高一物理万有引力专题练习

合集下载

最新高考物理万有引力定律的应用专项训练100(附答案)

最新高考物理万有引力定律的应用专项训练100(附答案)

最新高考物理万有引力定律的应用专项训练100(附答案)一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T,地球半径为R,地球表面的重力加速度为g,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)“天宫一号”距离地球表面的高度.【答案】(1)34gGR ρπ=(2)v gR= (3)22324gT Rh Rπ=-【解析】(1)在地球表面重力与万有引力相等:2MmG mgR=,地球密度:343M MRVρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2vmg mR=v gR=(3)天宫一号的轨道半径r R h=+,据万有引力提供圆周运动向心力有:()()2224MmG m R hTR hπ=++,解得:22324gT Rh Rπ=-2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m=2.0 kg的小物块从斜面底端以速度9 m/s沿斜面向上运动,小物块运动1.5 s时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R=1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g的大小.(2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s2(2)3×103m/s【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R=3310m/s v ==⨯3.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期22Rt T v π=6.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M ,自转周期为T ,引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0. ①若在北极上空高出地面h 处称量,弹簧测力计读数为F 1,求比值的表达式,并就h=1.0%R 的情形算出具体数值(计算结果保留两位有效数字); ②若在赤道表面称量,弹簧测力计读数为F 2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r 、太阳半径为R s 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②2322041F R F GMT π=- (2)“设想地球”的1年与现实地球的1年时间相同 【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断. 解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变. 答: (1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.7.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。

高一物理万有引力定律测试题及答案.doc

高一物理万有引力定律测试题及答案.doc

万有引力定律测试题班级姓名学号一、选择题(每小题中至少有一个选项是正确的,每小题5分,共40分)1.绕地球作匀速圆周运动的人造地球卫星内,其内物体处于完全失重状态,则物体()A.不受地球引力作用 B.所受引力全部用来产生向心加速度C.加速度为零 D.物体可在飞行器悬浮2.人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是()A.R不变,使线速度变为v/2B.v不变,使轨道半径变为2RD.无法实现3.由于地球的自转,地球表面上各点均做匀速圆周运动,所以()A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心4.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置及两人造卫星到地球中心的距离可能是()A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等B.一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍C.两人都在赤道上,两卫星到地球中心的距离一定相等D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍5.设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是( )6.一宇宙飞船在一个星球表面附近做匀速圆周运动,宇航员要估测星球的密度,只需要测定飞船的()A:环绕半径B:环绕速度C:环绕周期D:环绕角速度7.假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[]A.p/q2B.pq2C.p/qD.pqm8.已知万有引力恒量G ,则还已知下面哪一选项的数据,可以计算地球的质量( ) A :已知地球绕太阳运行的周期及地球中心到太阳中心的距离.B :已知月球绕地球运行的周期及月球中心到地球中心的距离.C :已知人造地球卫星在地面附近绕行的速度和运行周期.D :已知地球同步卫星离地面的高度.附加题(每题5分)1.假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 ( )A.根据公式v=ωr ,可知卫星的线速度将增大到原来的2倍2.两个靠近的天体称为双星,它们以两者连线上某点O 为圆心做匀速圆周运动,其质量分别为m 1、m 2,如右图所示,以下说法正确的是( )A :它们的角速度相同.B :线速度与质量成反比.C :向心力与质量的乘积成正比.D :轨道半径与质量成反比.二、填空题(每空6分,共36分) 1.天文学家根据天文观测宣布了下列研究成果:银河系中可能存在一个大“黑洞”,接近“黑洞”的所有物质,即使速度等于光速也被“黑洞”吸入,任何物体都无法离开“黑洞”。

高中物理万有引力练习题及答案解析

高中物理万有引力练习题及答案解析

高中物理万有引力练习题及答案解析一.解答题(共14小题)1.(2015春•锦州校级期中)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即=k,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.(2)一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?【分析】(1)行星绕太阳的运动按圆周运动处理时,此时轨道是圆,就没有半长轴了,此时=k应改为,再由万有引力作为向心力列出方程可以求得常量k 的表达式;(2)球体表面物体随球体自转做匀速圆周运动,球体有最小密度能维持该球体的稳定,不致因自转而瓦解的条件是表面的物体受到的球体的万有引力恰好提供向心力,物体的向心力用周期表示等于万有引力,再结合球体的体积公式、密度公式即可求出球体的最小密度.【解答】解:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a即为轨道半径r.根据万有引力定律和牛顿第二定律有G=m r于是有=即k=所以太阳系中该常量k的表达式是.(2)设位于赤道处的小块物质质量为m,物体受到的球体的万有引力恰好提供向心力,这时球体不瓦解且有最小密度,由万有引力定律结合牛顿第二定律得:GM=mω2R又因ρ=由以上两式得ρ=.所以球的最小密度是.答:(1)太阳系中该常量k的表达式是.(2)若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是.2.(2017春•德惠市校级月考)月球环绕地球运动的轨道半径为地球半径的60倍,运行周期约为27天,应用开普勒定律计算:在赤道平面内离地多高时,人造地球卫星随地球一起转动,就像停留在天空中不动一样?(R地=6400km)【分析】月球和同步卫星都绕地球做匀速圆周运动,根据开普勒第三定律列式求解即可.【解答】解:月球环绕地球运动的轨道半径为地球半径的60倍,运行周期约为27天;同步卫星的周期为1天;根据开普勒第三定律,有:解得:R月=R同==9R同由于R月=60R地,故R同=,故:h=R地==36267km.答:在赤道平面内离地36267km高时,人造地球卫星随地球一起转动,就像停留在天空中不动一样.3.(2015春•东方校级期中)地球公转运行的轨道半径R1=1.49×1011m,若把地球公转周期称为1年,那么土星运行的轨道半径R2=1.43×1012m,其周期多长?【分析】根据万有引力提供圆周运动的向心力,列式求圆周运动的周期与半径的关系然后求比值即可.【解答】解:根据万有引力提供圆周运动的向心力有:G=mr()2得卫星运动的周期:T=所以有:因此周期T2==29.7年;答:土星运行的轨道周期为29.7年.4.(2015春•浮山县校级期中)卡文迪许把他自己的实验说成是“称地球的重量”(严格地说应是“测量地球的质量”).如果已知引力常量G、地球半径R和地球表面重力加速度g,计算地球的质量M和地球的平均密度各是多少?【分析】根据地在地球表面万有引力等于重力公式先计算出地球质量,再根据密度等于质量除以体积求解.【解答】解:根据地在地球表面万有引力等于重力有:=mg解得:M=所以ρ==.答:地球的质量M和地球的平均密度各是,.5.(2017春•孝感期末)火星(如图所示)是太阳系中与地球最为类似的行星,人类对火星生命的研究在今年因“火星表面存在流动的液态水”的发现而取得了重要进展.若火星可视为均匀球体,火星表面的重力加速度为g火星半径为R,火星自转周期为T,万有引力常量为G.求:(1)火星的平均密度ρ.(2)火星的同步卫星距火星表面的高度h.【分析】(1)根据万有引力等于重力求出火星的质量,结合火星的体积求出火星的密度.(2)根据万有引力提供向心力求出火星同步卫星的轨道半径,从而得出距离火星表面的高度.【解答】解:(1)在火星表面,对质量为m的物体有①又M=②联立①②两式解得ρ=.(2)同步卫星的周期等于火星的自转周期T万有引力提供向心力,有③联立解得h=.答:(1)火星的平均密度ρ为.(2)火星的同步卫星距火星表面的高度h为.6.(2017春•蓟县期中)已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1,地球的自转周期T2,地球表面的重力加速度g.某同学根据以上条件,提出一种估算地球质量M 的方法:同步卫星绕地球作圆周运动,由G==m()2h得M=(1)请判断上面的结果是否正确,并说明理由.如不正确,请给出正确的解法和结果.(2)请根据已知条件再提出两种估算地球质量的方法并解得结果.【分析】(1)根据万有引力提供向心力,列式求解,地球半径较大,不能忽略;(2)对月球或地球应用万有引力提供向心力,也可根据在地球表面重力等于向心力求解.【解答】解:(1)上面结果是错误的,地球的半径R在计算过程中不能忽略,正确解法和结果:得(2)方法一:月球绕地球做圆周运动,由得;方法二:在地面重力近似等于万有引力,由得.答:(1)上面结果是错误的,地球的半径R在计算过程中不能忽略,正确解法和结果如上所述.(2)请根据已知条件再提出两种估算地球质量的方法如上所述.7.(2017春•新余期末)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星﹣500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的,质量是地球质量的.已知地球表面的重力加速度是g,地球的半径为R,忽略火星以及地球自转的影响,求:(1)火星表面的重力加速度g′的大小;(2)王跃登陆火星后,经测量发现火星上一昼夜的时间为t,如果要发射一颗火星的同步卫星,它正常运行时距离火星表面将有多远?【分析】(1)求一个物理量之比,我们应该把这个物理量先表示出来,在进行之比,根据万有引力等于重力,得出重力加速度的关系,根据万有引力等于重力求出火星表面的重力加速度g′的大小;(2)火星的同步卫星作匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同,据此求解即可.【解答】解:(1)在地球表面,万有引力与重力相等,=m0g对火星=m0g′测得火星的半径是地球半径的,质量是地球质量的,联立解得g′=g(2)火星的同步卫星作匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同.设卫星离火星表面的高度为h,则=m0()2(R′+h)GM′=g′R′2解出同步卫星离火星表面高度h=﹣R答:(1)火星表面的重力加速度g′的大小为g;(2)它正常运行时距离火星表面的距离为﹣R.8.(2017春•邹平县校级期中)地球的两颗人造卫星质量之比m1:m2=1:2,圆周轨道半径之比r1:r2=1:2.求:(1)线速度之比;(2)角速度之比;(3)运行周期之比;(4)向心力之比.【分析】(1)根据万有引力充当向心力,产生的效果公式可得出线速度和轨道半径的关系,可得结果;(2)根据圆周运动规律可得线速度和角速度以及半径的关系,直接利用上一小题的结论,简化过程;(3)根据圆周运动规律可得运行周期和角速度之间的关系,直接利用上一小题的结论,简化过程;(4)根据万有引力充当向心力可得向心力和质量以及半径的关系.【解答】解:设地球的质量为M,两颗人造卫星的线速度分别为V1、V2,角速度分别为ω1、ω2,运行周期分别为T1、T2,向心力分别为F1、F2;(1)根据万有引力和圆周运动规律得∴=故二者线速度之比为.(2)根据圆周运动规律v=ωr 得∴故二者角速度之比为.(3)根据圆周运动规律∴故二者运行周期之比为.(4)根据万有引力充当向心力公式∴故二者向心力之比为2:1.9.(2017春•郑州期中)我国月球探测计划“嫦娥工程”已经启动,科学家对月球的探索会越来越深入.(1)若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,月球绕地球的运动近似看做匀速圆周运动,试求出月球绕地球运动的轨道半径;(2)若宇航员随登月飞船登陆月球后,在月球表面高度为h的某处以速度v0水平抛出一个小球,小球飞出的水平距离为x.已知月球半径为R月,引力常量为G,试求出月球的质量M月.【分析】(1)在地球表面重力与万有引力相等,月球绕地球圆周运动的向心力由万有引力提供,据此计算月球圆周运动的半径;(2)根据平抛运动规律求得月球表面的重力加速度,再根据月球表面的重力与万有引力相等计算出月球的质量M.【解答】解:(1)设地球质量为M,月球质量为M月,根据万有引力定律及向心力公式得:…①在地球表面重力与万有引力大小相等有:…②由①②两式可解得:月球的半径为:(2)设月球表面处的重力加速度为g月,小球飞行时间为t,根据题意水平方向上有:x=v0t…④竖直方向上有:…⑤又在月球表面重力万有引力相等故有:…⑥由④⑤⑥可解得:答:(1)月球绕地球运动的轨道半径为;(2)月球的质量M月为.10.(2017春•信阳期中)如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的第一宇宙速度v;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T.【分析】(1)根据平抛运动规律列出水平方向和竖直方向的位移等式,结合几何关系求出重力加速度.(2)忽略地球自转的影响,根据万有引力等于重力列出等式.根据密度公式求解.(3)该星球的近地卫星的向心力由万有引力提供,该星球表面物体所受重力等于万有引力,联立方程即可求出该星球的第一宇宙速度υ【解答】解:(1)设该星球表现的重力加速度为g,根据平抛运动规律:水平方向:x=v0t竖直方向:平抛位移与水平方向的夹角的正切值得;(2)在星球表面有:,所以该星球的密度:;(3)由,可得v=,又GM=gR2,所以;(4)绕星球表面运行的卫星具有最小的周期,即:故答案为:(1);(2)该星球的密度;(3)该星球的第一宇宙速度;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期11.(2015春•长春校级期中)某行星绕太阳沿椭圆轨道运行,它的近日点A到太阳距离为r,远日点B到太阳的距离为R.若行星经过近日点时的速度为v A,求该行星经过远日点时的速度v B的大小.【分析】由开普勒第二定律行星绕太阳沿椭圆轨道运动时,它和太阳的连线在相等的时间内扫过的面积相等,在近日点与远日点各取一极短时间,利用扫过的面积相等.得等式:=,进行求解.【解答】解:根据开普勒第二定律,行星绕太阳沿椭圆轨道运动时,它和太阳的连线在相等的时间内扫过的面积相等.如图所示,分别以近日点A和远日点B为中心,取一个很短的时间△t,在该时间内扫过的面积如图中的两个曲边三角形所示.由于时间极短,可把这段时间内的运动看成匀速率运动,从而有=所以,该行星经过远日点时的速度大小为答:行星经过远日点时的速度v B的大小为:.12.(2017•四模拟)“测某星球表面的重力加速度和该星球的第一宇宙速度”的实验如图甲所示,宇航员做了如下实验:(1)在半径R=5000km的某星球表面,竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2kg的小球,从轨道AB上高H处的某点静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H 的大小,F随H 的变化关系如图乙所示,圆轨道的半径为0.2 m,星球表面的重力加速度为 5 m/s2.(2)第一宇宙速度与贴着星球表面做匀速圆周运动的速度相等,该星球的第一宇宙速度大小为5000 m/s.【分析】(1)小球从A到C运动的过程中,只有重力做功,机械能守恒,根据机械能守恒定律和牛顿第二定律分别列式,然后结合F﹣H图线求出圆轨道的半径和星球表面的重力加速度.(2)第一宇宙速度与贴着星球表面做匀速圆周运动的速度相等,根据万有引力等于重力求出该星球的第一宇宙速度.【解答】解:(1)小球过C点时满足又根据联立解得,由题目可知:时;时,可解得,r=0.2m(2)据可得故答案为:(1)0.2 5 (2)500013.(2017春•武邑县校级期中)某行星的质量是地球的6倍,半径是地球的1.5倍,地球的第一宇宙速度约为8m/s,地球表面处的重力加速度为10m/s2,此行星的第一宇宙速度约为32 m/s,此行星表面处的重力加速度为m/s2.【分析】本题采用比例法求解.根据万有引力等于重力,得到此行星表面处的重力加速度与地球表面处的重力加速度的比值,再求得行星表面处的重力加速度.再由v=求出行星的第一宇宙速度与地球的第一宇宙速度的比值,从而求得行星的第一宇宙速度.【解答】解:在星球表面上,根据万有引力等于向心力,有:G=mg,得:g=所以行星表面处的重力加速度与地球表面处的重力加速度之比为:==×=则行星表面处的重力加速度为:g行=g地=m/s2.由mg=m得:v=可得,行星的第一宇宙速度与地球的第一宇宙速度之比为:== =4,则得此行星的第一宇宙速度为:v行=4v地=32km/s故答案为:32,.14.(2016春•龙岩期末)已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响.(1)试推导第一宇宙速度v1的表达式(要有详细的推导过程,只写结果不得分);(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期T.【分析】(1)在地球表面重力和万有引力相等,万有引力提供卫星圆周运动的向心力;(2)万有引力提供卫星的向心力,和万有引力等于重力求解即可.【解答】解:(1)在地球表面有重力等于万有引力:可得:GM=gR2所以,近地卫星的向心力由万有引力提供有:所以有:=(2)距地面高度为h的卫星,轨道半径为r=R+h,根据万有引力提供向心力有:所以卫星的周期为T==答:(1)试推导第一宇宙速度v1的表达式为:;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,卫星的运行周期T为.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

高一物理万有引力计算题练习

高一物理万有引力计算题练习

高一物理万有引力计算题练习1.对一颗行星的卫星进行观测,发现其运行的轨迹是半径为r的圆周,周期为T。

现在需要求出该行星的质量以及当测得行星的半径为卫星轨道半径的十分之一时,此行星的表面重力加速度大小。

2.宇航员到达某行星表面后,用长为L的细线拴一小球,让球在竖直面内做圆周运动。

他测得当球通过最高点的速度为v时,绳中张力刚好为零。

现在需要求出该行星表面的重力加速度大小、该行星的质量以及在该行星表面发射卫星所需要的最小速度。

3.一颗人造卫星的质量为m,离地面的高度为h,卫星做匀速圆周运动,已知地球半径为R,地球表面重力加速度为g。

现在需要求出卫星受到的向心力大小、卫星的速率以及卫星环绕地球运行的周期。

4.2007年10月24日,中国首颗探月卫星“嫦娥一号”从___发射升空,11月26日,中国第一幅月图完美亮相,中国首次月球探测工程取得圆满成功。

假设探月宇航员站在月球表面一斜坡上的M点,并沿水平方向以初速度v抛出一个质量为m的小球,测得小球经时间t落到斜坡上另一点N,斜面的倾角为α,已知月球半径为R,月球的质量分布均匀,万有引力常量为G。

现在需要求出月球表面的重力加速度以及人造卫星绕月球做匀速圆周运动的最大速度。

5.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞行。

设卫星距月球表面的高度为h,做匀速圆周运动的周期为T。

已知月球半径为R,引力常量为G,球的体积公式为V=πR³。

现在需要求出月球的质量M、月球表面的重力加速度g月以及月球的密度ρ。

6.我国通信卫星的研制始于70年代331卫星通信工程的实施,到1984年4月,我国第一颗同步通信卫星发射成功并投入使用,标志着我国通信卫星从研制转入实用阶段。

现正在逐步建立同步卫星与“伽利略计划”等中低轨道卫星等构成的卫星通信系统。

若已知地球的平均半径为R,自转周期为T,地表的重力加速度为g,则需要求出同步卫星的轨道半径R以及与上述同步卫星在同一轨道平面的低轨道卫星的周期T是多少。

高中物理万有引力定律的应用题20套(带答案)

高中物理万有引力定律的应用题20套(带答案)

高中物理万有引力定律的应用题20套(带答案)一、高中物理精讲专题测试万有引力定律的应用1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)v v =【解析】 【分析】 【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得22v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h=(3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得v v =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算3.某宇航员驾驶宇宙飞船到达某未知星球表面,他将一个物体以010m/s v =的速度从10m h =的高度水平抛出,测得落到星球表面A 时速度与水平地面的夹角为60θ=︒。

高中物理万有引力定律的应用模拟试题及解析

高中物理万有引力定律的应用模拟试题及解析

高中物理万有引力定律的应用模拟试题及解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度;(2)卫星绕该星的第一宇宙速度;(3)星球的密度.【答案】(1)126F F g m -=(212()6F F R m-(3) 128F F GmR ρπ-= 【解析】【分析】【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:222mv F mg l+= ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMm mg R= 2GMm R =2mv R两式联立得:12()6F F R m-(3)在星球表面:2GMm mg R = ④ 星球密度:M Vρ= ⑤ 由④⑤,解得128F F GmRρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求:(1)行星的质量M ;(2)行星表面的重力加速度g ;(3)行星的第一宇宙速度v .【答案】(1)(2) (3)【解析】【详解】 (1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.“天舟一号”货运飞船于2017年4月20日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接。

高一物理万有引力定律单元测试卷(附答案)

高一物理万有引力定律单元测试卷(附答案)

高一物理万有引力定律单元测试卷(题卷)注意事项:1.本试卷满分120分.考试时间90分钟.2.请把题卷的答案写在答卷上.考试结束,只交回答卷. 一、单选题(每小题4分,共48分)在每小题给出的四个选项中,只有一个选项是符合题目要求的.多选、不选或错选,该小题不得分.1.下面关于万有引力的说法中正确的是( A )A.万有引力是普遍存在于宇宙空间中所有具有质量的物体之间的相互作用B.重力和引力是两种不同性质的力C.万有引力只存在于可看成质点的物体间或均质球之间。

D.当两个物体间距为零时,万有引力将无穷大 2.三颗人造卫星A 、B 、C 在地球的大气层外沿如图所示的方向做匀速圆周运动,C B A m m m <=,则三颗卫星( D ) A.线速度大小:C B A v v v << B.周期:C B A T T T >> C.向心力大小: C B A F F F <= D.轨道半径和周期的关系:232323CC B BA A T R T R T R == 3.若已知某行星绕太阳公转的半径为r ,公转周期为T ,万有引力常量为G ,则由此可求出(B )A. 某行星的质量B.太阳的质量C. 某行星的密度D.太阳的密度 4.利用下列哪组数据,可以计算出地球的质量( A )①已知地球半径R 和地面重力加速度g②已知卫星绕地球做匀速圆周运动的轨道半径和r 周期T ③已知月球绕地球做匀速圆周运动的周期T 和月球质量m ④已知同步卫星离地面高h 和地球自转周期TA .①②B .①②④C .①③④D .②③④ 5.苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是( C ) A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的 B.由于地球对苹果有引力,而苹果对地球无引力造成的C.苹果与地球间的引力是大小相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都不对6.两颗人造地球卫星,质量之比m 1:m 2=1:2,轨道半径之比R 1:R 2=3:1,下面有图1关数据之比正确的是( D )A.周期之比T 1:T 2=3:1B.线速度之比v 1:v 2=3:1C.向心力之比为F 1:F 2=1:9D.向心加速度之比a 1:a 2=1:9 7.两颗人造卫星A 、B 绕地球做圆周运动,周期之比为 A T ∶B T =1∶8,则轨道把轨道半径之比和运行速度之比分别为( D ) A.A R ∶B R = 4∶1 A V ∶B V = 1∶2 B.A R ∶B R = 4∶1 A V ∶B V = 2∶1 C.A R ∶B R = 1∶4 A V ∶B V = 1∶2 D.A R ∶B R = 1∶4 A V ∶B V = 2∶18.地球同步卫星距地面高度为h ,地球表面的重力加速度为g ,地球半径为R ,地球自转的角速度为ω,那么下列表达式表示同步卫星绕地球转动的线速度不正确的一项是( B )A.ω)(h R v +=B.)/(h R Rg v +=C.)/(h R g R v +=D.32ωg R v = 9.将物体由赤道向两极移动( C )A .它的重力减小B .它随地球转动的向心力增大C .它随地球转动的向心力减小D .向心力方向、重力的方向都指向球心 10、地球表面的重力加速度为g 0,物体在距地面上方3R 处(R 为地球半径)向心加速度为a n ,那么两个加速度之比g /a n 等于 ( D ) A.1:1 B.1:4 C.1:9 D.16:111.由于地球的自转,地球表面上各点均做匀速圆周运动,所以 ( B ) A.地球表面各处具有相同大小的线速度 B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心 12、天文学上把两个相距较近,由于彼此的引力作用而沿各自的轨道互相环绕旋转的恒星系统称为“双星”系统,设一双星系统中的两个子星保持距离不变,共同绕着连线上的某一点以不同的半径做匀速圆周运动,则( BA.两子星的线速度的大小一定相等B.两子星的角速度的大小一定相等C.两子星的周期的大小一定不.相等D.两子星的向心加速度的大小一定相等二、填空题(每小题4分,共24分)13. 地球做匀速圆周运动的人造地球卫星,卫星离地面越高,其线速度越______小__,角速度越____小___,旋转周期越_____大_____。

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一期中练习题
一、单项选择题
1、已知火星的半径约为地球的12,火星质量约为地球的19
,火星是离太阳第4近的行星,在地球外侧,火星的轨道半径是1.5天文单位(1个天文单位是地日之间的距离)。

则下列关于火星说法正确的是( B )
A .火星的第一宇宙速度是地球的23
B .火星表面的重力加速度是地球的49
C .火星密度是地球密度的98
D .火星绕太阳的公转周期是地球的32
2、嫦娥二号卫星已成功发射,可以直接进入近地点高度200公里、远地点高度约38万公里的地月转移轨道后奔月。

当卫星到达月球附近的特定位置时,卫星就必须“急刹车”,也就是近月制动,以确保卫星既能被月球准确捕获,又不会撞上月球,并由此进入近月点高度100公里、周期12小时的椭圆轨道a 。

再经过两次轨道调整,进入高度为100公里的近月圆轨道b 。

轨道a 和b 相切于P 点,如图下列说法正确的是( D )
A .嫦娥二号卫星的发射速度大于11.2 km/s
B .嫦娥二号卫星在a 轨道运动时的机械能小于b 轨道上运动的机械能
C .嫦娥二号卫星在a 、b 轨道经过P 点的速度相同
D .嫦娥二号卫星在a 、b 轨道经过P 点的加速度相同
3、宇航员在某星球表面以初速度2.0 m/s 水平抛出一物体,并记录下物体的运动轨迹如图所示,O 点为抛出点,若该星球半径为4 000 km ,万有引力常量G =6.67×10
-11 N·m 2/kg 2,则下列说法正确的是( C )
A .该星球表面的重力加速度为2.0 m/s 2
B .该星球的质量为2.4×1023 kg
C .该星球的第一宇宙速度为4.0 km/s
D .若发射一颗该星球的同步卫星,则同步卫星的绕行速度一定大于4.0 km/s
二、多选题
4、如图中的圆a 、b 、c ,圆心均在地球的自转轴线上,其中b 在赤道平面内,对环绕地球作匀速圆周运动的同步卫星而言,以下说法正确的是( BD )
A .同步卫星的轨道可能为a ,也可能为c
B .同步卫星的轨道可能为b
C .同步卫星的运行速度大于7.9km/s
D .同步卫星的运行周期与地球自转周期相同
5、一行星绕恒星作圆周运动.由天文观测可得,其运动周期为T ,速度为v ,引力常量为G ,则 (ACD )
A .恒星的质量为G T v π23
B .行星的质量为2
324GT v π C .行星运动的轨道半径为π2vT
D .行星运动的加速度为T
v π2 6、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( AD )
A .卫星在轨道3上的速率小于在轨道1上的速率
B .卫星在轨道3上的角速度大于在轨道1上的角速度
C .卫星在轨道1上经过Q 点的加速度大于它在轨道2上经过Q 点时的加速度
D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度
7、仅根据万有引力常数G 和下面的数据,可以计算出地球质量M 的是( AD )
A .月球绕地球运行的周期T 1及月球中心到地球中心的距离R 1
B .地球同步卫星离地面的高度
C .地球绕太阳运行的周期T 2及地球到太阳中心的距离R 2
D .人造地球卫星绕地球运行的速度v 和运行周期T
8、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1和2相切于Q 点,轨道2和3相切于P 点,设卫星在1轨道和3轨道正常运行的速度和加速度分别为v 1、v 3和a 1、a 3,在2轨道经过P 点时的速度和加速度为v 2和a 2且当
卫星分别在1、2、3轨道上正常运行时周期分别为T 1、T 2、T 3,以下说法正确的是( BD )
A .v 1>v 2>v 3
B .v 1>v 3>v 2
C .a 1>a 2>a 3
D .T 1<T 2<T 3 三、计算题
9、已知某中子星的质量为2×1030 kg ,半径为10 km ,万有引力常量G =6.67×10
-11 N·m 2/kg 2,133.4≈11.5,求:
(1)此中子星表面的自由落体加速度;
(2)该中子星的第一宇宙速度.
1.33×1012 m/s 2;1.15×108 m/s
10、宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间4t 小球落回原处。

(取地球表面重力加速度g =10 m/s 2,空气阻力不计)
(1)求该星球表面附近的重力加速度g ;2.5
(2)已知该星球的半径与地球半径之比为R 星:R 地=1:4,求该星球的质量与地球质量之比M 星:M 地。

1:64
11、中国赴南极考察船“雪龙号”,从上海港口出发一路向南,经赤道到达南极.某同学设想,在考察船“雪龙号”上做一些简单的实验来探究地球的平均密度:当“雪龙号”停泊在赤道时,用弹簧测力计测量一个钩码的重力,记下弹簧测力计的读数为F 1,当“雪龙号”到达南极后,仍用弹簧测力计测量同一个钩码的重力,记下弹簧测力计的读数为F 2,设地球的自转周期为T ,不考虑地球两极与赤道的半径差异,请根据探索实验的设想,写出地球平均密度的表达式(已知万有引力常量G ).
ρ=3F 2πGT 2(F 2-F 1)。

相关文档
最新文档