可得.【详解】解:∵关于x 的一元二次方程2440mx x ++=无实数根,22444416160b ac m m \D =-=-´=-<,解得:1m >.故选:D .3.A【分析】本题考查的是二次函数的性质,根据()2y a x h k =-+的顶点式(),h k 即可得到答案,熟练掌握二次函数的顶点式是解题的关键.【详解】解:抛物线()21112y x =-+-的顶点坐标为()1,1--,故选:A 4.A【分析】本题主要考查了根与系数的关系,1x ,2x 是一元二次方程200ax bx c a ++=¹()的两根时,12bx x a +=-.利用一元二次方程根与系数的关系求解即可.【详解】解:∵1x ,2x 是方程2440x x ++=的两个实数根,∴12441x x +=-=-.故选:A .【分析】本题主要考查了旋转的性质,熟知旋转的性质是解题的关键.【详解】解:∵将ABC V 绕点A 顺时针旋转70°得到AB C ¢¢△,∴70CAC ¢Ð=°,故选:B .6.B【分析】本题考查二次函数与一元二次方程的关系,解答本题的关键是掌握二次函数的性质;一元二次方程210ax bx ++=的根即为二次函数20y ax bx a +=¹()的图像与x 轴的交点的横坐标,结合图像即可得到答案.【详解】解:一元二次方程20 ax bx +=的根即为二次函数()20y ax bx a =+¹的图像与直线x轴的交点的横坐标,结合图像,可知二次函数20y ax bx a +=¹()的图像与x 轴有两个不同的交点,即方程20 ax bx +=有两个不相等的实数根,故选:B .7.A【分析】本题考查了二次函数图象与性质,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y 轴是解题的关键.先确定出二次函数图象的对称轴为y 轴,再根据二次函数的对称性解答.【详解】解:Q 二次函数2y ax =的对称轴为y 轴,且图象经过()2,4P -,\该图象必经过点()2,4,故选:A .8.D【分析】本题考查了增长率问题(一元二次方程的应用),根据题意求出第二天和第三天的票房即可求解.【详解】解:由题意得:第二天的票房为()31x +亿元,第三天的票房为()231x +亿元,∴()()23313118x x ++++=故选:D .【分析】本题主要考查了列二次函数关系式,根据题意可得,第二个月投放垃圾桶数量为()10001x +个,则第三个月投放垃圾桶数量为()210001x +个,据此可得答案.【详解】解:由题意得,()210001y x =+,故选:A .10.B【分析】本题考查的是一元二次方程根与系数的关系,由题意可设20x px q -++=的两个根分别为12,x x ,结合题意设11x >,21x <,12x x p +=,12x x q =-,可得()()12110x x --<,再进一步解得可得答案.【详解】解:设20x px q -++=的两个根分别为12,x x ,结合题意设11x >,21x <,12x x p +=,12x x q =-,∴()()12110x x --<,∴()121210x x x x -++<,∴10q p --+<,∴1p q +>.故选:B .11.B【分析】利用判别式的意义对①进行判断;利用x =1,1y =可对②进行判断;利用3x =,3y =对③进行判断;根据13x <<时,2x bx c x ++<可对④进行判断.本题考查了二次函数与不等式,二次函数图象与系数的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.【详解】解:Q 抛物线与x 轴没有公共点,240b c \D =-<,故①不符合题意;1x =Q ,1y =,11b c \++=,即0b c +=,故②不符合题意;3x =Q ,3y =,933b c \++=,360b c \++=,故③不符合题意;13x <<Q 时,2x bx c x ++<,()210x b x c \+-+<的解集为13x <<,故④不符合题意;故选:B .12.B【分析】本题考查了全等三角形的判定与性质,等腰直角三角形,根据SAS 证明EAB DAC △≌△是解题的关键.据旋转的性质得出,90AD AE DAE =Ð=°,再根据SAS 证明EAB DAC △≌△得出45C ABE Ð=Ð=°,CD BE =,得出90EBC Ð=°,再根据三角形的面积公式即可求解.【详解】解:90BAC Ð=°Q ,AB AC =,45ABC C \Ð=Ð=°,90BAD CAD Ð+Ð=°.由旋转得AD AE =,90BAD BAE DAE Ð+Ð=Ð=°,CAD BAE \Ð=Ð.在ADC △和AEB V 中,AD AE CAD BAE AC AB =ìïÐ=Ðíï=î()SAS ADC AEB \V V ≌,BE CD \=,45ABEC Ð=Ð=°.90EBD ABE ABC \Ð=Ð+Ð=°.2BC =Q ,13BD CD =::,11242BD \=´=, 33242BE CD ==´=,BDE \V 的面积是1113322228BD BE ×=´´=.故答案为:B .13.4【分析】本题考查了一元二次方程根与系数的关系,熟练掌握和运用一元二次方程根与系数的关系是解决本题的关键.根据一元二次方程根与系数的关系,即可求得答案.【详解】解:∵260x x m -+=有两个实数根1x ,2x ,12x =,∴126x x +=,∴24x =;故答案为:4.14.直线2x =-【分析】本题主要考查了二次函数对称轴.根据二次函数的顶点式写出对称轴即可.【详解】解:二次函数()232y x =-+,图象的对称轴是直线2x =-,故答案为:直线2x =-.15.()5,1【分析】本题考查平面直角坐标系中任意一点(),P x y ,关于原点的对称点是(),x y --,即关于原点的对称点,横纵坐标都变成相反数,得出a ,b 的值,根据关于y 轴对称的点横坐标互为相反数,纵坐标相等,即可得出答案.【详解】解:关于原点的对称点,横纵坐标都变成相反数,∴5a =-,1b =,即点C 为()5,1-,根据关于y 轴对称的点横坐标互为相反数,纵坐标相等,∴点(),C a b 关于y 轴对称的点D 的坐标为()5,1,故答案为:()5,1.16.73##123【分析】本题考查了一元二次方程的根与系数的关系,分式的化简,完全平方公式的化简计算,熟练掌握知识点是解题的关键.由题意得,3a b +=,1ab =,故()222927332b a b a b a b a b ab +---+===++.【详解】解:由题意得,3a b +=,1ab =∵22222222b a b b a b a b a b a b a b-++-+==+++,而()2222a b a b ab +=+-,∴()222927332b a b a b a b a b ab +---+===++,故答案为:73.17.2或6【分析】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,把165y =代入函数解析式求解即可。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版2023_2024学年九年级上册期中数学试题(附答案)

一.选择题(共12小题,满分36分,每小题3分)1.已知关于x的方程(m+1)x2+2x﹣3=0是一元二次方程,则m的取值范围是( )A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣12.在平面直角坐标系中,点A(3,﹣4)与点B关于原点对称,则点B的位置( )A.第一象限B.第二象限C.第三象限D.第四象限3.若n(n≠0)是关于x的方程x2+mx+n=0的根,则m+n的值为( )A.0B.1C.﹣1D.﹣24.在下列方程中,满足两个实数根的和等于2的方程是( )A.x2﹣2x+4=0B.x2+2x﹣4=0C.x2+2x+4=0D.x2﹣2x﹣4=0 5.一元二次方程x2+2020=0的根的情况是( )A.有两个相等的实根B.有两个不等的实根C.只有一个实根D.无实数根6.如图,要为一幅长为29cm,宽为22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,相框边的宽度为xcm,则可列方程为( )A.(29﹣2x)(22﹣2x)=×29×22B.(29﹣2x)(22﹣2x)=×29×22C.(29﹣x)(22﹣x)=×29×22D.(29﹣x)(22﹣x)=×29×227.二次函数y=x2+3x﹣2的图象是( )A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,则下列四个结论错误的是( )A.a﹣b+c<0B.2a+b=0C.4a﹣2b+c=0D.am2+b(m+1)≥a9.已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a(x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是( )A.5B.﹣1C.5或1D.﹣5或﹣110.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是( )A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外11.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某车的刹车距离s(m)与车速x(km/h)之间有下列关系:s=0.01x+0.01x2,在一个限速40km/h的弯道上的刹车距离不能超过( )A.15.8m B.16.4m C.14.8m D.17.4m12.如图,将△ABD绕顶点B顺时针旋转40°得到△CBE,且点C刚好落在线段AD上,若∠CBD=32°,则∠E的度数是( )A.32°B.34°C.36°D.38°二.填空题(共6小题,满分24分,每小题4分)13.已知方程(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,则a= .14.设m,n是方程x2﹣x﹣2=0的两根,则m2+n+mn= .15.要将函数y=ax2+bx+c的图象向右平移3个单位长度.再向上平移2个单位长度得到的二次函数为y=2x2﹣4x+3,那么a+b+c= .16.若函数y=x2﹣4x+b的图象与坐标轴只有两个交点,则b的值是 .17.如图,在喷水池的中心A处竖直安装一根水管AB,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线的表达式为y=﹣(x﹣1)2+3(0≤x≤3),则选取点D为坐标原点时的抛物线表达式为 ,其中自变量的取值范围是 ,水管AB的长为 m.18.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°, .∠E=71°,且AD⊥BC,则∠BAC的度数为 三.解答题(共8小题,满分90分)19.解下列方程:(1)(2x+1)2=9;(2)x2﹣2x﹣1=0;(3)(x﹣3)2=4(3﹣x).20.已知关于x的一元二次方程mx2+nx﹣2=0.(1)当n=m﹣2时,证明方程有两个实数根;(2)若方程有两个不相等的实数根,写出一组满足条件的m,n的值,并求出此时方程的根.21.二次函数f(x)=ax2+bx+c的自变量x的取值与函数y的值列表如下:x…﹣2﹣10…234…y=f(x…﹣503…30﹣5…)(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图象的顶点落在直线y=x上,并写出平移后二次函数的解析式.22.如图,抛物线与直线交于点A(﹣4,﹣1)和点B(﹣2,3),抛物线顶点为A,直线与y轴交于点C.(1)求抛物线和直线的解析式;(2)若y轴上存在点P使△PAB的面积为9,求点P的坐标.23.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.24.如图,在一个边长为32cm的正方形的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计),且折成的长方体盒子的表面积是864cm2,求剪去小正方形的边长.25.利用对称性可设计出美丽的图案,在边长为1的方格中,有如图所示的四边形(顶点都在格点上)(1)先作该四边形关于直线l成轴对称图形.(2)再作出你所作图形连同原四边形绕O点按顺时针方向旋转90°后的图形.(3)完成上述设计后,求整个图案的面积.26.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:由题意得:m+1≠0,解得:m≠﹣1,故选:D.2.解:点A的坐标是(3,﹣4),若点A与点B关于原点对称,则点B的坐标为(﹣3,4),位于第二象限.故选:B.3.解:把x=n代入方程x2+mx+n=0得n2+mn+n=0,∵n≠0,∴n+m+1=0,即m+n=﹣1.故选:C.4.解:A、Δ=b2﹣4ac=(﹣2)2﹣4×1×4=﹣12<0,方程没有实数根,所以A选项不符合题意;B、x1+x2=﹣2,所以B选项不符合题意;C、Δ=b2﹣4ac=4﹣4×4<0,方程没有实数根,所以C选项不符合题意;D、x1+x2=2,所以D选项符合题意.故选:D.5.解:∵a=1,b=0,c=2020,∴Δ=b2﹣4ac=02﹣4×1×2020=﹣8080<0,∴一元二次方程x2+2020=0的根的情况是无实数根.故选:D.6.解:设相框边的宽度为xcm,则可列方程为:(29﹣2x)(22﹣2x)=×29×22.故选:B.7.解:∵y=x2+3x﹣2=(x+)2﹣,∴抛物线的开口向上,顶点坐标为(﹣,﹣),对称轴为直线x=﹣故选:B.8.解:由抛物线可得当x=﹣1时,y<0,故a﹣b+c<0,故结论A正确;抛物线可得对称轴为x=﹣=﹣1,故2a﹣b=0,故结论B错误.由抛物线经过原点,对称轴为直线x=﹣1可知,当x=﹣2时,y=0,故4a﹣2b+c=0,故结论C正确;当x=﹣1时,该函数取得最小值,则am2+bm+c≥a﹣b+c,即am2+b(m+1)≥a,故结论D正确;故选:B.9.解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,即m的值为5或1.故选:C.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1D选项正确,故选:C.11.解:将x=40代入s=0.01x+0.01x2得,s=0.01×40+0.01×402=16.4,即刹车距离不能超过16.4m.故选:B.12.解:∵将△ABD绕点B顺时针旋转40°得到△CBE,∴CB=AB,∠ABC=40°,∠D=∠E,∴∠A=∠ACB=(180°﹣40°)=70°,∵∠CBD=32°,∴∠ABD=∠ABC+∠CBD=40°+32°=72°,∴∠D=∠E=180°﹣∠A﹣∠ABD=180°﹣70°﹣72°=38°.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,∴a﹣3≠0且|a|﹣1=2,解得a=﹣3,故答案为:﹣3.14.解:∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,∴m2=m+2,∴m2+n+mn=m+2+n+mn=m+n+mn+2,∵m,n是方程x2﹣x﹣2=0的两根,∴m+n=1,mn=﹣2,∴m2+n+mn=1﹣2+2=1.故答案为:1.15.解:y=2x2﹣4x+3=2(x﹣1)2+1,把抛物线y=2(x﹣1)2+13个单位长度,向下平移2个单位长度得到抛物线的解析式为y=2(x﹣1+3)2+1﹣2=2x2+8x+7,所以a=2,b=8,c=7,所以,a+b+c=17,故答案为17.16.解:令y=0,则x2﹣4x+b=0,当函数y=x2﹣4x+b的图象与坐标轴只有两个交点时有两种情况:①Δ=0,且函数图象不过原点∴△=(﹣4)2﹣4b=0解得:b=4;②Δ>0,且函数y=x2﹣4x+b的图象过原点,∴b=0故答案为:0或4.17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3,﹣3≤x≤0,2.25.18.解:由旋转性质得:∠C=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°,故答案为:82°.三.解答题(共8小题,满分90分)19.解:(1)(2x+1)2=9,开方得:2x+1=±3,解得:x1=1,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,开方得:x﹣1=,x1=1+,x2=1﹣;(3)(x﹣3)2=4(3﹣x),(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,x﹣3=0,x﹣3+4=0x1=3,x2=﹣1.20.(1)证明:当n=m﹣2时,Δ=n2﹣4×m×(﹣2)=(m﹣2)2﹣4×m×(﹣2)=m2﹣4m+4+8m=m2+4m+4=(m+2)2≥0,∴当n=m﹣2时,方程有两个实数根.(2∴Δ=n2﹣4×m×(﹣2)=n2+8m>0,∴符合题意.当m=n=1时,原方程为x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2.21.解:(1)把(﹣1,0),(0,3),(3,0)分别代入y=ax2+bx+c(a≠0)中,得.解得.则该二次函数的解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点的坐标为(1,4);(2)∵二次函数f(x)=ax2+bx+c的顶点坐标(1,4);∴二次函数图象向右平移3个单位后抛物线的顶点为(4,4)或向下平移3个单位后抛物线的顶点为(1,1)落在直线y=x上,则此时抛物线的解析式为:y=﹣(x﹣4)2+4或y=﹣(x﹣1)2+1.22.解:(1)由抛物线的顶点A(﹣4,﹣1)设二次函数为y=a(x+4)2﹣1,将B(﹣2,3)代入得,3=a(﹣2+4)2﹣1,解得a=1,∴二次函数为y=(x+4)2﹣1(或y=x2+8x+15),设一次函数的解析式为y=kx+b,将A(﹣4,﹣1)和B(﹣2,3)代入得,解得,∴一次函数的解析式为y=2x+7;(2)由直线y=2x+7可知C(7),设P(0,n),∴PC=|n﹣7|,∴S△PAB=S△PAC﹣S△BPC=(4﹣2)•|n﹣7|=9,∴|n﹣7|=9,∴n=﹣2或16,∴P(0,﹣2)或P(0,16).23.解:令y=0,则﹣(x﹣3)2+=0,解得:x1=8,x2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.24.解:设剪去小正方形的边长为xcm,则折成的长方体盒子的底面的长为(32﹣2x)cm,宽为=(16﹣x)(cm),由题意得:2x(16﹣x)+2(16﹣x)(32﹣2x)+2x(32﹣2x)=864,整理得:x2+16x﹣80=0,解得:x=4或x=﹣20(不符合题意,舍去),答:剪去小正方形的边长为4cm.25.解:(1)图形如图所示;(2)图形如图所示;(3)整个图案的面积=4××2×5=20.26.解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6把A(8,4)代入得a•8×2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N(t, t),∴S△AMN=S△AOM﹣S△NOM=•4•t﹣•t•t=﹣t2+2t=﹣(t﹣3)2+3,当t=3时,S△AMN有最大值3,此时M点坐标为(3,0).。
人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是中心对称图形的是A .B .C .D .2.将方程23610x x -+=化成一元二次方程的一般形式,其中二次项系数、一次项系数和常数项分别是()A .3,6,1-B .3,6,1C .3,16-D .3,1,63.抛物线()221y x =--的顶点坐标是()A .()2,1-B .()2,1--C .()2,1D .()2,1-4.关于x 的方程2420x x m -++=有一个根为1,-则另一个根为()A .2B .2-C .5D .5-5.将二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,所得图象的解析式为()A .()21133y x =-+B .()21133y x =++C .()21y x 133=--D .()21133y x =+-6.“双十一”即指每年的11月11日,是指由电子商务代表的在全中国范围内兴起的大型购物促销狂欢日.2017年双十一淘宝销售额达到1682亿元.2019年双十一淘宝交易额达2684亿元,设2017年到2019年淘宝双十一销售额年平均增长率为,x 则下列方程正确的是A .()168212684x +=B .()1682122684x +=C .()2168212684x +=D .()()216821168212684x x +++=7.如图,ABC 中,90,40ACB ABC ︒︒∠=∠=.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CAA '∠的度数是()A .50︒B .70︒C .110︒D .120︒8.若无论x 取何值,代数式()()13x m x m +--的值恒为非负数,则m 的值为()A .0B .12C .13D .19.已知二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <()A .若120,x x -<则1240x x +-<B .若120,x x -<则1240x x +->C .若120,x x ->则()1240a x x +->D .若120,x x ->则()1240a x x +-<10.关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是()A .116m <-B .116m ≥-且0m ≠C .116m =-D .116m >-且0m ≠二、填空题11.点(1,4)M -关于原点对称的点的坐标是_______________________.12.若关于x 的一元二次方程2320x x m -+=有两个相等的实数根;则m 的值为__________.13.如图,四边形ABCE 是О 的内接四边形,D 是CB 延长线上的一点,40,ABD ∠=︒那么AOC ∠的度数为_______________________o14.如图,把小圆形场地的半径增加6m 得到大圆形场地,场地面积扩大了一倍,则小圆形场地的半径为________________________.m 15.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).16.如图,四边形ABCD 的两条对角线,AC BD 所成的锐角为60,10AC BD += ,则四边形ABCD 的面积最大值为_______________________.三、解答题17.解方程:260x x +-=.18.10月11日,2020中国女超联赛在昆明海堙基地落幕,最终武汉车都江大队夺得冠军.本赛季共有x 支球队参加了第一阶段的比赛,每两队之间进行一场比赛,第一阶段共进行了45场比赛,求x 的值.19.如图,AD=CB ,求证:AB=CD .20.如图,已知,,A B C 均在O 上,请用无刻度的直尺作图.(1)如图1,若点D 是AC 的中点,试画出B Ð的平分线;(2)若42A ∠= ,点D 在弦BC 上,在图2中画出一个含48 角的直角三角形.21.已知二次函数243y x x =-+-(1)若33x -≤≤,则y 的取值范围为_(直接写出结果);(2)若83y -≤≤-,则x 的取值范围为(直接写出结果);(3)若()()12,,1,A m y B m y +两点都在该函数的图象上,试比较1y 与2y 的大小.22.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表:第x 天售价(元件)日销售量(件)130x ≤≤60x +30010x-已知该商品的进价为40元/件.设销售该商品的日销售利润为y 元.(1)求y 与x 的函数关系式;(2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果.23.如图,已知格点ABC 和点O .(1)A B C '''V 和ABC 关于点O 成中心对称,请在方格纸中画出A B C '''V (2)试探究,以点A ,O ,C ',D 为顶点的四边形为平行四边形的D 点有__________个.24.(问题背景)(1)如图1,Р是正三角形ABC 外一点,30APB ∠= ,则222PA PB PC +=小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60,请帮助小明完成他的作图;(迁移应用)(2)如图2,在等腰Rt ABC ∆中,,90BA BC ABC =∠= ,点P 在ABC ∆外部,使得45BPC ∠= ,若 4.5PAC S = ,求PC ;(拓展创新)(3)如图3,在四边形ABCD 中,//,AD BC 点E 在四边形ABCD 内部.且,DE EC =90,DEC ∠= 135AEB ∠=︒,3,4,AD BC ==直接写出AB 的长.25.已知抛物线()2:0C y ax bx c a =++>,顶点为()0,0.(1)求,b c 的值;(2)如图1,若1,a P =为y 轴右侧抛物线C 上一动点,过P 作直线PN x ⊥轴交x 轴于点,N 交直线1:22l y x =+于点M ,设点P 的横坐标为m ,当2PM PN =时,求m 的值;(3)如图2,点()00,P x y 为y 轴正半轴上一定点,点,A B 均为y 轴右侧抛物线C 上两动点,若APO BPy ∠=∠,求证:直线AB 经过一个定点.参考答案1.B 【分析】根据中心对称图形的概念解答即可.【详解】解:A 、不是中心对称图形.故错误;B 、是中心对称图形.故正确;C 、不是中心对称图形.故错误;D 、不是中心对称图形.故错误.故选:B .【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.A 【分析】根据一元二次方程的定义判断即可;【详解】∵方程23610x x -+=,∴二次项系数为3,一次项系数为-6,常数项为1;故答案选A .【点睛】本题主要考查了一元二次方程的一般形式,准确分析判断是解题的关键.3.D 【分析】根据抛物线的解析式即可得.【详解】抛物线()221y x =--的顶点坐标是()2,1-,故选:D .【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的顶点坐标的求法是解题关键.4.C 【分析】根据一元二次方程根与系数的关系求解.【详解】解:设原方程的另一根为x ,则:4141x --+=-=,∴x=4+1=5,故选C .【点睛】本题考查一元二次方程的应用,根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.5.A 【分析】根据函数图象的平移方法判断即可;【详解】二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,可得:()21133y x =-+;故答案选A .【点睛】本题主要考查了二次函数图象的平移,准确分析判断是解题的关键.6.C 【分析】根据一元二次方程增长率问题模型()1na xb +=列式即可.【详解】由题意,增长前为1682a =,增长后2684b =,连续增长2年,代入得()2168212684x +=;故选:C .【点睛】本题考查了一元二次方程在增长率问题中的应用,熟练掌握基本模型,理解公式,找准各数量是解决问题的关键.7.D 【分析】由余角的性质,求出∠CAB=50°,由旋转的性质,得到40ABA '∠=︒,AB A B '=,然后求出BAA '∠,即可得到答案.【详解】解:在ABC 中,90,40ACB ABC ︒︒∠=∠=,∴∠CAB=50°,由旋转的性质,则40ABA '∠=︒,AB A B '=,∴1(18040)702BAA '∠=⨯︒-︒=︒,∴''50+70=120CAA CAB BAA ∠=∠+∠=︒︒︒;故选:D .【点睛】本题考查了旋转的性质,三角形的内角和定理,以及余角的性质,解题的关键是掌握所学的性质,正确求出70BAA '∠=︒.8.B 【分析】先利用多项式乘多项式的法则展开,再根据代数式(x +1−3m )(x−m )的值为非负数时△≤0以及平方的非负性即可求解.【详解】解:(x +1−3m )(x−m )=x 2+(1−4m )x +3m 2−m ,∵无论x 取何值,代数式(x +1−3m )(x−m )的值恒为非负数,∴△=(1−4m )2−4(3m 2−m )=(1−2m )2≤0,又∵(1−2m )2≥0,∴1−2m =0,∴m =12.故选:B .【点睛】本题考查了多项式乘多项式,二次函数与一元二次方程的关系,偶次方非负数的性质,根据题意得出(x +1−3m )(x−m )的值为非负数时△≤0是解题的关键.9.D 【分析】根据二次函数的性质和题目中的条件,可以判断选项中的式子是否正确;【详解】∵二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <,∴若a >0,1x <2<2x ,则可能出现124+-x x >0,故A 错误;若a <0,122x x <<,则1240x x +-<,故B 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,故C 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,若0a <,12x x >,则1240x x +->,则()1240a x x +-<,故D 正确;故答案选D .【点睛】本题主要考查了二次函数的性质,二次函数图象上点的坐标特征,准确分析计算是关键.10.B 【详解】试题分析:二次函数图象与x 轴有交点,则△=b 2-4ac≥0,且m≠0,列出不等式则可.由题意得2(81)8800m m m m ⎧+-⨯≥⎨≠⎩,解得116m ≥-且0m ≠,故选B.考点:该题考查函数图象与坐标轴的交点判断点评:当△=b 2-4ac >0时图象与x 轴有两个交点;当△=b 2-4ac=0时图象与x 轴有一个交点;当△=b 2-4ac <0时图象与x 轴没有交点.同时要密切注意11.()1,4-【分析】由关于原点对称的点的坐标特征可以得到解答.【详解】解:∵关于原点对称的点的坐标特征为:x x y y =-⎧⎨=-''⎩,由题意得:x=1,y=-4,∴14x y -''=⎧⎨=⎩,∴点M(1,−4)关于原点对称的点的坐标是(-1,4),故答案为(-1,4).【点睛】本题考查图形变换的坐标表示,熟练掌握关于原点对称的点的坐标特征是解题关键.12.13【分析】根据关于x 的一元二次方程2320x x m -+=有两个相等的实数根,得出关于m 的方程,求解即可.【详解】解:∵关于x 的一元二次方程2320x x m -+=有两个相等的实数根,∴△=b 2-4ac=(-2)2-4×3m=0,解得m=13,故答案为:13.【点睛】本题考查了根的判别式,掌握知识点是解题关键.13.80【分析】先根据补角的性质求出∠ABC 的度数,再由圆内接四边形的性质求出∠AEC 的度数,由圆周角定理即可得出∠AOC 的度数.【详解】解:∵∠ABD =40°,∴∠ABC =180°−∠ABD =180°−40°=140°,∵四边形ABCE 为⊙O 的内接四边形,∴∠AEC =180°−∠ABC =180°−140°=40°,∴∠AOC =2∠AEC =2×40°=80°.故答案为:80.【点睛】本题考查的是圆周角定理及圆内接四边形的性质,掌握圆内接四边形的性质和圆周角定理是解答此题的关键.14.6【分析】根据等量关系“大圆的面积=2×小圆的面积”可列方程求解;【详解】设小圆的半径为xm ,则大圆的半径为()6x m +,根据题意得:()2262x x ππ+=,即2212362x x x ++=,解得:16x =+,26x =-(舍去);故答案是:6.【点睛】本题主要考查了一元二次方程的应用,准确分析计算是解题的关键.15.①②④【分析】由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==,∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0,∵12bx a =-=,∴2b a =->0,故①正确;∵当3x =时,0y =,∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-,∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键.16.4【分析】根据四边形面积公式,S =12AC×BD×sin60°,根据sin60°=2得出S =12x (10−x )×2,再利用二次函数最值求出即可.【详解】解:∵AC 与BD 所成的锐角为60°,∴根据四边形面积公式,得四边形ABCD 的面积S =12AC×BD×sin60°,设AC =x ,则BD =10−x ,所以S =12x (10−x )×32=34-(x−5)2+2534,所以当x =5,S 有最大值4.【点睛】此题主要考查了四边形面积公式以及二次函数最值,利用二次函数最值求出四边形的面积最大值是解决问题的关键.17.12x =,23x =-【分析】利用因式分解法解方程.【详解】解:()()230x x -+=∴20x -=或30x +=,∴12x =,23x =-.【点睛】本题考查一元二次方程的解法,选择合适的解法是关键.18.10【分析】因为每两队之间进行一场比赛,所以x 支球队之间共进行()112x x -场比赛,由此建立等式计算即可.【详解】()11452x x -=解得10x =或9-0,x > 10,x ∴=答:x 的值为10.【点睛】本题考查了一元二次方程的应用,解题关键在于读懂题意,得出总场数与球队数之间的关系.19.证明见解析.【详解】试题分析:由在同圆中,弦相等,则所对的弧相等和等量加等量还是等量求解.试题解析:∵AD =BC ,,AD BC= ,AD BDBC BD +=+∴ ,AD CD=∴AB =CD .20.(1)见解析;(2)见解析【分析】(1)根据题意连接OD 并延长交劣弧AC 于E 即可得解;(2)延长AD 交圆于M ,连接BO 并延长交圆于N ,即可得到;【详解】解:()1连接OD 并延长交劣弧AC 于E ,连接EB 即为所求:()2延长AD 交圆于,M 连接BO 并延长交圆于,N 连接;,,MN MB BMN ∆即为所求;.【点睛】本题主要考查了利用圆周角定理、垂径定理作图,准确分析判断是解题的关键.21.(1)241y -≤≤;(2)10x -≤≤或45x ≤≤;(3)32m >时21y y <,32m =时21y y =,32m <时21y y >【分析】(1)根据题意得出二次函数的对称轴,再利用已知的x 的取值范围计算即可;(2)分别令3y =-和8y =-,计算即可;(3)分别表示出1y 和2y ,分别令21y y -的取值计算即可;【详解】解:(1)∵243y x x =-+-,33x -≤≤,∴二次函数的对称轴22bx a =-=,∴最小值:当3x =-时,24y =-,最大值:当2x =时,1y =;故:241y -≤≤.(2)∵243y x x =-+-,83y -≤≤-,令3y =-,得0x =或4;令8y =-,得-1x =或5;∴10x -≤≤或45x ≤≤.()3A B 、两点都在该函数图象上,2143y m m ∴=-+-,()()22214132y m m m m =-+++-=-+,2132y y m -=-,令210y y ->,即21y y >,此时32m <,令210y y -=,即21y y =,此时32m =,令210y y -<,即21y y <,此时32m >,综上32m >时21y y <,32m =时21y y =,32m <时21y y >.【点睛】本题主要考查了二次函数的性质,准确分析计算是解题的关键.22.(1)y=2101006000x x -++;(2)第五天日销售利润最大,最大日销售利润为6250元;(3)14天【分析】(1)根据日销售利润等于单件利润乘以销售量即可得解;(2)化二次函数一般式为顶点式,即可判断求解;(3)根据题意列不等式求解即可;【详解】解:(1)()()604030010=+--y x x ,2101006000x x =-++;(2)当130x ≤≤时,2101006000=-++y x x ()21056250=--+x ,∵10a =-<0,∴二次函数开口向下,由题可知:函数对称轴为5x =,∴当5x =时,最大值为6250;答:第五天日销售利润最大,最大日销售利润为6250元.(3)∵2101006000=-++y x x ()21056250=--+x ,当5400y ≥时,()210562505400--+≥x ,解得:414x -≤≤,∵130x ≤≤,∴共有14天.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.23.(1)见解析;(2)3【分析】(1)根据中心对称的作法,找出对称点,即可画出图形;(2)根据平行四边形的判定,画出使以点A 、O 、C′、D 为顶点的四边形是平行四边形的点即可.【详解】解:(1)作射线AO,BO,CO,在射线上截取A′O=AO,B′O=BO,C′O=CO,顺次连接'''''',A B B C C A,,'''为所求,如图所示△A B C(2)平行四边形AOC′D1,平行四边形AOD2C′,平行四边形AD3OC′∴以点A,O,C',D为顶点的四边形为平行四边形的D点有3个故答案为:3【点睛】此题考查了作图-旋转变换,用到的知识点是中心对称、平行四边形的判定,关键是掌握中心对称的作法,作平行四边形时注意画出所有符合要求的图形.24.(1)见解析;(2)3;(3)5【分析】(1)根据旋转的定义和性质解答;(2)由题意可以得到PBC MBA ∆≅∆,由此可得90AMP ∠= 和PC=AM ,最后由△PAC 的面积等于4.5可以求得PC 的值;(3)根据三角形的性质解答.【详解】(1)如图,作60PAP AP AP ∠=︒'=',,连结P C ',则P AC '△即为所求作的图形:(2)作线段BM 垂直于BP 交PC 延长线于点.M 连接,AM 45,90BPM PBM ∠=︒∠=BPM △为等腰直角三角形,,BP BM ∴=90ABM MBC ABC PBM PBC MBC∠+∠=∠==∠=∠+∠,PBC ABM ∴∠=∠在PBC ∆与MBA ∆中:PB BMPBC ABM BC BA=⎧⎪∠=∠⎨⎪=⎩()PBC MBA SAS ∴∆≅∆90AMP =∴∠21122PAC S PC AM PC ∆∴=⋅=3PC ∴=(3)5.证明如下:如图,将AED 顺时针旋转90︒至FEC ,则ADE FCE ∠=∠,AD FC =,//,90AD BC DEC ∠=︒ ,90ADE BCE ∴∠+∠=︒,即90FCE BCE FCB ∠+∠=∠=︒FCB ∴△为直角三角形,其中3FC AD ==,4BC =,由勾股定理得5BF =,又 旋转角为90︒,即90AEF ∠=︒,则360135BEF AEB AEF ∠=︒-∠-∠=︒,即AEB FEB ∠=∠,在AEB △与FEB 中,AE AFAEB FEB BE BE=⎧⎪∠=∠⎨⎪=⎩∴()AEB FEB SAS △△≌5AB BF ∴==【点睛】本题考查三角形的应用,熟练掌握三角形全等的判定和性质、旋转的意义和性质、等腰三角形和直角三角形的性质是解题关键.25.(1)0,0b c ==;(2)1712m +=或43;(3)见解析【分析】(1)利用二次函数顶点式,代入顶点即可求解;(2)利用二次函数解析式和一次函数解析式,用m 去表示P 、M 点的纵坐标,再利用2PM PN =列出等量关系式即可求解m ;(3)作A 点关于二次函数对称轴的对称点M ,设()2,A p ap 则()2,M p ap -,由已知和中垂线定理可得MPO OPA BPy ∠=∠=∠,即可得M 、P 、B 再同一条直线上,设:PM y kx b =+,代入P 、M 坐标求PM 解析式,再联立抛物线解析式,可表示B 、M 坐标,同理的求直线AB 解析式,根据一次函数解析式可知AB 恒过()00,y .【详解】()1解:设()2y a x h k=-+0,0h k == 代入上式2y ax ∴=0,0b c ∴==()2P Q 在抛物线上,M 在直线上()21,,,22P m m M m m ⎛⎫∴+ ⎪⎝⎭2,PM PN = 2211222m m m ∴+-=解得12m =或43或1-P 为y 轴右侧抛物线C 上一动点0,m ∴>综上1712m =或43()3取A 点关于y 轴的对称点M ,抛物线关于y 轴对称M ∴点在抛物线上.连,MP 设()2,A p ap ,则()2,M p ap -MPO OPA BPy∠=∠=∠ M P B ∴、、三点共线()00,P y 设:PM y kx b=+20ap pk by b⎧=-+⎨=⎩解得200y ap y x y p -=+联立直线BM 与抛物线C ,得:22000ap y ax x y p -+-=2B M ap yx x ap-∴+=-,M x p =- 0B y x ap∴=代入抛物线002,y y B ap ap ⎛⎫ ⎪⎝⎭同理可求200:y ap BA y x y p+=-恒经过定点()00,y -【点睛】本题主要考查一次函数与二次函数综合、一次函数的图像性质、图形对称、等腰三角形三线合一等.本题综合性较强,对各涉及知识点掌握要求较高.特别注意两函数交点需满足各函数解析式.。
2024-2025学年人教版九年级上册数学期中测试卷

2024-2025学年人教版九年级上册数学期中测试卷一、单选题1.抛物线28y x =-的顶点坐标是( )A .()8,0-B .()0,8-C .()0,8D .()8,0 2.一元二次方程2 120x x --=的解是( )A .1234x x ==,B .1234x x =-=,C .1234x x ==-,D .1234x x =-=-,3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 4.当函数()21y a x bx c =+++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠ 5.关于x 的一元二次方程2220kx x -+= 有两个相等的实数根,则k 的值是( ) A .4k = B .12k = C .2k =- D .14k =6.已知a 是一元二次方程2240x x --=的一个根,则代数式222024a a -+的值为( )A .2024+B .2024-C .2024D .2028 7.函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能是( )A .B .C .D .8.已知二次函数()()222211y k x k x =-+++与x 轴有交点,则k 的取值范围在数轴上表示正确的是( )A .B .C .D .9.已知二次函数()245y x a x a =+-+-(a 为常数)的图象经过()m n -,和()m n ,两点,则二次函数与y 轴的交点坐标为( )A .()0,1B .()0,1-C .()0,5-D .()0,410.如图,一块含30︒角的直角三角板ABC 绕点B 顺时针旋转到A BC ''△的位置,使得A 、B 、C '三点在同一条直线上,则三角板ABC 旋转的角度是( )A .30︒B .60︒C .90︒D .120︒11.2024年春节刚过,国内新能源汽车车企纷纷开展降价促销活动.某款新能源汽车今年3月份的售价为25万元,5月份的售价为18万元,设该款汽车这两月售价的月均下降率是x ,则下列方程正确的是( )A .()225118x -=B .()218125x -= C .()218125x -= D .()2251218x -= 12.如图1是太原晋阳湖公园一座抛物线型拱桥,按如图2所示建立坐标系,在正常水位时水面宽30AB =米,当水位上升5米时,则水面宽20CD =米,则函数表达式为( )A .2115y x =-B .2125y x =-C .2115y x =D .2125y x =二、填空题13.在平面直角坐标系中,点(45)P -,关于原点对称点P '的坐标是. 14.若a ,b 为方程2320x x -+=的两个实数根,则232a a ab -+的值为.15.抛物线231010y x x =--与x 轴的其中一个交点坐标是(,0)m ,则2264m m -+的值为. 16.如图,抛物线21462y x x =-+与y 轴交于点A ,与x 轴交于点B ,线段CD 在抛物线的对称轴上移动(点C 在点D 下方),且3CD =.当AD BC +的值最小时,点C 的坐标为.三、解答题17.解方程:(1)230x x -=.(2)()23x x +=.18.已知二次函数2246y x x =-++,设其图象与x 轴的交点分别是A 、B (点A 在点B 的左边),与y 轴的交点是C ,求:(1)A 、B 、C 三点的坐标;(2)设抛物线的顶点为D ,求BCD △的面积.19.如图,平面直角坐标系中,ABC V 的位置如图所示:(1)请在图中作出ABC V 绕原点 O 逆时针旋转90︒得到的111A B C △;(2)作出111A B C △关于原点对称的222A B C △,并写出2B 的坐标.20.如图,二次函数21y x bx c =-++的图象交x 轴于点()3,0A -和点()1,0B ,交y 轴于点C ,且点C 、D 是二次函数图象上关于对称轴对称的一对点,一次函数2y mx n =+的图象经过点B 、D .(1)求二次函数的解析式;(2)根据图象直接写出不等式2x bx c mx n -++<+的解集为________.21.将下列方程化成一元二次方程的一般形式,并写出二次项系数、一次项系数和常数项.(1)2312x x -=;(2)()2243x x x x -=-;(3)关于x 的方程()220mx nx mx nx q p m n -++=-+≠.22.如图,抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点,且(1,0)A -.(1)求抛物线的解析式;(2)判断ABC V 的形状,并证明你的结论;(3)点P 是x 轴上的一个动点,当PC PD +的值最小时,求点P 的坐标.23.如图,已知抛物线21y x bx c =++与直线22y x =+的一个交点A 在y 轴上、另一交点为点B ,直线2y x =+与x 轴交于点C ,抛物线的对称轴为直线1x =,交x 轴于点D .(1)求抛物线的解析式;(2)直接写出12y y >时x 的取值范围;(3)点P 是抛物线上A B 、之间的一点,连接CP DP 、,当C D P △面积最小时,求点P 的坐标. 24.一款服装每件进价为80元,销售价为120元时,每天可售出20件,为了扩大销售量,增加利润,经市场调查发现,如果每件服装降价1元,那么平均每天可多售出2件.(1)设每件服装降价x 元,则每天销售量增加______件,每件商品盈利______元(用含x 的代数式表示);(2)在让利于顾客的情况下,每件服装降价多少元时,商家平均每天能盈利1200元?(3)商家能达到平均每天盈利1800元吗?请说明你的理由.25.某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额1y (万元)与销售量x (吨)的函数解析式为15y x =;成本2y (万元)与销售量x (吨)的函数图象是如图所示的抛物线的一部分,其中17,24⎛⎫⎪⎝⎭是其顶点.(1)求出成本2y关于销售量x的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润=销售额-成本)。
人教版九年级上册数学期中考试试题及答案

人教版九年级上册数学期中考试试卷一、单选题1.一元二次方程22x x =的根是()A .0x =B .122,2x x ==-C .120,2x x ==D .120,2x x ==-2.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.已知抛物线21219y ax x =+-的对称轴是直线3x =,则实数a 的值是()A .2B .2-C .4D .4-4.抛物线222,31,23y x y x y x =-=-+=-共有的性质是()A .开口向上B .都有最高点C .对称轴是y 轴D .y 随x 的增大而减小5.对于二次函数2(3)1y x =--+,下列结论正确的是()A .图象的开口向上B .当3x <时,y 随x 的增大而减小C .函数有最小值1D .图象的顶点坐标是(3,1)6.已知()10y ,,()21,y ,()34,y 都是抛物线223y x x m =-+上的点,则()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>7.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2−10x+m=0的两个实数根,则m 的值是()A .24B .25C .26D .24或258.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)-,对称轴为直线1x =,则下列结论中正确的是()A .0abc >B .当0x >时,y 随x 的增大而增大C .21a b +=D .3x =是一元二次方程ax 2+bx +c =0的一个根9.如图,二次函数22y x x =--的图象与x 轴交于点A O 、,点P 是抛物线上的一个动点,且满足3AOP S = ,则点P 的坐标是()A .()3,3--B .()1,3-C .()3,3--或()1,3-D .()3,3--或()3,1-10.如图,在同一平面直角坐标系中,函数2(0)y ax a =+≠与22(0)y ax x a =--≠的图象可能是()A .B .C .D .二、填空题11.一元二次方程2218x =的根为______________________.12.将抛物线22y x =-先向右平移2个单位,再向下平移3个单位得到新的抛物线____.13.用配方法将抛物线261y x x =++化成顶点式()2y a x h k =-+得_____________.14.若关于x 的一元二次方程220210ax bx --=有一个根为2x =,则代数式842021a b --的值是_________.15.如图,已知抛物线2y ax c =+与直线y kx m =+交于()123,,1,)(A y B y -两点,则关于x 的不等式2ax c kx m +>-+的解集是__________________.16.如图,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10cm ,AC 与MN 在同一直线上.点A 从点N 出发,以2cm/s 的速度向左运动,运动到点M 时停止运动,则重叠部分(阴影)的面积()2cm y 与时间x 之间的函数关系式为___________________.17.如图,抛物线21:0()L y ax bx c a =++≠与x 轴只有一个公共点()1,0A ,与y 轴交于点()0,2B ,虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为______________.三、解答题18.用适当的方法解一元二次方程:22410x x --=19.在国家政策的调控下,某市的商品房成交均价由今年5月份的每平方米10000元下降到7月份的每平方米8100元.()1求6、7两月平均每月降价的百分率;()2如果房价继续回落,按此降价的百分率,请你预测到9月份该市的商品房成交均价是否会跌破每平方米6500元?请说明理由.20.设一元二次方程260x x k -+=的两根分别为12,x x .(1)若方程有两个相等的实数根,求k 的值;(2)若5k =,且12,x x 分别是Rt ABC 的两条直角边的长,试求Rt ABC 的面积.21.如图,在一次足球训练中,球员小王从球门前方10m 起脚射门,球的运行路线恰是一条抛物线,当球飞行的水平距离是6m 时,球到达最高点,此时球高约3m .(1)求此抛物线的解析式;(2)已知球门高2.44m ,问此球能否射进球门?22.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足12120x x x x ++⋅=,求k 值.23.如图,有长为24m 的篱笆,一面利用墙(墙长a 无限制)围成中间隔有一道篱笆的长方形花圃.设花圃宽AB 为()m x ,面积为()2m S .(1)求S 与x 之间的函数关系式;(2)求花圃面积的最大值;(3)请说明能否围成面积是260m 的花圃?24.某景区商店销售一种纪念品,这种商品的成本价10元/件,市场调查发现,该商品每天的销售量y (件)与销售价x (元/件)之间满足一次函数的关系(如图所示).(1)求y 与x 之间的函数关系式;(2)若该商店每天可获利225元,求该商品的售价x ;(3)已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,二次函数2y x bx c =++的图象与x 轴分别交于点(),4,0A B (点A 在点B 的左侧),且经过点()3,7-,与y 轴交于点C .(1)求,b c 的值.(2)将线段OB 平移,平移后对应点O '和B '都落在拋物线上,求点B '的坐标.参考答案1.C 【分析】根据方程特点,利用因式分解法,即可求出方程的解.【详解】解:移项得220x x -=,因式分解,得()20x x -=,∴020x x =-=,则1202x x ==,.故选:C .【点睛】此题主要考查了因式分解法解一元二次方程,解题的关键是掌握因式分解法解方程的基本步骤及方法.2.D 【解析】【分析】先把常数项移项,然后在等式的两边同时加上一次项系数的一半的平方.【详解】根据配方的正确结果作出判断:()222221021211112x x x x x x x --=⇒-=⇒-+=+⇒-=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方。
2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。
人教版九年级上册数学期中考试试卷带答案解析

人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形B.菱形C.直角梯形D.等边三角形2.抛物线y=﹣x2+3x﹣52的对称轴是直线()A.x=3B.x=32C.x=﹣32D.x=﹣523.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4B.(x﹣3)2=4C.(x+3)2=5D.(x+3)24.如图,将△ABC绕顶点C旋转得到△A′B′C,且点B刚好落在A′B′上.若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.40°B.35°C.30°D.45°5.在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O的位置关系是()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.P与A或B重合6.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣3 7.如图,在⊙O中,圆心角∠AOB=120°,P为弧AB上一点,则∠APB度数是()A.100°B.110°C.120°D.130°8.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为()A .12秒B .16秒C .20秒D .24秒9.在平面直角坐标系xOy 中,抛物线y=﹣x 2+4x ﹣3与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C .垂直于y 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线BC 交于点N (x 3,y 3),若x 1<x 2<x 3,记s=x 1+x 2+x 3,则s 的取值范围为()A .5<s <6B .6<s <7C .7<s <8D .8<s <910.如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =4,∠AOC =120°,P 为⊙O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为()A .3B .C .D .二、填空题11.抛物线y=2(x+1)2的顶点坐标为_____.12.已知点A (a ,1)与点A′(5,b )是关于原点对称,则a+b =________.13.有两个人患了流感,经过两轮传染后总共有162人患了流感,每轮传染中平均一个人传染了_____个人.14.若函数y=(k ﹣3)x 2+2x+1与坐标轴至少有两个不同的交点,则k 的取值范围为_____.15.⊙O 的直径为2,AB ,AC 为⊙O 的两条弦,,,则∠BAC=_____.16.已知函数y=|x 2+x ﹣t|,其中x 为自变量,当﹣1≤x≤2时,函数有最大值为4,则t 的值为_____.三、解答题17.解方程:x2+4x-3=0.18.如图,在⊙O中,AD=BC,求证:DC=AB.19.已知二次函数y=ax2+bx+c,如表给出了y与x的部分对应值:x…﹣10123…y=ax2+bx+c…n30﹣5﹣12…(1)根据表格中的数据,试确定二次函数的解析式和n的值;(2)抛物线y=ax2+bx+c与直线y=2x+m没有交点,求m的取值范围.20.在平面直角坐标系中,已知A(2,0)、B(3,1)、C(1,3).(1)画出△ABC沿x轴负方向平移2个单位后得到的△A1B1C1,并写出B1的坐标;(2)以A1点为旋转中心,将△A1B1C1逆时针方向旋转90°得△A1B2C2,画出△A1B2C2,并写出C2的坐标;(3)直接写出过B、B1、C2三点的圆的圆心坐标为.21.我市东湖高新技术开发区某科技公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价不低于100元,但不超过200元.设销售单价为x(元),年销售量为y(万件),年获利为w(万元)该产品年销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式,并写出x的取值范围;(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?并求当盈利最大或亏损最小时的产品售价;(3)在(2)的条件下.即在盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利不低于1370万元?若能,求出第二年的售价在什么范围内;若不能,请说明理由.22.如图AB为⊙O的直径,C为⊙O上半圆的一个动点,CE⊥AB于点E,∠OCE的角平分线交⊙O于D点.(1)当C点在⊙O上半圆移动时,D点位置会变吗?请说明理由;(2)若⊙O的半径为5,弦AC的长为6,连接AD,求线段AD、CD的长.23.如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°.(1)连接DB,求证:∠DBF=∠ABE;(2)求图中阴影部分的面积.24.在△ABC和△ADE中,AB=AC,∠BAC=120°,∠ADE=90°,∠DAE=60°,F为BC中点,连接BE、DF,G、H分别为BE,DF的中点,连接GH.(1)如图1,若D在△ABC的边AB上时,请直接写出线段GH与HF的位置关系,GHHF=.(2)如图2,将图1中的△ADE绕A点逆时针旋转至图2所示位置,其它条件不变,(1)中结论是否改变?请说明理由;(3)如图3,将图1中的△ADE绕A点顺时针旋转至图3所示位置,若C、D、E三点共线,且AE=2,,请直接写出线段BE的长.25.抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.参考答案1.D【分析】根据轴对称图形和中心对称图形定义和性质即可进行判断.【详解】解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;B、菱形是轴对称图形,也是中心对称图形.故本选项错误;C、直角梯形不是轴对称图形,也不是中心对称图形.故本选项错误;D、等边三角形是轴对称图形,不是中心对称图形.故本选项正确.故选D.【点睛】本题考查对称图形和中心对称图形定义和性质,解题关键是掌握定义、性质,能找出对称轴和对称中心.2.B【分析】根据配方法,或者顶点坐标公式,可直接求对称轴.【详解】解:抛物线y=-x2+3x-5 2对称轴是直线x=-321⨯-()=32,故选B.解:抛物线y=﹣x2+3x﹣52的对称轴是直线x=-321⨯-()=32,故选B.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标(h,k),对称轴是x=h.3.C【解析】x2+6x+4=0,移项,得x2+6x=-4,配方,得x2+6x+32=-4+32,即(x+3)2=5.故选C.4.A【分析】首先根据旋转的性质以及三角形外角的性质得出∠BCA'+∠A'=∠B'BC=45°+25°=70°,以及∠BB'C=∠B'BC=70°,再利用三角形内角和定理得出∠ACA'=∠A'BA=40°.【详解】∵∠A=25°,∠BCA'=45°,∴∠BCA'+∠A'=∠B'BC=45°+25°=70°,∵CB=CB',∴∠BB'C=∠B'BC=70°,∴∠B'CB=40°,∴∠ACA'=40°,∵∠A=∠A',∠A'DB=∠ADC,∴∠ACA'=∠A'BA=40°.故选A.【点睛】此题考查旋转的性质,解题关键在于得出∠BCA'+∠A'=∠B'BC=45°+25°=70°5.A【分析】连结OA,如图,先根据垂径定理得到AC=1 2AB=4,然后在Rt△OAC中,根据勾股定理计算出OA即可判断.【详解】解:连结OA,如图,∵OC⊥AB,∴AC=BC=12AB=4,在Rt△OAC中,∵OC=3,AC=4,∴OA==5,∴⊙O 的半径为5cm ,∵OP=4<OA ,∴点P 在⊙O 内.故选A .【点睛】此题考查点与圆的位置关系,垂径定理、勾股定理;解题关键熟练掌握垂径定理,由勾股定理求出OA .6.A 【详解】【分析】根据平移的规律即可得到平移后函数解析式.【详解】抛物线y=2(x-4)2-1先向左平移4个单位长度,得到的抛物线解析式为y=2(x-4+4)2-1,即y=2x 2-1,再向上平移2个单位长度得到的抛物线解析式为y=2x 2-1+2,即y=2x 2+1;故选A【点睛】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.7.C 【解析】试题解析:在优弧AB 上取点C ,连接AC 、BC ,由圆周角定理得,160,2ACB AOB ∠=∠= 由圆内接四边形的性质得到,180120APB ACB ∠=-∠= ,故选C.点睛:在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.8.B 【分析】首先过点A作AD⊥MN,求出最短距离AD的长度,然后在MN上去点E、F,是AE=AF=200,求出DE的长度,根据DF=DE得出EF的长度,然后计算出时间.【详解】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选B.9.C【分析】(1)利用抛物线解析式求得点B、C的坐标,利用待定系数法求得直线BC的表达式即可;(2)由抛物线解析式得到对称轴和顶点坐标,结合图形解答.【详解】解:当y=0时,﹣x2+4x﹣3=0,解得x1=1,x2=3,则A(1,0),B(3,0),当x=0时,y=﹣x2+4x﹣3=﹣3,则C(0,﹣3),∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线的顶点坐标为(2,1),易得直线BC的解析式为y=x﹣3,∵x1<x2<x3,∴0<y1=y2=y3≤1,当y3=1时,x﹣3=1,解得x=4,∴3<x3<4,∵点P和点Q为抛物线上的对称点,∴x2﹣2=2﹣x1,∴x1+x2=4,∴s=4+x3,∴7<s<8.故选C.【点睛】本题考查抛物线与x轴的交点,解答关键是根据图像,找出符合要求部分,从而判定结果. 10.D【分析】如图,连接OQ,作CH⊥AB于H.首先证明点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大,利用勾股定理求出CK即可解决问题.【详解】解:如图,连接OQ,作CH⊥AB于H.∵AQ=QP,∴OQ⊥PA,∴∠AQO=90°,∴点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大,在Rt△OCH中,∵∠COH=60°,OC=2,∴OH=12OC=1,CH=,在Rt△CKH中,,∴CQ的最大值为,故选D.【点睛】本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点Q的运动轨迹,学会构造辅助圆解决问题,属于中考填空题中的压轴题.11.(﹣1,0).【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=2(x+1)2,根据顶点式的坐标特点可知,顶点坐标为(﹣1,0),故答案为(﹣1,0).【点睛】本题考查将解析式化为顶点式y=a(x-h)2+k,解题关键是:顶点式y=a(x-h)2+k的顶点坐标是(h,k),对称轴是x=h.12.-6【详解】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.13.8.【分析】设每轮传染中平均每人传染x个人,根据经过两轮传染后总共有162人患了流感,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设每轮传染中平均每人传染x个人,根据题意得:2+2x+x(2+2x)=162,整理得:x2+2x﹣80=0,解得:x1=8,x2=﹣10(不合题意,舍去).故答案为8.【点睛】本题考查一元二次方程的应用,解题关键找准等量关系,正确列出一元二次方程.14.k≤4.【分析】由解析式知函数图象与y轴有一交点(0,1),依据题意知函数图象与x轴还至少有一个交点,再分函数是一次函数和二次函数两种情况分别求解可得.【详解】解:当x=0时,y=1,∴此函数图象与y轴必有一个交点(0,1);①若此函数是一次函数,即k=3,其解析式为y=2x+1,其函数图象与坐标轴有两个交点;②若此函数是二次函数,即k≠3,由题意知4﹣4(k﹣3)≥0,解得k≤4;综上,k的取值范围是k≤4,故答案为k≤4.【点睛】本题考查了抛物线与函数的关系,利用一元二次方程的判别式来判断抛物线与坐标轴的交点个数,做题时要认真分析,找到它们的关系.15.15°或75°.【分析】根据题意点C的位置有两种情况,如图1,∠BAC=∠CAO+∠OAB;如图2,∠BAC=∠OAB-∠OAC,进而得出答案.【详解】解:如图1,连接OC,OA,OB,过点O作OE⊥AC于点E,∵OA=OB=1,AB=,12+12=()2,∴∠AOB=90°,∴△OAB是等腰直角三角形,∠OAB=45°,∵AC=,OE⊥AC,∴AE=3 2,∴cos∠EAO=3 2,∴∠EAO=30°,∴如图1时,∠BAC=∠CAO+∠OAB=30°+45°=75°;如图2时,∠BAC=∠BAC=∠OAB﹣∠OAC.=45°﹣30°=15°.故答案为15°或75°.【点睛】此题主要考查了垂径定理以及勾股定理逆定理,利用分类讨论得出是解题关键.16.t=154或2.【分析】画出二次函数图象,确定函数取得最大值时x的值,即可求解.【详解】解:函数的图象如下图所示:从图象看,当﹣1≤x≤2时,函数可能在对称轴位置或x=2时,取得最大值解:函数y=|x2+x﹣t|=4,∴当x=﹣12时或x=2时,|x 2+x ﹣t|=4,解得:t=154或2.【点睛】本题考查了二次函数的图象与性质,通过图象找出函数取得最值的位置是解题的关键.17.,【分析】公式法或配方法求解可得.【详解】解:原式可化为x 2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x 1=﹣2+;x2=﹣2﹣.【点睛】本题考查一元二次方程的解法,解题关键是掌握解一元二次方程的方法.18.详见解析.【分析】根据在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,由AD=BC 得到 AD BC=,把两弧都加上弧AC 得到 DC AB =,于是得到DC=AB .【详解】证明:∵AD=BC ,∴ AD BC=,∴ AD AC BC AC+=+,即 DC AB =,∴DC=AB.【点睛】本题考查圆心角、弧、弦的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.19.(1)y=﹣x2﹣2x+3,4;(2)m>7.【分析】(1)利用待定系数法求抛物线解析式,然后计算自变量为-1时对应的函数值得到n的值;(2)根据题意方程-x2-2x+3=2x+m没有实数解,然后利用判别式的意义得到42-4(m-3)<0,从而解不等式即可得到m的取值范围.【详解】解:(1)把(0,3)、(1,0)、(2,﹣5)代入y=ax2+bx+c得3425ca b ca b c⎧⎪++⎨⎪++-⎩===,解得123abc=-⎧⎪=-⎨⎪=⎩∴二次函数的解析式为:y=﹣x2﹣2x+3,把(﹣1,n)代入得n=﹣1+2+3=4;(2)∵﹣x2﹣2x+3=2x+m∴x2+4x+m﹣3=0∵抛物线y=ax2+bx+c与直线y=2x+m没有交点∴△=42﹣4(m﹣3)<0,∴m>7.【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.(1)(1,1);(2)(﹣3,﹣1);(3)(2,﹣6).【分析】(1)根据平移变换的定义和性质作图可得;(2)根据旋转变换的定义和性质作图可得;(3)作B1C2和BB1的中垂线,交点即为所求点.【详解】解:(1)如图所示,△A1B1C1即为所求,其中B1的坐标为(1,1),故答案为(1,1);(2)如图所示,△A1B2C2即为所求,其中C2的坐标为(﹣3,﹣1),故答案为(﹣3,﹣1).(3)如图所示,过B、B1、C2三点的圆的圆心P的坐标为(2,﹣6),故答案为(2,﹣6).【点睛】本题考查了旋转变换与平移变换作图,找出对应点的位置是作图的关键,对应点的连线的垂直平分线过旋转中心是找旋转中心常用的方法,需要熟练掌握.21.(1)y=﹣110x+30(100≤x≤200);(2)x=170,w最大值=1690<1520+480=2000,第一年公司亏损,最少亏损是310万元,此时售价为170元;(3)当两年共盈利不低于1370万元时,160≤x≤180.【分析】(1)利用待定系数法求解可得;(2)根据“年获利=(售价-成本价)×销售量”列出函数解析式,配方成顶点式得出其获利最大值,与前期总投入480+1520比较可得;(3)根据“年获利=1370+前期最少亏损钱数”求得x的值,从而得出答案.【详解】解:(1)设y=kx+b,将(100,20)和(200,10)代入,得:10020 20010k bk b+⎧⎨+⎩==,解得:11030kb⎧=-⎪⎨⎪=⎩,∴y=﹣110x+30(100≤x≤200);(2)w=(﹣110x+30)(x﹣40)=﹣110x2+34x﹣1200=﹣110(x﹣170)2+1690,∵﹣110<0,∴x=170,w最大值=1690<1520+480=2000,第一年公司亏损,最少亏损是310万元,此时售价为170元;(3)当﹣110x2+34x﹣1200=1370+310=1680时,解得:x1=160,x2=180,结合图象当两年共盈利不低于1370万元时,160≤x≤180.【点睛】本题考查二次函数的应用与一元二次方程的应用,解题关键是理解题意,找到题目蕴含的相等关系,并依据相等关系得到一元二次方程和二次函数解析式.22.(1)当C点在⊙O上半圆移动时,D点位置不会变;理由见解析;(2)线段AD的长度为,线段CD的长度为.【分析】(1)连接OD.根据角平分线的性质得到∠1=∠3,根据原点半径相等得到OC=OD,根据等边对等角得到∠1=∠2,等量代换得到∠2=∠3,即可判定CE∥OD,又CE⊥AB,则OD⊥AB,根据垂径定理可知点D为半圆AB的中点.(2)在直角△AOD中,OA=OD=5,根据勾股定理即可求出AD=过点A作CD的垂线,垂足为G,根据圆周角定理得到1452ACD AOD∠=∠=︒,即可求出AG CG==在直角△AGD中,DG==即可求出CD的长.【详解】(1)当C点在⊙O上半圆移动时,D点位置不会变;理由如下:连接OD.∵CD平分∠OCE,∴∠1=∠3,而OC=OD,∴∠1=∠2,∴∠2=∠3,∴CE∥OD,∵CE⊥AB,∴OD⊥AB,∴ AD= BD,即点D为半圆AB的中点.(2)∵在直角△AOD中,OA=OD=5,∴AD=过点A作CD的垂线,垂足为G,∵1452ACD AOD∠=∠=︒,∴△AGC是等腰直角三角形,∵AC=6,∴AG CG==在直角△AGD中,DG==∴CD CG DG=+=+=∴线段AD 的长度为CD 的长度为.【点睛】考查角平分线的性质,平行线的判定与性质,勾股定理,圆周角定理等,对学生综合解决问题能力要求较高.23.(1)见解析;(2)阴影部分的面积为60π﹣.【分析】(1)要证明∠DBF =∠ABE ,需证∠EBF =ABD =60°,则∠ABE =∠DBF =60°﹣∠DBE ,可得∠DBF =∠ABE ;(2)过B 作BQ ⊥DC 于Q ,则∠BQC =90°,可证明△ABM ≌△DBN ,阴影部分的面积S=S 扇形DBC ﹣S △DBC =2606163602π⨯-⨯⨯=60π﹣.【详解】(1)证明:∵四边形ABCD 是菱形,∴AD =AB ,AD ∥BC ,∵∠A =60°,∴∠ADB =∠DBC =180°﹣60°﹣60°=60°,即∠EBF =ABD =60°,∴∠ABE =∠DBF =60°﹣∠DBE ,即∠DBF =∠ABE ;(2)解:过B 作BQ ⊥DC 于Q ,则∠BQC =90°,∵四边形ABCD 是菱形,∠A =60°,AB =6,∴DC ∥AB ,∠C =∠A =60°,BC =AB =6,∴∠ADC =120°,∴∠QBC =30°,∴CQ =12BC =3,BQ=,∵∠A =60°,∠CDB =120°﹣60°=60°,∴∠A =∠CDB ,∵AB =BD ,∴在△ABM 和△DBN 中A BDN AB BD ABM DBN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABM ≌△DBN (ASA ),∴S △ABM =S △DBN ,∴阴影部分的面积S =S 扇形DBC ﹣S △DBC=2606163602π⨯-⨯⨯=60π﹣.【点睛】本题考查全等三角形的证明定理,通过构建全等三角形,可求出阴影部分的面积.24.(1)GH ⊥HF,GH HF=;(2)结论不变;(3).【分析】(1)如图1中,连接DG ,FG .根据直角三角形斜边中线的性质,可得GD=GF ,再证明△DGF 是等边三角形即可解决问题;(2)结论不变.如图2中,延长ED 至S ,使DS=DE ,连接AS ,BS ,CE ,FG ,DG .理由三角形的中位线定理,证明GD=GF ,△GDF 是等边三角形即可解决问题;(3)如图3中,延长ED 到H ,使得DH=DE ,连接AH ,BH ,作BM ⊥EC 于M ,设BC 交AH 于点O .想办法证明∠BHE=60°,解直角三角形求出BM ,ME 即可解决问题;【详解】解:(1)如图1中,连接DG ,FG.∵AB=AC ,BF=CF ,∴AF ⊥BC ,∴∠BAF=∠CAF=60°,∵ED ⊥AB ,∴∠BFE=∠BDE=90°,∵BG=GE ,∴DG=12BE ,GF=12BE ,∴DG=FG ,∵DH=HF ,∴GH ⊥DF ,∵∠BAE=60°,∴∠ABE+∠AEB=120°,∵DG=BG=GF=GE ,∴∠GBD=∠GDB ,∠GEF=∠GFE ,∴∠BGD+∠EGF=120°,∴∠DGF=60°,∴△DGF 是等边三角形,∴GH HF .故答案为GH ⊥HF ,GH HF (2)结论不变.理由:如图2中,延长ED 至S ,使DS =DE ,连接AS ,BS ,CE ,FG ,DG .∵∠ADE=90°∴AS=AE ,∠DAE=∠DAS=60°∴∠BAC=∠SAE=120°∴∠SAB=∠EAC∵AB=AC∴△ABS ≌△ACE ∴BS=CE ,∠ABS=∠ACE∵F ,G 分别为BC ,BE 中点∴FG ∥CE ,FG=12CE ,同理:DG ∥BS ,DG=12BS ,∴DG=FG ,∵H 为DF 中点,∴GH ⊥HF ,延长SB 交CE 延长线于T ,∵∠ABS+∠ABT=∠ACE+∠ABT=180°,∴∠BAC+∠T=120°,∴∠T=60°,延长FG 交BT 于P ,∴∠T=∠BPF=∠DGF=60°,∴∠HGF=30°,∴GH HF .(3)如图3中,延长ED 到H ,使得DH=DE ,连接AH ,BH ,作BM ⊥EC 于M ,设BC 交AH 于点O .∵AD ⊥EH ,ED=DH ,∴AE=AH ,∴∠AEH=∠AHE=30°,∴∠EAH=∠BAC=120°,∴∠BAH=∠CAE ,∵AB=AC ,AH=AE ,∴△BAH ≌△CAE (SAS ),∴∠BHA=∠AEC=30°,BH=CE ,∴∠OBA=∠OHC=30°,∵∠AOB=∠COH ,∴△AOB ∽△COH ,∴AO OC =OB OH ,∴AO OB =OC OH,∵∠AOC=∠BOH ,∴△AOC ∽△BOH ,∴∠BHO=∠AOC=30°,∴∠BHE=30°+30°=60°,在Rt △ADE 中,∵AE=2,∠AED=30°,∴AD=1,,在Rt △ADC 中,=,∴,在Rt △BMH 中,HM=12(),BM=HM=12(+3),∴EM=EH ﹣12()=321,在Rt △EBM 中,..【点睛】本题属于几何变换综合题、考查了直角三角形斜边中线定理、三角形中位线定理、等腰三角形的性质和判定、解直角三角形、勾股定理、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题.25.(1)6.(2)(53,﹣329).(3)t=13.【分析】(1)代入t=0可得出抛物线的解析式,利用二次函数图象上点的坐标特征可求出点A,B,C的坐标,再利用三角形的面积公式即可求出△ABC的面积;(2)由点B,C的坐标可得出∠ABC=45°,利用三角形内角和定理可得出∠ACB+∠CAB=135°,结合∠PCB+∠CAB=135°可得出∠ACB=∠PCB,过B作BM∥y轴,交CP延长线于M,由平行线的性质可得出∠ABC=∠MBC,结合BC=BC即可证出△ABC≌△MBC(ASA),利用全等三角形的性质可得出AB=MB=4,进而可得出点M的坐标,根据点C,M的坐标,利用待定系数法可求出直线CM的解析式,再联立直线CM及抛物线的解析式成方程组,通过解方程组可求出点P的坐标;(3)利用二次函数图象上点的坐标特征及因式分解法解一元二次方程,可求出点A,B,C 的坐标,设直线AQ的解析式为:y=k1x+b1,直线BQ的解析式为:y=k1x+b2,则CD=(t2-2t-3)-b1,CE=b2-(t2-2t-3),将直线解析式代入抛物线解析式中可得出关于x的一元二次方程,利用根与系数的关系可得出x A•x Q=t2-2t-3-b1①,x B•x Q=t2-2t-3-b2②,利用②÷①结合CE=2CD,即可得出关于t的方程,解之即可得出结论.【详解】解:(1)将t=0代入抛物线解析式得:y=x2﹣2x﹣3.当x=0时,y=x2﹣2x﹣3=﹣3,∴点C的坐标为(0,﹣3);当y=0时,有x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴点B的坐标为(3,0),点A的坐标为(﹣1,0).∴S△ABC =12AB•OC=12×[3﹣(﹣1)]×3=6.(2)由(1)知:B(3,0),C(0,﹣3),∴OB=OC,∴∠ABC=45°,∴∠ACB+∠CAB=135°.又∵∠PCB+∠CAB=135°,∴∠ACB=∠PCB.在图2中,过B作BM∥y轴,交CP延长线于M.∴∠ABC=∠MBC.在△ABC和△MBC中,,∴△ABC≌△MBC(ASA),∴AB=MB=4,∴点M的坐标为(3,﹣4),∴直线CM解析式为:y=﹣13x﹣3(利用待定系数法可求出该解析式).联立直线CM及抛物线的解析式成方程组,得:,解得:(舍去),,∴点P的坐标为(53,﹣).(3)当y=0时,有x2+(2t﹣2)x+t2﹣2t﹣3=0,即[x+(t﹣3)]•[x+(t+1)]=0,解得:x1=﹣t+3,x2=﹣t﹣1,∴点A的坐标为(﹣t﹣1,0),点B的坐标为(﹣t+3,0).当x=0时,y=x2+(2t﹣2)x+t2﹣2t﹣3=t2﹣2t﹣3,∴点C的坐标为(0,t2﹣2t﹣3).设直线AQ的解析式为:y=k1x+b1,直线BQ的解析式为:y=k1x+b2.∴点D的坐标为(0,b1),点E的坐标为(0,b2),∴CD=(t2﹣2t﹣3)﹣b1,CE=b2﹣(t2﹣2t﹣3).∵y=k1x+b1,y=x2+(2t﹣2)x+t2﹣2t﹣3,∴x2+(2t﹣2﹣k1)x+t2﹣2t﹣3﹣b1=0,∴x A•x Q=t2﹣2t﹣3﹣b1①.同理:x B•x Q=t2﹣2t﹣3﹣b2②.由②÷①,得:==﹣,∴=﹣=2,∴=﹣2,∴t=1 3.【点睛】本题考查了二次函数图象上点的坐标特征、三角形的面积、三角形内角和定理、全等三角形的判定与性质、待定系数法求一次函数解析式、解方程组、因式分解法解一元二次方程以及根与系数的关系,解题的关键是:(1)利用二次函数图象上点的坐标特征求出抛物线与坐标轴的交点坐标;(2)通过构造全等三角形找出直线PC的解析式;(3)利用根与系数的关系结合CE=2CD,找出关于t的方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学期中试题
一、选择题(每小题4分,共20分) 1一元二次方程7432
=-x x
的二次项系数,一次项系数,常数项分别是( )
A .7,4,3--
B.
7,4,3-
C.
7,4,3
D.
7,4,3-
2
2-x 中自变量x 的取值范围是( )
A .2≤x
B.
2-≠x
C.
2≠x
D.
2≥x
3一元二次方程0532
=++x x 的根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .没有实数根
D .无法判断
4.下面的5个字母中,是中心对称图形的有 ( )
C H I N A
A .2个
B .3个
C .4个
D .5个
5.下列计算正确的是( ) 822=321=
325=236=二、填空题(每小题4分,共20分)
6.计算: (7)2
=___________; 27=___________.
50= 12=
7.一元二次方程092=-x 的根是___________; x x 52
=的根是___________.
8.方程042
=++k x x 的一个根是2,那么k 的值是___________;它的另一个根是___________. 9. 在平面直角坐标系中,点(23)P -,关于原点对称点P '的坐标是 .
点n 关于X 轴对称的点m 的坐标是(-1,3),则n 的坐标是
10.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x 名学生,则根据题意列出的方程是 三、计算题。
(24分)
11 、)68
1(2)2124(+-- 12 、
(2)23()123)(123-+-+
13、 03722=+-x x 14、 ()()123122
+=+x x
四.解答题。
(每题8分,共32分)
15、如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度; ① 将△ABC 向x 轴正方向平移5个单位得△A 1B 1C 1,② 将△ABC 再以O 为旋转中心,旋转180°得△A 2B 2C 2,画出平移和旋转后的图形,并标明对应字母.
16.当x 为何值时,代数式12132
+-x x 的值与代数式1842+-x 的值相等?
17.如图,AB 是⊙O 的弦,半径OA=20cm, ∠AOB=120°,求△AOB 的面积.
O
A B
C x
y
18.市政府为了解决市民看病贵的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?
五.解答题。
(第19题,8分,第20、21题,每题9分,共26分)
19.如图, 某小区在宽20m ,长32m 的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m 2
,求道路的宽。
20.如图,△ABC 是等腰三角形,∠BAC=36°,D 是BC 上一点,△ABD 经过旋转后到达△ACE 的位置,⑴旋转中心是哪一点? ⑵旋转了多少度?⑶如果M 是AB 的中点,那么经过上述旋转后,点M 转到了什么位置?
21、先阅读,再回答问题:
如果x 1,x 2是关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根,那么x 1+x 2,x 1x 2与系数a ,
b ,
c 的关系是:x 1+x 2=-b a ,x 1x 2=c
a
.例如:若x 1,x 2是方程2x 2-x -1=0的两个根,则x 1+x 2=
-b a =--12=12,x 1x 2=c a =-12=-1
2
. 若x 1,x 2是方程2x 2
+x -3=0的两个根,(1)求x 1+x 2,x 1x 2
(2)求x 2x 1+x 1x 2的值.(3) 求(x 1-x 2)2
22、选做题:(10分,总分超120分当120计算成绩)
某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.为占有市场份额,在确保盈利的前提下,售价多少元时,每星期盈利为6120元。
E
20
2032
32
参考答案
1A 2D 3C 4B 5A 6、7、3
3、52、23
7、±3、x 1=0,x 2=5 8、-12、-6 9(-2、3)(-1、-3) 10、X (X -1)= 182 11、计算:)68
1
(2)2124(+-- 原式=)64
2(22262+-- ……………………………….3分 =622
2
2262---
…………………4分 =2- ………………………………….6分 12、公式化简…………4分 合并24-4
3……………………6分
13、∵a =2,b = -7,c= 3 ∴b 2
-4ac =(-7)2
-4×2×3=25>0 …2分
∴4
5
722257±=
±=
X x ………………………………5分 ∴2
1
,621=
=x x ………………………………………………6分 14(2x +1)2
-3(2X +1)=0,…………………1分 (2X +1)【(2X +1)-3】=0…………………3分 (2X +1)(2X -2)=0
(2X +1)=0、或(2X -2)=0…………………5分
1,2
1
_21==x x ………………………………6分
15 每图4分 16、列式12132
+-x x
=1842+-x ………………………3分
解方程x 1=3,x 2=5
2
-
………………………8分 AB 是⊙O 的弦,半径OA=20, ∠AOB=120°,求. 17.解:作OC ⊥AB,垂足为C
∵OC ⊥AB
∴AC=BC (2分) ∵OA=OB ∴∠A=∠B (3分) ∵在△AOB 中, ∠AOB=120° ∴∠A=∠B =30°(4分) ∵在Rt △AOC 中 ,∠A =30°
∴OC ﹦
2
1
0A =10 cm (5分) ∴AC=OC OA -=
10
20-=10
3cm (6分)
∴△AOB 的面积=2
1
AB*OC=503 cm 2(8分)
18.设这种药品平均每次降价的百分率为x ,根据题意得:1分
128)1(2002=-x ………………………………………………5分
∴8.01±=x
解得:
2
.08.01%,1808.0121=-==+=x x (不符题意,舍去)……………………7分
答:这种药品平均每次降价的百分率为20%。
19、解:可设道路宽为x 米,依题意,得………………………1分
540)32)(20(=--x x ,……………………………5分
解得50,221
==x x (不合题意,舍去).……………7分
答:道路的宽度为2米.………………………………8分
20.(1)A 点;………3分 (2)60°;…………6分 (3)AC 的中点。
…9分 21、解:(1) x 1+x 2=-1
2
.x 1x 2=-
2
3
…………………3分 (2)-613
……………………………………………6分 (3
)4
25…………………………………9分
选做题解:设售价为x 元时,每星期盈利为6120元。
由题意得:………1分
(x-40)[300+20(60-x)]=6120…………………………………6分 解得:x 1=57,x 2=58 ………………………………8分 由已知,要多占市场份额,销售量要尽量大,即售价要低,舍去x 2=58. 答:售价为57元时,每星期盈利为6120元。
………………10分
最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改
赠人玫瑰,手留余香。