连续血流动力学监测LiDCO系统的临床研究进展(最全版)

合集下载

第2章 无创血流动力学监测

第2章 无创血流动力学监测

第2章无创血流动力学监测近十年来,血流动力学监测设备从短时监测向长时实时监测的方向发展,从有创向微创甚至无创的方向发展。

虽然在不同病人中,各种无创血流动力学的检查结果的可靠性差强人意,还有很多需改进的地方,它在获取安全性及简单性的同时丢失了准确性,但它的无创性及操作的简单性为它的临床广泛使用提供了可能。

一、非侵入式脉冲轮廓分析仪(一)T-lineT-line 系统由美国圣地亚哥的Tensys Medical公司生产。

它使用一种称作扁平张力(applanation tonometry)的仪器作为感受器来进行脉冲轮廓分析。

测试时在患者的桡动脉上放置动脉压力传感器,在找到合适位置后,感受器记录被测试者的所有的动脉压力值,并给予被测试者相应的机械压,维持机械压与动脉的跨壁压为零。

随着动脉压值升高,被测试者的受到的机械压力也逐渐升高,达到最大后,动脉压下降,所需机械压力也随之下降。

根据所需机械压大小获得动脉波形图。

与动脉导管监测相比,在监测血压方面,T-line的准确性已被证明,即使在重症监护人群中,它的误差率及一致性也达到了达到美国医疗仪器促进协会(Association for the Advancement of Medical Instrumentation,AAMI)间歇无创血压监测设备的标准。

同时它通过一种特殊的算法结合患者的年龄,性别及其他的生理参数,对动脉波进行计算,得出被测者的心输出量。

有研究报道,在重症患者,该算法与已为大家接受的校准脉冲轮廓分析算法相比,其误差率为23 %。

一项研究对50名心胸手术后患者进行分析,发现T-line测得的CO准确性较高,但该研究对一致性的要求较宽泛。

该研究同时证实了T-line的反应测试者变化趋势的准确性高达95%。

目前关于T-line系统心输出量的测定的准确性的有待于进一步研究,已有的文献暂不能给出肯定的答案,但其对心胸手术患者变化趋势的正确反映,为手术患者围手术期的血流动力学的监测提供可能。

无创心排量和血液动力学监测

无创心排量和血液动力学监测

有创性血流动力学监测技术
Swan – Ganz:血流动力学测定的金标准
肺动脉漂浮导管测定心排量是公认的 “金标准”。然而监测的有创性和对设备、
技ห้องสมุดไป่ตู้以及操作人员的要求,严重限制了它的
临床应用,同时在放置Swan-Ganz导管过 程中还有血液感染、心律失常、肺栓塞、肺 小动脉破裂和出血、气囊破裂、导管打结等 并发症的隐患,而且费用昂贵。目前国内许 多大医院都有Swan-Ganz,但是实际用量 很少,这主要是受到上述因素的限制。
由于在使用PICCO测定心排量时,脉搏轮廓分析是不可或缺的部分,所以
当波形改变时,可能预示着需要对设备进行重新校准。多久校准一次目前尚不 明确,但是当儿茶酚胺或是血管内容量变化引起动脉波形改变时,重新校准是 非常必要的。(如持续出血、应用升压药、心肺体外分流时)
微创性血流动力学监测技术
PICCO --- 脉搏指示剂连续心排量测定
VIGILEO --- 未经校准的脉搏轮廓分析技术
Vigileo监护仪
FloTrac 传感器
无创性血流动力学监测技术
应用对机体组织没有机械损伤的方法,经皮肤或黏膜等途径间接取得
有关心血管功能的各项参数,其特点是安全、没有或很少发生并发症
理想的无创血流动力监测系统
准确:提供与创伤性监测近似的信息
Swan-Ganz导管经静脉插入上腔静脉或下腔静腔,通过右心房、右 心室、肺动脉主干、左或右肺动脉分支,直到肺小动脉。


其测定心排量的原理是通过漂浮导管在右心房上部一定的时间注入 一定量的冷水,该冷水与心内的血液混合,使温度下降,温度下降 的血流到肺动脉处,通过该处热敏电阻监测血温变化。其后低温血 液被清除,血温逐渐恢复。肺动脉处的热敏电阻所感应的温度变化, 记录温度稀释曲线。通过公式计算出CO。

PiCCO血流动力学监测

PiCCO血流动力学监测

8
经肺热稀释测量:容量参数2
RAEDV
RVEDV
PTV
LAEDV
LVEDV
胸腔总热容积(ITTV) ITTV = CO * MTtTDa
RAEDV
RVEDV
PTV
LAEDV
LVEDV
肺内总热容积(PTV) PTV = CO * DStTDa 全心舒张末期容积 GEDV = ITTV - PTV
9
RAEDV RVEDV
心率 病人相关的校正因子 (通过热稀释法得到)
Systole
P(t) ( + C(p) • SVR
dP ) dt dt
压力曲线下面积 动脉顺应性 压力曲线型状
16
脉搏轮廓分析-原理
通过对分析每一次心脏跳动(beat by beat)时的动脉压力波型,得到连续的参数 经过经肺热稀释校正后,可以测量每一次心脏跳动的每搏量(SV)
升高
正常
PBV
升高
升高

PBV
PVPI =
EVLW

PBV
PVPI =
EVLW
正常
静水压 肺水肿
PBV
14
PVPI =
升高

射血分数:与每搏量和舒张末期容积相关
右心

EVLW
左心
PBV
RAEDV RVEDV EVLW 每搏量(SV) LAEDV
LVEDV
1
&
2

3
GEF =
RVEF = SV
4 x SV GEDV
RVEDV
LVEF =
SV
LVEDV
右心室射血分数(RVEF) (肺动脉热稀释导管) 15

NICaS-(无创血流动力学监测系统)

NICaS-(无创血流动力学监测系统)

Contract Decrease
NICaS通过 测量全身动脉系统内由心脏泵血引起 的血管内容量改变及流速变化产生的电阻抗的变化,
从而得出每博输出量。
NICaS
NonInvasive Cardiac System --- 是通过全身生物阻抗法提供血流动力学参数的医疗设备:
Cardiac (心脏): Stroke Volume, Cardiac Output, Cardiac Power Vascular (血管): Total Peripheral Resistance
如严重心衰心排量明显低下仪器捕捉信号困难图形质量差检查结果可能与实际差异较大严重的主动脉关闭不严重的主动脉狭窄心外分流全身阻抗技术与超声多普勒技术差别与胸电阻抗相比的优势与胸电阻抗相比的优势全身电阻抗胸电阻抗nimedicalnicassonositebiozcheetahmedicalniccomoosypkamedicalicon符合fda关于和tdco达到统计学生物相等性的要求无法符合fda关于生物相等性的要求测量全身的血流动力学参数没有或最小化胸电阻抗变化受到的干扰信号的影响主动脉血流内的干扰信号心脏的收缩和舒张特别是右心的活动swanganz322条蓝色连线与病人右脚连接手腕2条红色连线与病人左手腕连接红色ecg电极连接病人下腹部或腿32连接生物阻抗传感器连接ecg电极nicasnicas参数参数心脏功能heartrate6090bpmstrokevolume60130mlstrokevolumeindex3065mlm2?cardiacoutputhrsvcardiacoutputindex2240lminm2cardiacpowerindexcomap04510血管功能totalperipheralresistancemapco7701500dnseccm5液体状态totalbodywater4063呼吸频率respirationrate241min全身阻抗技术测量参数心脏功能?心率hr6090bpm?每搏输出量sv60130ml每博指数si3065mlm2?心输出量co心指数ci2240lminm2心肌收缩力指数cpi04510血管功能全身血管阻力tpr7701500dnseccm5液体状态全身液体水平tbw4063呼吸频率respirationrate241min专利导航图专利导航图血管收缩型高血压高动力型高血压chf正常高限血压期期高血压高输出性心力衰竭ii期高血压心源性休克分布性休克感染过敏运动员心脏低心力储备chfcardiacfunctioncardiovascularstatuscotteretal

血流动力学监测的临床进展及应用

血流动力学监测的临床进展及应用

血流动力学监测的临床进展及应用(综述)沈阳军区总医院急诊科王静近些年来,血流动力学监测技术日益提高,已越来越多应用于危重症患者的诊治过程中,为临床医务人员提供了相对可靠的血流动力学参数,在指导临床治疗及判断患者预后等方面起到了积极的导向作用。

随着血流动力学技术在临床中的发展应用,许多研究者对血流动力学监测的有效性、安全性及可靠性提出置疑。

因此关于血流动力学监测技术的临床进展及具体应用是临床上十分迫切的研究课题。

【关键词】血流动力学监测临床应用自上世纪70年代来,Swan和Ganz发明通过血流引导的气囊漂浮导管(balloon floatation catheter或Swan-Ganz catheter或PAC)后,在临床上已得到广泛的应用,它是继中心静脉压(CVP)之后临床监测的一大新进展,是作为评估危重病人心血管功能和血流动力学重要指标,是现代重症监护病房(ICU)中不可缺少的监测手段。

许多新的微创血流动力学监测技术如雨后春笋般地应用于临床,为危重症患者的临床救治提供了详尽的参数资料,它主要是反映心脏、血管、血液、组织氧供氧耗及器官功能状态的指标。

通常可分为有创和无创两种,目前临床常用的无创血流动力学监测方法是部分二氧化碳重复吸入法(NICO)、胸腔阻抗法(ICG)及经食道彩色超声心动图(TEE)等。

由于两类方法在测定原理上各有不同,临床应用适应症及所要求的条件也不同,同时其准确性和重复性亦有差异。

因此对危重症患者的临床应用效果各家报道不尽相同,本文就目前国内外血流动力学的临床进展及具体应用综述如下。

1.无创血流动力学的临床应用无创伤性血流动力学监测(noninvasive hemodynamic monitoring)是应用对机体组织没有机械损伤的方法,经皮肤或粘膜等途径间接取得有关心血管功能的各项参数,其特点是安全、无或很少发生并发症。

一般无创血流动力学监测包括:心率,血压,EKG,SPO2以及颈静脉的充盈程度,可在ICU广泛应用各种危重病患者,不仅提供重要的血流动力学参数,能充分检测出受测患者瞬间的情况,也能反映动态的变化,很好的指导临床抢救工作,在一定程度上基本上替代了有创血流动力学监测方法。

血流动力学监测

血流动力学监测

血流动力学监测 2011.11.30 血流动力学 ← 研究血液在心血管系统中流动的一系列物理学问题,即流量、阻力、压力之间的关系 ← 依据物理学定律,结合生理学和病理生理学的概念,对循环中血液运动的规律进行定量的、动态的、连续的测量分析,用于了解病情、指导治疗 ← 随着对疾病理解的深入和治疗要求的提高,临床上需要更多的参数来精确的反映病情的变化 ← 重症患者的治疗离开了监测会变的盲目;而监测方法离开了对治疗的反馈指导将变得无用 血流动力学监测的常规内容 ← 体循环: 心率、血压、CVP、CO、SVR← 肺循环: PAP、PAWP、PVR← 氧动力学参数: 氧输送(DO2)、氧消耗(VO2) ← 氧代谢参数: 血乳酸、SaO2、SvO2、ScvO2临床血流动力学监测 ← 容量评估及容量反应性 ← 细化体循环血压监测及指导治疗 ← 体循环氧动力学监测 ← 微循环监测 ← 线粒体功能的监测 临床血流动力学监测的核心内容 ← 评价体循环:容量复苏和药物治疗效果 ← 监测、评估微循环:组织灌注与氧代谢状况 容量评估及容量反应性 ← 容量治疗是重症患者治疗的基础措施,通常在临床治疗的最初阶段就已经开始 ← 合理的容量治疗取决于对患者容量状态的评估 ← 容量评估是临床治疗的基石,是血流动力学监测的关键 容量评估的指标 ← 静态前负荷指标压力负荷指标---CVP、PAWP心脏容积负荷指标---RVEDVI、GEDVI、ITBVI← 心肺相互作用相关的动态前负荷指标---SVV、SPV、PPV ← 容量负荷试验← 被动抬腿试验静态压力负荷指标----CVP、PAWP← 根据心室压力-容积曲线,由心腔压力间接反应前负荷← CVP近似右房压,PAWP反映左心舒张末压,是目前最常用的容量评估指标← 但其评估容量的临床价值存在争议心室顺应性正常 心室顺应性下降 心室顺应性增强 静态压力负荷指标----CVP、PAWP ← 压力负荷受到测量、胸腔内压、心率、心肌顺应性等多种因素影响,对前负荷的评估上有局限性← 静态或基础CVP和PAWP难以准确预测容量反应性← 将CVP8 -12mmHg、PAWP12 -15mmHg作为严重感染和感染性休克早期治疗的液体复苏目标,尚缺乏大规模临床试验证实,存在争议← CVP的价值体现在动态的变化和观察中,而不是仅仅某一孤立的数值心脏容积负荷指标 ← RVEDVI、GEDVI、ITBVI在压力变化过程中保持相对独立,不受胸腔内压或腹腔内压变化的影响← 能更准确的反应心脏容量负荷← 临床可通过PiCCO经肺热稀释技术测量得到 多个研究表明RVEDVI、GEDVI、ITBVI数值在正常范围低限时数值越低,液体反应性越好;数值越高,则液体反应性越差;中间数值不能预测液体反应性 心肺相互作用相关的动态前负荷指标← SVV、SPV、PPV是动态前负荷指标← SVV可以通过PiCCO或NICOM技术动态监测获得← 更准确的反应心室SV的变化← 机械通气时动脉压的波形和压力值随吸气、呼气相应发生升高、降低的周期性改变;血容量不足时,这种变化尤为显著← 机械通气时SV的变化幅度大,提示左、右心室均处于心功能曲线的上升支,此时容量反应性好;反之,提示至少一个心室处于心功能曲线的平台支,容量反应性差← 大量研究证实SVV、PPV、SPV预测容量反应的敏感性和特异性均明显优于静态前负荷← SVV、PPV、SPV是目前容量评估的重点 机械通气患者SVV正常值<10-15%SVV、PPV、SPV的临床使用受下列条件限制:容量控制通气潮气量恒定(8 -12ml/kg)窦性心律、无心律失常 对于非机械通气或存在心律失常的患者 如何评估容量? 容量负荷试验或被动抬腿试验Frank-Starling定律 ← 只有在左、右心室均处于心功能曲线上升支时,增加心脏前负荷才能显著提高心排量,即容量反应性好 ← 心室处于心功能曲线平台支时,即使增加心脏前负荷也难以进一步增加心排量,即容量反应性差,且可导致肺水肿等容量过度的危害 ← A:收缩力正常← B:收缩力增加← C:收缩力下降容量反应性 ← 目前无法评估机体的绝对容量值,主要通过容量治疗后机体反应,间接评估容量的需求← 容量反应性好是容量治疗的基本前提← 根据Frank-Starling定律,容量治疗后CO或SV较前增加≥12-15%,被认为是容量治疗有效容量负荷试验 ← 方法:在30分钟内输入晶体液500-1000ml或胶体液300-500ml,判断容量反应性及耐受性,从而决定是否继续容量治疗← 可通过监测CVP的动态变化,遵循“2-5”法则指导容量负荷试验← 容量负荷试验特点:要求加快输液速度! 被动抬腿试验(PLRT) ← PLRT相当于自体模拟的容量负荷试验,但受自身神经系统的调节,作用一般维持10分钟左右← 对于前负荷有反应的患者,通常在30-90秒内能见到最大反应,SV增加可达到10% -15%← 如果PLRT能够引起SV增加明显超过10%,那么容量负荷治疗可引起SV增加明显超过15%PLRTPLRT1. 患者位于半坐位(头抬高呈45度)或仰卧位2. 观察T1时间SV的数值3. 同时放平头部和/或升高脚的位置(脚抬高呈45度)4. 等待1分钟5. 观察T2时间SV的数值6. SV%增加>10-15%=前负荷有反应7. SV%增加<10-15%=前负荷无反应8. 必要时可重复上述操作← 可食道心脏超声同步监测PLRT期间主动脉流速的变化来预测容量反应性← PLRT后主动脉流速增加≥10-13%,预测容量治疗有反应,敏感性和特异性均大于80%← 近年PLRT的趋势,儿童可经胸超声获得主动脉流速的变化、成人经外周动脉流速来预测容量反应性 容量挑衅 对于非机械通气或存在心律失常的患儿,没有CVP和超声,如何评估容量反应? ← 容量负荷试验以20ml/kg晶体液在30分钟内输入← 或PLRT← 评估容量治疗后CO或SV较前是否增加≥12 -15% ← 是,前负荷有反应,可继续容量挑衅← 否,前负荷无反应,停止输液 体循环血压监测 ← MAP=舒张压+1/3脉压差MAP=CO*SVR=SV*HR*SVR← MAP是2001、2005版EGDT的主要治疗目标← 在NICOM或PiCCO指导下,动态监测SV和SVR有助于指导容量复苏,合理使用正性肌力药物、血管活性药物体循环氧动力学监测 ← 氧供(DO2)← 氧耗(VO2)← 氧债DO2← 氧供是每分钟内转运供应到组织的氧量,由血氧含量和心排量组成 ← 合适的氧供依赖于有效的肺气体交换、血红蛋白水平、足够的血氧饱和度和心排量 DO2------呼吸循环殊途同归← DaO2=[ (CO)×动脉氧含量(CaO2)] ← CO=SV×HR← CaO2=(1.38×Hgb×SaO2)+(0.0031×PaO2)← DaO2=SV×HR×[(1.38×Hgb×SaO2)+(0.0031×PaO2)]VO2← 氧耗是指组织所消耗的氧量,例如系统的气体交换 ← 此参数不能直接测得,可以通过动脉和静脉的氧供差值计算得出 ← VO2=DaO2-DvO2← VO2=CO×(CaO2-CvO2)×10← VO2=CO×Hgb×13.8×(SaO2-SvO2) ← VO2=5×15×13.8×(0.99-0.75)← 正常值=200-250ml O2/minVO2/DO2的关系← 正常情况下氧供大约为氧耗的四倍,所以氧需求量并不依赖于氧供,即曲线上的氧供非依赖区;此时如果氧供减少,细胞可以摄取更多的氧以维持氧耗的正常水平 ← 一旦这种代偿机制被耗竭,氧耗量就开始依赖于氧供,这段曲线被称为氧供依赖区 氧债 ← 当氧供不足以满足机体的需求时,则出现氧债 ← 一旦氧债出现,必须提供额外的氧供以偿还氧的欠缺 ← 氧需>氧耗=氧债 ← 影响氧债积蓄的因素: 氧供减少 细胞氧摄取减少 氧需求增加 微循环监测 ← 微循环障碍---严重全身性感染的早期事件 ← 微循环障碍意味着随之而来的细胞氧摄取障碍和微循环窘迫 微循环监测 ← SvO2/ScvO2← 血乳酸← Pcv-aCO2← 侧流暗视野视频显微镜技术(SDF)SvO2← VO2=C(a-v)O2×CO×10← 若SaO2=1.0 SvO2=1-[VO2/(CO×10×CaO2)] ← SvO2与氧供、氧耗有关SvO2与容量复苏← SvO2>65%、ScvO2>70%是2001、2005版EGDT 的治疗目标← 2009年哈佛医学院牵头的急诊医学休克协作组研究结果表明,SvO2<70%或>90%均导致死亡率增加,以SvO2达标或过高作为复苏目标存在片面性← SvO2异常升高提示组织氧利用障碍,此时需要观察微循环功能以及线粒体功能← SaO2↓← SvO2↓← CaO2-CvO2 —← SaO2—← SvO2↓← CaO2-CvO2↑← SaO2↓← SvO2↓← CaO2-CvO2↑← SaO2↑← SvO2—/↑← CaO2-CvO2—← SaO2—← SvO2↑← CaO2-CvO2↓← 肺氧合功能障碍 ← 周围组织循环不良 ← 组织代谢增加 ← 肺氧合功能下降伴心功能不全 (机械通气对循环的抑制) ← 吸氧或MV使肺氧合功能改善 ← 组织氧耗量降低(低温、镇静、肌松) ← 组织摄氧功能下降 (败血症、氰化物中毒、硝普钠应用) ← 肺外分流 不能单纯将高SvO2水平作为容量复苏的目标 乳 酸 ← 血乳酸是评价危重症严重程度及预后的指标← 血乳酸持续升高与APACHEII密切相关,感染性休克血乳酸>4mmol/L,病死率达80%← 目前多采用乳酸清除率和高乳酸(>2mmol/L)时间来作为评估指标 血乳酸水平与组织灌注、细胞缺氧,以及肝脏糖异生能力有关 Pcv-aCO2← 理论上,组织缺氧状态下组织PO2将下降,组织PCO2将升高,但实际并非如此← 内毒素血症组织PO2可能并不低---细胞病性缺氧← 低氧性缺氧时,组织PCO2没有升高;仅在缺血性缺氧时组织PCO2才明显升高← PCO2的上升与组织的灌注不足密切相关Pcv-aCO2← 微循环血流灌注不足即休克存在时,组织PO2将降低,组织PCO2将升高,反映的本质是组织局部DO2减少和缺氧代谢增加← 更高的组织PO2和更低的组织PCO2可能才是休克复苏的理想目标。

无创血流动力学监测

无创血流动力学监测

无创血流动力学监测无创血流动力学(LiDCO)监测是近几年来临床广泛使用的血流动力学监测技术。

LiDCO技术测量参数较多,可相对全面地反映血流动力学参数与心脏舒缩功能的变化。

LiDCO血流动力学分析仪同时具备无创与微创两种监测模式。

无创模式基于血管卸荷技术,该技术使用无创指套获得实时的动脉波形,无创袖带校准,经过计算获取血流动力学参数。

LiDCO血流动力学分析仪针对△SV(每搏量增加率)和Frank-Starling原则,依据物理学的定律,结合生理和病理生理学概念,对循环系统中血液运动的规律性进行定量的、动态的、连续的测量和分析,内置了详细的容量负荷试验指导流程,多种容量负荷试验流程适配不同状态的患者。

在不依赖深静脉置管的情况下,LiDCO也能合理判断患者液体容量状态,反映心脏、血管、容量、组织的氧供氧耗等方面功能的多项指标,更好地帮助麻醉科、手术室、重症监护病房、急诊科和其他科室医护人员了解患者血流动力学实时变化,为临床治疗提供数字化的依据,帮助医生制定更贴合患者个体情况的用药和补液方案,辅助临床决策。

有关LiDCO血流动力学分析仪的检测参数,主要有以下几点:CO(心排量)、SV(每搏量/每搏量指数)、SVR(外周阻力/外周阻力指数)、SVV(每搏量变异率)、PPV(脉压变异率)、HRV(心率变异率)、△SV(每搏量增加率)。

其中,主要的监测参数介绍如下:CO:每分钟左心室或右心室射入主动脉或肺动脉的血量,通常所称心输出量,是指每分重心输出量,人体静息时SV约为70毫升(60~80毫升),如果心率每分钟平均为75次,则每分钟输出的血量约为5000毫升(4500~6000毫升)。

SV:指一次心搏,一侧心室射出的血量,称每搏输出量,简称搏出量,搏出量等于心舒末期容积与心缩末期容积之差值,约60~80毫升,影响搏出量的主要因素有:心肌收缩力、静脉回心血量(前负荷)、动脉血压(后负荷)。

SVV:在一个机械通气周期中,吸气时SV增加,呼气时SV下降,以此来算出SVV,SVV来评估液体应答能力,当SVV高于13%时,进行补液或血管活性药物,需要注意的是,纠正SVV不是目标,SVV仅仅是一个工具,提供临床医师用药补液的参考。

心排血量监测方法

心排血量监测方法

心排量(CO)的调节
每搏量 心率
前负荷
后负荷
心肌收缩力
心室壁异常活动
CO增加的原因

CO减少的原因




心率增快 左心室容量增加(前负荷↑ ) 回心血量增加 外周血管扩张(后负荷 ↓) 内、外性儿茶酚胺


心率变慢(兴奋副交感) 前负荷↓ 后负荷↑ 心肌收缩性减退
CO与SvO2

SvO2↓是组织氧合受损害的有代表性的最早的指标
SWAN
&
GANZ
SWAN
&
GANZ
1970年Swan和Ganz在专业杂志上发表了第一篇Swan-Ganz漂浮 导管在临床应用的文章. Swan HJC and Ganz W. Catheterization of the heart in man with use of a flowdirected balloon-tipped catheter. N Eng J Med 1970 ; 283 : 447
心排量测定 (CO)
心排量的监测历史


Fick法(19世纪70年代) 染料/指示剂稀释法(19世纪90年代) 标准热稀释法(20世纪50-70年代) 连续热稀释法(20世纪90年代)
前二者主要在心导管实验室进行, 后两者标准和连 续热稀释法更容易实现床旁监测。
Fick 法 (1)
CO –Set 冰水封闭注射系统
为了提高测定的准确性,可以应用CO-Set 的 冰水注射系统,来提高信号和噪音的比率(简 称信噪比)
(32)
CO –Set 冰水注射系统
间断打冰水, 测量心排量所需要的连接: 心排 量计算机、肺动脉导管、注射装置、温度探 头和电缆.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连续血流动力学监测LiDCO系统的临床研究进展(最全版)
组织低灌注和氧供需失衡是影响患者预后的重要因素。

HR、MAP和CVP不能准确反映血管容量变化、评估失血量及指导液体治疗,也无法满足危重症患者的监测需求。

心输出量(cardiac output,CO)和每搏量变异度(stroke volume variation,SVV)等指标,可更早提示组织灌注状况,越来越受到临床重视。

随着最低有创血流动力学监测(minimally invasive CO monitoring,MICOM)概念的提出,临床上出现多种无创或微创连续血流动力学监测设备。

LiDCO系统是由LiDCOTMplus和LiDCOrapid两种不同监测原理的模式组成。

LiDCOTMplus是微创连续血流动力学监测方法,LiDCOrapid(CNAP)是无创连续血流动力学监测方法,现将这两种模式的监测原理和研究进展综述如下。

1.LiDCOTMplus
1.1测量原理
LiDCOTMplus是微创连续血流动力学监测方法,结合了PulseCO至少8h才需校正1次,且校正方法简单。

LiDCOTMplus是两者的结合,通过间断静脉注射锂指示剂,实现连续血流动力学监测。

一项对比锂稀释法和热稀释法测量CO的研究,指出LiDCOTMplus监测结果更准确和便捷。

1.2临床应用
(1)预测液体反应:SVV和脉搏压变异度(pulse pressure variation,PPV)是预测机械通气患者液体反应的指标。

通过LiDCOTMplus测得的SVV能够很好地预测液体反应,Berkenstadt等指出LiDCOTMplus的SVV阈值是9.5%,敏感度为79%,特异度为93%。

通过LiDCOTMplus指导液体治疗,血流动力学更加稳定,危重症患者病死率明显降低。

(2)危重症患者及复杂手术中的应用:危重症患者及复杂手术常提示高风险和高病死率,连续血流动力学监测更适用于这类患者。

主动脉球囊反搏是以球囊的膨胀或收缩改变主动脉内压力,提升舒张压和增加冠脉血流,达到改善心肌灌注作用。

Pearse等认为,使用LiDCOTMplus监测这类患者,血流动力学指标的准确性值得怀疑。

而一项对51例实施主
动脉球囊反搏的患者血流动力学的前瞻性研究指出,LiDCOTMplus能较准确预测患者的容量状态,结果满意。

Mora等研究了30例心脏手术患者的220对CO数据,结果显示采用LiDCOTMplus监测心脏术后患者血流动力学指导液体治疗,患者从中受益。

肝移植手术患者术前常合并凝血功能异常及“高排低阻”状态,甚至需用血管活性药维持血流动力学稳定,此类患者的液体管理尤为重要。

Costa等对23例肝移植患者术后48h血流动力学进行监测后,认为LiDCOTMplus监测肝移植术后患者血流动力学指标,有临床指导意义。

1.3测量结果的可靠性和准确性
LiDCOTMplus利用锂稀释法监测CO,人体不产生锂离子,正常情况下经静脉注射的氯化锂指示剂在体内没有损耗,通过动脉端锂指示剂敏感器绘出浓度-时间稀释曲线,可测得可靠的血流动力学指标。

但非去极化肌肉松弛剂可与锂指示剂发生反应,尤其是阿曲库铵和罗库溴铵,使氯化锂指示剂在体内产生损耗,影响监测结果的可靠性,因此非去极化肌肉松弛剂使用后的45min内应避免使用锂离子校正CO。

Hopster等在一项动物实验中指出,异氟烷麻醉下,对比注射甲苄噻嗪60min前后的CO,发现LiDCOTMplus测量的CO出现很大偏倚,认为甲苄噻嗪可能影响LiDCOTMplus的准确性。

LiDCOTMplus同样不适用于心律失常患者,因心律失常可造成动脉波形不稳定,心率计算不准确,因此测量结果可靠性差。

LiDCOTMplus是利用锂指示剂稀释法校正CO。

尽管成人1次校正仅需注射0.5~2ml(0.15mmol/L)的指示剂,剂量很小,无药理学影响,且至少8h才需校正1次,但每天的最大使用剂量不能超过20ml。

依赖锂指示剂稀释法的LiDCOTMplus也不适用体质量<40kg患者及孕早期女性。

2.LiDCOrapid
2.1测量原理
无创指套测量方法,是类似于无创袖带测量血压的方法。

LiDCOrapid 用食指及中指双指套确定两手指动脉直径,通过红外光测量每次动脉搏动期间动脉直径的变化。

通过信号转换,模拟动脉波形,计算连续BP、PPV、SVV、CO、SV等指标。

不同于LiDCOTMplus用锂指示剂校正CO,LiDCOrapid只需用无创袖带血压校正CO,也可用于清醒和机械通气患者。

2.2临床应用
(1)预测液体反应:围术期液体治疗是加速康复外科的重要组成部分,连续血流动力学监测可指导个体化液体治疗。

有研究探讨了老年患者腹部手术中,应用LiDCOrapid监测血流动力学指标的准确性及可行性,指出LiDCOrapid测得老年患者PPV、SVV诊断阈值分别为8.5%、9.5%,ROC曲线的AUC均为0.719。

尽管与有创血流动力学监测
Flotrac/Vigileo相比准确性下降,但两者的一致性良好,LiDCOrapid可用于监测老年患者容量反应。

有研究认为妇科行阴式手术患者,LiDCOrapid测得的PPV、SVV诊断阈值分别为12%、11%,ROC曲线的AUC分别为0.76、0.79,PPV、SVV可较好地预测液体反应。

(2)危重症患者及复杂手术中的应用:重症监护室(intensive care unit,ICU)中患者病情重,血流动力学不稳定,液体治疗难度大。

Wagner 等指出,LiDCOrapid测得的MAP、DBP与动脉穿刺置管测量指标一致好,ICU医师应用LiDCOrapid指导液体治疗,对患者预后有益。

老年患者常合并心脏基础疾病,围术期更易发生心功能障碍,连续血流动力学监测指导围术期液体治疗对老年患者更为重要。

Moppptt等对128例腰麻下行髋关节骨折手术老年患者的研究显示,用LiDCOrapid监测指导液体治疗者,平均住院时间减少30%,术后并发症减少50%。

Asamoto等在对10例行心脏不停跳手术患者的研究中,对比iDCOrapid与FloTrac/Vigileo,结果显示两者差异无统计学意义。

合并妊高症的高危产妇,围产期血流动力学稳定至关重要。

Xiao等对52例合并妊娠高血压综合征的剖宫产产妇术中使用LiDCOrapid监测液体反应,显示LiDCOrapid能较好地指导液体治疗。

文献报道,1例26岁女性妊娠合并心功能不全行剖宫产手术,术中使用LiDCOrapid监测血流动力学,以3ml/kg晶体行液体治疗,术中总计输注乳酸钠林格700ml,患者没有发生低血压或容量超负荷,预后较好。

2.3测量结果的可靠性和准确性
LiDCOrapid不需要指示剂校正CO,也不会因药物影响监测指标的准确性。

但需使用双指套固定手指,因挤压或其他原因使指套受压移位时,动脉波形的稳定性可能受影响,导致指标可靠性降低。

如帕金森病、术后躁动、寒战等原因引起肢体剧烈活动,LiDCOrapid用于这类患者时,需评估测量指标的可靠性。

LiDCOrapid是根据手指动脉波形来分析监测血流动力学指标,手指动脉直径比桡动脉或肱动脉直径小,当患者出现严重
低体温或使用大量升压药时,手指动脉血管严重收缩,LiDCOrapid的准确性也会降低。

3.LiDCO系统的展望
LiDCOTMplus是微创连续血流动力学监测模式,需要建立动脉及静脉通路,并使用指示剂校正CO。

LiDCOrapid是无创连续血流动力学监测模式,操作简单,仅需要无创血压袖带校正CO,不需要一次性医疗耗材。

相关研究已有很多,但LiDCO系统同其他血流动力学监测设备一样,有其优缺点。

理想的血流动力学监测设备应满足无创或微创、费用低、操作简便、连续监测、最少的并发症、可靠性及准确性高,至今尚无一种监测能够满足上述特点。

临床医师只有充分了解各种血流动力学监测设备的优缺点,合理把握适应证,才能更好地发挥其临床作用。

相关文档
最新文档