凸轮轴结构与设计

合集下载

机械原理第九章凸轮机构及其设计

机械原理第九章凸轮机构及其设计

凸轮的设计和参数选择
设计原则
凸轮的设计应考虑载荷、速度 和精度等因素,并满足运动学 和强度学的要求。
参数选择
凸轮的参数包括凸轮半径、凸 轮轴角度和凸轮顶点位置等, 应根据具体需求进行选择。
优化方法
通过数学模型和仿真分析,可 以优化凸轮的形状和参数,以 提高凸轮机构的性能。
凸轮机构的运动分析
1
转动运动
通过凸轮的旋转,实现机构的直线或曲线运动。
2
滑动运动
随着凸轮轮廓的变化,机构的接触点会产生水平或竖直方向的滑动运动。
3
摇摆运动
凸轮的摇杆或滚柱可以实现机构的摇摆运动。
凸轮机构的布置和设计原则
1 布置方式
根据机构的运动要求和空间限制,选择合适 的凸轮布置方式,如列状、行状或环状。
2 设计原则
在凸轮机构的设计过程中,要考虑机构的刚 度、强度和稳定性等因素,以提高机构的性 能。
凸轮机构的应用案例
发动机气门机构
凸轮机构用于控制发动机气门的 开闭,保证发动机的正常运行。
印刷机印版定位
凸轮机构用于实现印刷机印版的 准确定位,提高印刷质量。
纸张折叠机构
凸轮机构用于纸张折叠机构,实 现精确的折叠操作。
小结和要点
1 2 3 4
5
6
凸轮机构是一种常见的机械传动机构。 凸轮机构具有多种分类和特点。 凸轮的设计和参数选择需要考虑多个因素。 凸轮机构的运动分析可以通过几何和动力学方法 实现。 凸轮机构的布置和设计应根据具体要求进行选择。
凸轮机构在多个领域都有广泛应用。

凸轮机构是机械工程中常见的一种机构,用于将轮系运动转化为直线或曲线 的机械动作。它具有简单可靠的特点,广泛应用于各个领域。

第9章_凸轮机构及其设计

第9章_凸轮机构及其设计
是在圆柱面上开有曲线凹 槽或在圆柱端面上具有曲线轮 廓的构件。 它是一种空间凸轮机构。 行程可较大,但结构较复杂。e
ω
V
V
ω
ω
2、按推杆末端(the follower end)形状分:(如图9-5) 1)尖顶(knife-edge)推杆(图a、b): (a) (a) 结构简单,因是点接触,又是滑动 (d 摩擦,故易磨损。只宜用在受力不 (a)(a) ( (a) 大的低速凸轮机构中,如仪表机构。 图a) 图b)
▲ 注意:
1)所有运动过程的推杆位 移s是从行程的最近位臵 开始度量。回程时,推 杆的位移s是逐渐减小的。 2)凸轮的转角δ是从各个 运动过程的开始来度量。 如:在推程时,δ是从推程开始时进行度量;
在回程时,δ是从回程开始时进行度量。
3)有的凸轮δ01=0° (无远休),有的δ02=0°(无近休), 有的同时无远休和无近休。 e
2)运动线图——用于图解法
s = s(δ)—位移线图;如图9-8b所示。 v = v(δ)—速度线图; a = a(δ)—加速度线图。
图9-8
推杆的运动规律可分为基本运动规律和组合运动规律。 e
一)基本(Basic)运动规律
1、等速运动规律(一次多项式运动规律) v=常数。 s 1)方程: s=hδ/δ0 推程 v=hω/δ0 a=0 (9-3a) (δ:0~δ0)
对心直动尖顶 推杆盘形凸轮 机构
偏臵直动尖顶 推杆盘形凸轮 机构
对心直动滚子 直动平底推杆 推杆盘形凸轮 盘形凸轮机构 机构
摆动尖顶推杆 盘形凸轮机构
摆动滚子推杆 盘形凸轮机构
摆动平底推杆 盘形凸轮机构
上面介绍的是一些传统的凸轮机构,目前还研究出了 一些新型的凸轮机触,增加了接触面积, 提高了凸轮机构的承载能力。

凸轮机构及其设计ppt课件

凸轮机构及其设计ppt课件

反转法原理
给整个凸轮机构加上一个与凸轮转动的角速度ω大 小相等、方 向相反的角速度-ω,此时凸轮不动,从动件一方面随导路以- ω绕轴转动,另一方面又在导路中按预定的运动规律作往复移动。 由于从动件的尖顶始终与凸轮轮廓相接触,其尖顶的运动轨迹就 是凸轮轮廓曲线
依据此原理可以用几何作图的方法 设计凸轮的轮廓曲线,例如:
格要求。则应选择直线或圆弧等易加工 o
δ
曲线作为凸轮的轮廓曲线。如夹紧凸轮。 a
+∞Biblioteka 2. 机器的工作过程对推杆运动有要求,
δ
则应严格按工作要求的运动规律来设计凸 o
轮廓线。如刀架进给凸轮。
-∞
3. 对高速凸轮,要求有较好的动力特性, 正弦改进等速
除了避免出现刚性或柔性冲击外,还应当
考虑Vmax和 amax。
作时振动、噪音都比较小,可以用于高 速、轻载的场合。
δ
a amax=6.28hω2/δ02
无冲击,但amax 较大。
δ
将几种运动规律组合,以改善运动特性。 s
二、选择运动规律
h
选择原则:
o 1.机器的工作过程只要求凸轮转过一角
δ
δ
度δ0时,推杆完成一行程h〔直动推杆〕 v
0
或φ〔摆动推杆),对运动规律并无严
的基圆半径r0,角速度ω和推杆的运动规 律,设计该凸轮轮廓曲线。

8’ 9’
ω
7’
11’
5’ 3’
12’
1’
13’
14’
12 345 67 8 9 11 13 15
设计步骤小结: ①选比例尺μl作基圆r0。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件尖顶在各等份点的位置。 ④将各尖顶点连接成一条光滑曲线。

凸轮轴结构与设计

凸轮轴结构与设计

第15单元:学时数:2学时教学目的与要求:1.掌握凸轮机构的组成、分类、特点及其应用;2.了解从动件的常用运动规律;3.加深机械由多种机构组成的概念。

教学重点与难点:重点:1.凸轮机构的基本类型及其应用2.从动件的常用运动规律难点:从动件的常用运动规律教学手段与方式:课堂讲授,实物模型教学,提问,课堂练习教学内容:第五章常用机构第二节凸轮机构一、凸轮机构的基本类型及其应用二、从动件的常用运动规律第五章常用机构第二节凸轮机构一、凸轮机构的基本类型及其应用1. 凸轮机构的组成和应用凸轮——具有曲线轮廓或沟槽的构件。

传动时,凸轮用轮廓或沟槽驱动从动件运动。

凸轮机构的主要组成:凸轮、从动件及机架三个基本构件。

是一种含高副的常用机构。

实例:内燃机配气凸轮机构。

(图形见课件)功用:凸轮等速回转,用其曲线轮廓驱动从动件开启和关闭(关闭需借助弹簧的作用),实现进气口或排气口。

实例:绕线机(图形见课件)功用:凸轮作等速回转时,其曲线轮廓驱动布线杆往复摆动,将线均匀地缠绕在绕线轴3上。

实例:行程控制凸轮机构(图形见课件)功用:凸轮固定在机器的运动部件上并随之移动,当到达预定位置时,其轮廓推动行程开关的推杆,使之发生电信号,以实现控制运动部件变速、停止或换向等。

实例:机床自动进给机构(图形见课件)功用:凸轮作等速回转,并用其曲线形沟槽驱动从动件绕固定回转副O作往复摆动,通过扇形齿轮和齿条带动刀架,完成刀具的进给运动。

凸轮机构的特点:①结构简单、紧凑;工作可靠,只需设计适当的凸轮轮廓,便可使从动件得到准确的任意预期运动。

②凸轮与从动件间为高副接触,易磨损。

常用于传力不大的场合。

如:自动机床进刀机构、上料机构、内燃机配气机构、印刷机、纺织机等。

2. 凸轮机构的分类凸轮机构的种类繁多,常用凸轮机构分类如下:(图形见课件)(1)按凸轮的形状分①盘形凸轮——凸轮形状如盘,绕定轴转动且具有变化的向径。

它是凸轮的基本型式。

②移动凸轮——凸轮形状如板,沿直线相对机架作往复移动,并具有曲线形的侧轮廓。

凸轮机构及其设计详解

凸轮机构及其设计详解

第二节 凸轮机构的传力特性 G
传力特性分析目的 确定构件之间相互的作用力,为 解决磨损及强度尺寸设计提供可靠的 数据。
压力角—不计摩擦时,凸轮对
从动件作用力方向线nn与从动件上 力作用点的速度方向之间所夹的锐 角。
FR2 2
d
vl
F2R1
n
tb
B
t
1 F
n
传力特性分析
Fx 0 F sin( 1) (FR1 FR2 )cos2 0
确定凸轮的基圆半径rb。 步骤
● 确定凸轮转动轴心的位置
● 确定从动件的正确偏置方位以及偏距e
● 将[]代入前式
rb
d
s d tan[ ]
e
s
2
e2
● 确定ss(),求出dsd,代入上式求出一系列rb值,选
取其中的最大值作为凸轮的基圆半径
工程上常常借助于诺模图(Nomogram)来确定凸轮的 最小基圆半径。借助于诺模图既可以近似确定凸轮的最大 压力角,也可以根据所选择的基圆半径来校核最大压力 角。
一、工作循环图与凸轮工作转角的确定 凸轮的工作转角应当根据机器中各个执行机构动作之间 的配合关系,由工作循环图(Working cycle diagram)来确 定。
电阻坯件 电阻送料机构凸轮
电阻帽 送帽压帽机构凸轮
送帽压帽机构凸轮
夹紧机构凸轮
工艺过程
电阻自动压帽机传动系统图
电阻体上料
电阻体夹紧
送帽
合。
,t
⑸ 3–4–5次多项式运动规律(Law of polynomial motion)
推程
s
h10
3
15
4
6
5

凸轮机构的分析和设计

凸轮机构的分析和设计

3.滚子推杆滚子半径的选择 采用滚子推杆时,滚子半径的选择,要考虑滚子的结构、强 度及凸轮轮廓曲线的形状等多方面的因素。 (1)凸轮轮廓曲线与滚子半径的关系 1)当凸轮廓线内凹时,则ρa=ρ+rr。 此时,无论滚子半径大小如何,凸轮的工作廓线总是可以平 滑地作出来。 2)当凸轮廓线外凸时, 则ρa=ρ-rr。 若ρ=rr时, 则ρa=0,工作廓线出现变尖现象。 若ρ <rr时, 则ρa<0, 工作廓线出现交叉, 推杆运动规 律出现失真现象。
凸轮机构的分析和设计
一、 凸轮机构的应用和分类
1.凸轮机构的应用 (1)实例 内燃机配气凸轮机构 自动机床进刀机构 自动机床凸轮机构 (2)特点
适当的设计凸轮廓线可实现各种运动规律,结构简单,紧凑; 但易磨损,传力不大。
2.凸轮机构的分类 (1)按凸轮的形状分
1)盘形凸轮(移动凸轮)
2)圆柱凸轮 (2)按推杆形状及运动形式分 1)尖顶推杆、滚子推杆和平底推杆 2)对心直动推杆、偏置直动推杆和摆动推杆 (3)按保持高副接触方法分 1)力封闭的凸轮机构 2)几何封闭的凸轮机构
最大速度vmax (hω /δ0)×
1.00
最大加速度amax 2 2 (hω /δ0 )×
∞ 4.00
最大跃度jmax 2 2 (hω /δ0 )×
适用场合
低速轻载
∞ ∞ 39.5 60.0
2.00
1.57 2.00 1.88
中速轻载 中低速重载
中高速轻载 高速中载
余弦加速度 正弦加速度
5次多项式
(2)凸轮廓线设计方法的基本原理 在设计凸轮廓线时,可假设凸轮静止不动,时其推杆相对凸 轮作反转运动,同时又在其导轨内作往复运动,作出推杆在这种 复合运动中的一系列位置,则其尖顶的轨迹就是所要求的凸轮廓 线。这就是凸轮廓线设计的反转法原理。 2.用作图法设计凸轮廓线 (1)直动推杆盘形推杆凸轮廓线的设计 1)偏置直动尖顶推杆盘形凸轮廓线的设计 2)偏置直动滚子推杆盘形凸轮廓线的设计 3) 对心直动平底推杆盘形凸轮廓线的设计 结论 尖顶推杆盘形凸轮廓线的设计是滚子推杆和平底 推杆盘形凸轮设计的基本问题及方法。

机械原理第9章凸轮机构及其设计

机械原理第9章凸轮机构及其设计

第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。

凸轮机构及其设计

凸轮机构及其设计

第三章凸轮机构及其设计§3-1 概述1 凸轮机构的基本组成及应用特点组成:凸轮、从动件、机架运动特征:主动件(凸轮)作匀角速回转,或作匀速直线运动,从动件能实现各种复杂的预期运动规律。

尖底直动从动件盘形凸轮机构、尖底摆动从动件盘形凸轮机构滚子直动从动件盘形凸轮机构、滚子摆动从动件盘形凸轮机构圆柱凸轮机构、移动凸轮机构、平底直动从动件盘形凸轮机构端面圆柱凸轮机构、内燃机配气凸轮机构优点:(1)从动件易于实现各种复杂的预期运动规律。

(2)结构简单、紧凑。

(3)便于设计。

缺点:(1)高副机构,点或线接触,压强大、易磨损,传力小。

(2)加工制造比低副机构困难。

应用:主要用于自动机械、自动控制中(如轻纺、印刷机械)。

2 凸轮机构的分类1.按凸轮形状分:盘型、移动、圆柱2.按从动件运动副元素分:尖底、滚子、平底、球面(P197)3.按从动件运动形式分:直动、摆动4.按从动件与凸轮维持接触的形式分:力封闭、形封闭3 凸轮机构的工作循环与运动学设计参数§3-2凸轮机构基本运动参数设计一.有关名词行程-从动件最大位移h。

推程-S↑的过程。

回程-S↓的过程。

推程运动角-从动件上升h,对应凸轮转过的角度。

远休止角-从动件停留在最远位置,对应凸轮转过的角度。

回程运动角-从动件下降h,对应凸轮转过的角度。

近休止角-从动件停留在低远位置,对应凸轮转过的角度。

一个运动循环凸轮:转过2π,从动件:升→停→降→停基圆-以理论廓线最小向径r0作的圆。

尖底从动件:理论廓线即是实际廓线。

滚子从动件:以理论廓线上任意点为圆心,作一系列滚子圆,其内包络线为实际廓线。

从动件位移线图——从动件位移S与凸轮转角 (或时间t)之间的对应关系曲线。

从动件速度线图——位移对时间的一次导数加速度线图——位移对时间的二次导数 统称从动件运动线图 度量基准(在理论廓线上)1)从动件位移S :推程、回程均从最低位置度量。

2)凸轮转角δ:从行程开始对应的向径度量(以O 为圆心,O 至行程起始点为半径作弧与导路中心线相交得P 点,∠POX=δ)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15单元:学时数:2学时教学目的与要求:
1.掌握凸轮机构的组成、分类、特点及其应用;
2.了解从动件的常用运动规律;
3.加深机械由多种机构组成的概念。

教学重点与难点:
重点:1.凸轮机构的基本类型及其应用
2.从动件的常用运动规律
难点:从动件的常用运动规律
教学手段与方式:
课堂讲授,实物模型教学,提问,课堂练习
教学内容:
第五章常用机构
第二节凸轮机构
一、凸轮机构的基本类型及其应用
二、从动件的常用运动规律
第五章常用机构
第二节凸轮机构
一、凸轮机构的基本类型及其应用
1. 凸轮机构的组成和应用
凸轮——具有曲线轮廓或沟槽的构件。

传动时,凸轮用轮廓或沟槽驱动从动件运动。

凸轮机构的主要组成:凸轮、从动件及机架三个基本构件。

是一种含高副的常用机构。

实例:内燃机配气凸轮机构。

(图形见课件)
功用:凸轮等速回转,用其曲线轮廓驱动从动件开启和关闭(关闭需借助弹簧的作用),实现进气口或排气口。

实例:绕线机(图形见课件)
功用:凸轮作等速回转时,其曲线轮廓驱动布线杆往复摆动,将线均匀地缠绕在绕线轴3上。

实例:行程控制凸轮机构(图形见课件)
功用:凸轮固定在机器的运动部件上并随之移动,当到达预定位置时,其轮廓推动行程开关的推杆,使之发生电信号,以实现控制运动部件变速、停止或换向等。

实例:机床自动进给机构(图形见课件)
功用:凸轮作等速回转,并用其曲线形沟槽驱动从动件绕固定回转副O作往复摆动,通过扇形齿轮和齿条带动刀架,完成刀具的进给运动。

凸轮机构的特点:
①结构简单、紧凑;工作可靠,只需设计适当的凸轮轮廓,便可使从动件得到准确的任意预期运动。

②凸轮与从动件间为高副接触,易磨损。

常用于传力不大的场合。

如:自动机床进刀机构、上料机构、内燃机配气机构、印刷机、纺织机等。

2. 凸轮机构的分类
凸轮机构的种类繁多,常用凸轮机构分类如下:(图形见课件)
(1)按凸轮的形状分
①盘形凸轮——凸轮形状如盘,绕定轴转动且具有变化的向径。

它是凸轮的基本型式。

②移动凸轮——凸轮形状如板,沿直线相对机架作往复移动,并具有曲线形的侧轮廓。

③圆柱凸轮——凸轮形状如圆柱,绕其轴线定轴转动且有曲线形沟槽。

圆柱凸轮可视为是移动凸轮卷成圆柱而成的。

平面凸轮机构——有盘形凸轮、移动凸轮构成凸轮机构。

空间凸轮机构——圆柱凸轮等构成的凸轮机构。

(2)按从动件的结构形式分
①尖端从动——从动件端部呈尖点或凿刃形。

能与任何凸轮廓线保持接触,从动件可实现任意运动。

特点及应用:端部与凸轮是高副接触,接触应力大,易磨损,故只用于轻载低速的场合。

在实际应用中,尖端常做成半径不大的圆头形。

②滚子从动件——从动件端部装有可以自由转动的滚子。

能减小摩擦和磨损、传递较大的动力。

特点及应用:端部结构复杂,质量较大,不易润滑,故不宜用于高速。

③平底从动件——不计摩擦时,凸轮对从动件的驱动力垂直于平底,有效作用力较大。

特点及应用:凸轮与平底接触处易形成楔形油膜,故常用于高速凸轮。

但不能用于有内凹或直线轮廓的凸轮。

(3)按从动件运动形式分
①直动从动件——作往复直线移动。

对心直动从动件:从动件导路通过盘形凸轮回转中心。

偏置直动从动件:从动件导路不通过盘形凸轮回转中心。

偏距e——从动件导路与凸轮回转中心的距离。

②摆动从动件——从动件作往复摆动。

(4)按锁合方式分
锁合——使凸轮轮廓与从动件始终保持接触。

锁合的方式有:
①力锁合——靠重力、弹簧力或其它力锁合。

例如:弹簧力锁合
②几何锁合——靠凸轮和从动件的特殊几何形状锁合。

例如:圆柱凸轮的凹槽两侧面间的距离处处等于滚子直径,能保证滚子与凸轮始终接触,以实现锁合。

其它常用的几何锁合方式有“主回凸轮”、“等径凸轮”及“等宽凸轮”等。

二、从动件的常用运动规律
1. 凸轮机构运动概述
例:对心尖端直动从动件盘形凸轮机构。

运动过程分析:凸轮逆时针方向匀速转动,从动件尖端在离轮心最近(低)位置A和最远(高)位置B'之间按某一运动规律往复移动。

(a) (b)
基圆——以凸轮轮廓上最小半径r 图5-39 凸轮机构及其运动
A b 为半径作的圆。

从动件与基圆上的点接触时处于“最低”位置,是从动件上升的起始位置。

AB 推程:凸轮转过Ф角时,从动件与凸轮轮廓t 段接触,并上升h 至最高位置B'。

h ——升程
Ф——推程运动角
t 远程休止过程:凸轮转过ФS 角时,从动件与凸轮轮廓段接触,并在最高处静止不动。

BC ——远程休止角
ФS A C ′段接触,从动件下降h 。

回程:凸轮转过Ф角时,从动件与凸轮轮廓上h ——回程运动角
Фh 近程休止过程:凸轮转过Фs ˊ角时,从动件尖端与凸轮轮廓上A'A 段接触,从动件在最低处保持不动。

Ф——近程休止角
s 凸轮连续回转时,从动件重复上述升一停一降一停运动过程。

从动件的位移与凸轮转角(或时间)的关系可用位移线图表示。

[如图5-39(b)]
升一停一降一停是最典型的运动过程。

在工程实践中,有缺少远程休止、缺少近程休止或同时缺少远、近程休止的情况,都可视为典型运动过程的特殊情况。

凸轮轮廓上的AB 段和CA'段的形状尺寸决定了从动件推程和回程的运动规律。

2. 从动件常用位移线图
在工程实际应用中,凸轮的轮廓要根据从动件的位移线图确定,而从动件的位移线图又要根据工作要求来决定。

几种从动件常用的位移线图、作图方法、特点及适用范围如下表:。

相关文档
最新文档