最新椭圆的图像与性质
椭圆的简单几何性质课件

椭圆的简单几何性质课件椭圆的简单几何性质椭圆,作为一种常见的几何形状,具有许多有趣的性质和特点。
在这篇文章中,我们将探讨椭圆的一些简单几何性质,帮助读者更好地理解和应用椭圆。
一、椭圆的定义和基本元素椭圆是指平面上到两个固定点F1和F2的距离之和等于常数2a的点的轨迹。
这两个固定点称为焦点,连接两个焦点的线段称为主轴,主轴的中点称为椭圆的中心。
椭圆的两个焦点与中心之间的距离称为焦距,记为c。
椭圆的长轴长度为2a,短轴长度为2b,其中a大于b。
二、椭圆的离心率和焦半径椭圆的离心率是一个重要的参数,用e表示。
离心率的定义是焦距与长轴长度的比值,即e=c/a。
离心率可以用来描述椭圆的扁平程度,当离心率接近于0时,椭圆趋近于圆形;当离心率接近于1时,椭圆趋近于直线。
与离心率相关的概念是焦半径。
焦半径是指从椭圆上的任意一点到两个焦点的距离之和,记为r。
根据焦半径的定义,我们可以得到一个重要的结论:椭圆上的任意一点到两个焦点的距离之和等于2a,即r=2a。
三、椭圆的方程和参数方程椭圆的方程是描述椭圆上的点的数学表达式。
椭圆的标准方程是(x-h)^2/a^2+(y-k)^2/b^2=1,其中(h,k)是椭圆的中心坐标。
根据椭圆的定义,我们可以得到一个重要的性质:椭圆上的任意一点到中心的距离与椭圆的长轴、短轴长度之间存在一定的关系,即(x-h)^2/a^2+(y-k)^2/b^2=1。
除了标准方程,椭圆还可以用参数方程来表示。
参数方程是通过引入一个参数t,将椭圆上的点的坐标表示为x=a*cos(t)+h,y=b*sin(t)+k。
参数方程的优点是可以方便地描述椭圆上的点的运动和变化。
四、椭圆的性质和应用椭圆具有许多有趣的性质和应用。
首先,椭圆是一个闭合曲线,它的形状稳定且对称。
其次,椭圆上的点到两个焦点的距离之和是常数,这个性质可以应用于天文学中的行星轨道计算、卫星轨道设计等领域。
此外,椭圆还有许多与切线、法线、对称性等相关的性质。
椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)
高二人教版数学椭圆知识点

高二人教版数学椭圆知识点椭圆是高中数学中一个重要的几何图形,它在二维平面上呈现出特定的形状和性质。
本篇文章将为大家介绍高二人教版数学课程中关于椭圆的基本知识点。
一、椭圆的定义椭圆是指到两个定点F1和F2距离之和等于常数2a的点P的轨迹。
其中,F1和F2称为椭圆的焦点,2a为椭圆的长轴长度。
二、椭圆的性质1. 焦距性质:椭圆上任意一点P到两个焦点F1和F2的距离之和等于常数2a。
2. 对称性质:椭圆关于长轴和短轴都具有对称性。
3. 半焦距性质:椭圆的焦点到椭圆上任意一点P的距离之和等于椭圆的长轴长度2a。
4. 离心率性质:椭圆的离心率定义为离心率e = F1P / PF2,其中P为椭圆上任意一点。
离心率决定了椭圆形状的圆形程度,当离心率小于1时,椭圆更加靠近圆形。
三、椭圆的方程椭圆的标准方程可以表示为(x - h)² / a² + (y - k)² / b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长轴半径和短轴半径。
四、椭圆的参数方程椭圆的参数方程可以表示为x = h + acosθ,y = k + bsinθ,其中θ为参数。
五、椭圆的几个重要点1. 中心点:椭圆的中心点坐标为(h, k)。
2. 长轴端点:椭圆的长轴端点坐标为(h ± a, k)。
3. 短轴端点:椭圆的短轴端点坐标为(h, k ± b)。
4. 焦点坐标:椭圆的焦点坐标为(h ± c, k),其中c = √(a² - b²)。
六、椭圆的参数方程的参数意义在椭圆的参数方程中,参数θ表示椭圆上的任意一点的弧度角,取值范围为0至2π。
通过改变θ的取值,可以得到椭圆上的所有点坐标。
七、椭圆的图像与实际应用椭圆图形在现实生活中有广泛的应用。
例如,椭圆形状的行星轨道、地球绕太阳的轨迹等都可以用椭圆来描述。
此外,椭圆在艺术设计和建筑设计中也常常被使用。
椭圆的几何性质

解法一:①若椭圆的焦点在x轴上,设方程为
x2 y2 1(a b 0) a2 b2
由题意得:2a 9 a2
3
0 b2
2b 解得
1
a b
3 1
∴椭圆的方程为 x2 y2 1
9
②若椭圆的焦点在y轴上,设方程为
y2 a2
x2 b2
由题意得:2a 0 a2
y2
2
b
=1
23:21:49
47
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
23:21:49
48
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
23:21:49
49
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
23:21:49
50
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
因为 a > c > 0,所以0 <e <1
[2]离心率对椭圆形状的影响:
1)e 越接近 1,c 就越接近 a, b就越小,此时椭圆就越扁。
2)e 越接近 0,c 就越接近 0,
b
x
O
c
a
b就越大,此时椭圆就越趋近于圆。
23:21:49
椭圆性质.gsp
57
应用举例 例1已知椭圆方程为9x2+y2=9,
椭圆的顶点坐标 y
九年级下册《椭圆》知识点总结

九年级下册《椭圆》知识点总结
1.椭圆的定义
椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。
2.椭圆的性质
长轴和短轴:椭圆的两个轴分别为长轴和短轴,长轴的长度大于短轴的长度。
焦点和准线:椭圆的两个焦点是确定椭圆形状的关键点,准线是与焦点垂直且通过椭圆中心的直线。
离心率:椭圆的离心率表示椭圆形状的圆心偏离焦点的程度。
3.椭圆的方程
椭圆的标准方程:(x - h)^2 / a^2 + (y - k)^2 / b^2 = 1,其中 (h。
k) 是椭圆中心的坐标,a 和 b 分别是长轴和短轴的半径长度。
4.椭圆的图像特点
椭圆的图像是一个闭合的曲线,呈现出拉伸的圆形。
焦点在椭圆的长轴上,并且与准线对称。
椭圆的离心率小于1,且离心率越小,椭圆形状越接近圆形。
5.椭圆的应用
椭圆曲线加密:椭圆曲线加密算法是一种公钥加密算法,广泛应用于信息安全领域。
太阳能聚焦器:通过椭圆形状的反射面将太阳光聚焦在一个点上,实现能量的集中利用。
以上是九年级下册《椭圆》的知识点总结。
椭圆是数学中重要的几何图形,在应用中有广泛的用途和意义。
椭圆的简单几何性质ppt课件

a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e
1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,
消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1
2
a
b
2
2
x
y
2 2 1
b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0
2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭
第8讲:椭圆的简单几何性质

第8讲:椭圆的简单几何性质基本知识点1 椭圆的范围 以椭圆22221(0)x y a b a b+=>>为例.由标准方程可知,椭圆上点的坐标(,)x y 都适合不等式22221,1x y a b≤≤,即2222,x a y b ≤≤,所以||,||.x a y b ≤≤ 这说明椭圆位于直线x a =±和y b =±所围成的矩形框内(如图2.2-8).2 椭圆的对称性以椭圆与22221(0)x y a b a b+=>>为例. (1).椭圆的对称轴:坐标轴.(2).椭圆的对称中心:原点O (0,0).椭圆的对称中心叫做椭圆的中心.通过观察椭圆的形状,可以发现椭圆既是轴对称图形,又是中心对称图形.3 椭圆的顶点与长轴、短轴以椭圆22221(0)x y a b a b+=>>为例. (1).椭圆的顶点令0x =,得y b =±;令0y =,得x a =±.这说明12(,0),(,0)A a A a -是椭圆与x 轴的两个交点,12(0,),(0,)B b B b -是椭圆与y 轴的两个交点.因为x 轴、y 轴是椭圆的对称轴,所以椭圆和它的对称轴有四个交点,这四个交点叫做椭圆的顶点.(2).椭圆的长轴、短轴线段A 1A 2叫做椭圆的长轴,它的长为2a ,a 叫做椭圆的长半轴长.线段B 1B 2叫做椭圆的短轴,它的长为2b ,b 叫做椭圆的短半轴长.4 椭圆的离心率(1).定义:椭圆的焦距与长轴长的比称为椭圆的离心率,记作2.2c c e a a == (2).范围:因为0a c >>.所以01,c a<<即(0,1)e ∈. 5 直线与椭圆的位置关系(1).直线与椭圆的三种位置关系:(1)相交;(2)相切;(3)相离.(2).直线与椭圆的位置关系的判断:直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式△来判定:△0>⇔直线与椭圆相交;△0=⇔直线与椭圆相切;△0<⇔直线与椭圆相离.(3).弦长公式一条直线被椭圆所截得的线段叫做椭圆的弦.若直线y kx b =+与椭圆相交于不同的两点1122(,),(,),A x y B x y 则直线被椭圆所截得的弦长公式为212||1||AB k x x =+-或 1221||1||AB y y k =+-.性质的应用应用点一 由方程求椭圆的几何性质例1. 求椭圆 22925225x y +=的长轴长、短轴长、离心率、焦点和顶点坐标,并用描点法画出这个椭圆.应用点二 由椭圆的几何性质求方程例2(1)已知椭圆C 以坐标轴为对称轴,长轴长是短轴长的5倍。
椭圆的几何性质课件

13:20:35
21
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
13:20:35
22
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
13:20:35
23
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
13:20:35
24
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
13:20:35
3.椭圆中a,b,c的关系是:
13:20:34
c2 a2 b2
1
一、椭圆的范围
由
x2 a2
y2 b2
1
x2 a2
1
和
y2 b2
1
即 x a和 y b
y
y=b
-a≤x≤a , -b≤y≤b x =-a
由
x =a
o
x
y = -b
13:20:34
3
二、椭圆的对称性 y
· · F1
o F2
x
x2 + a2
令 x=0,得 y=?说明椭圆与 y轴的交点? y
B2 (0,b)
A1
y2
2
b
=1
13:20:36
51
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
13:20:36
52
y
· · F1
o F2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e 10
e 2
y 2x 4
y=±3x
xy
______________________________ ____________________
(0,±5)
0, 74
e 74 5
x7 y 5
例2:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原 双曲线的共轭双曲线,求证:
(1)双曲线和它的共轭双曲线有共同的渐近线; (2)双曲线和它的共轭双曲线的四个焦点在同一个圆上.
2、对称性:关于x轴,y轴,原点对称。
3、顶点 A1(-a,0),A2(a,0)
A1
4、轴:实轴 A1A2 虚轴 B1B2
5、渐近线方程:
6、离心率: e= c
a
x y 0 ab
Y
B2
X
A2
B1
______________________________ ____________________
焦点在y轴上的双曲线图像
Y
y2 x2 1
a2 b2
F2
A2
B1
O
B2
X
A1
F1
______________________________ ____________________
焦点在y轴上的双曲线的几何性质
双曲线标准方程:
y2
x2
1
a2 b2
双曲线性质:
1、 范围: y≥a或y≤-a
2、对称性:关于x轴,y轴,原点对称。
解:把方程化为标准方程: y 2
42
x2 32
1
可得:实半轴长a=4
虚半轴长b=3
半焦距c= 42 32 5 焦点坐标是(0,-5),(0,5)
离心率:
e c a
5 4
渐近线方程:
x 3 y, 即
4
y 4x 3
______________________________ ____________________
Y
F1
B2
F’1 A1 o
B1
X
A2 F’2
F2
______________________________ ____________________
证明:(1)设已知双曲线的方程是:
x2 a2
y2
b2
1
渐近线为: x y 0
ab
则它的共轭双曲线方程是: y 2 x 2 1
b2
a2
渐近线为:
标准 方程
x2 y2 1
a2 b2
范 围 |x|a,|y|≤b
对称性
顶点 焦点
对称轴 离心率 准线
关于X,Y轴, 原点对称
(±a,0),(0,±b)
(±c,0)
A1A2 ; B1B2
e c a
x a2 c
椭圆的图像与性质
Y
B2
A1
F1
o
A2
F2
x a2
B1
c
______________________________ ____________________
yx ba
0 可化为:x y 0
ab
故双曲线和它的共轭双曲线有共同的渐近线
(2)设已知双曲线的焦点为F(c,0),F(-c,0) 它的共轭双曲线的焦点为F1’(0,c’), F2’(0,-c’),
∵ c a2 b2 c a2 b2 ∴c=c' 所以四个焦点F1, F2, F3, F4在同一个圆 x2y2a2b2上 .
3、顶点 B1(0,-a),B2(0,a)
A1
4、轴:实轴 B1B2 ; 虚轴 A1A2
5、渐近线方程: x y 0 ab
6、离心率: e=c/a
Y
F2 B2
o
B1
F2
A2 X
______________________________ ____________________
例题1:求双曲线 9x2 16y2 144的实半轴长,虚半轴长, 焦点坐标,离心率.渐近线方程。
问:有相同渐近线_的___双____曲___线___方____程___一____定___是__ 共轭双曲线吗?
____________________
x a2 c
焦点在x轴上的双曲线图像
Y
x2 a2
y2 b2
1
B2
F1
A1
A2 F2 X
B1
______________________________ ____________________
焦点在x轴上的双曲线的几何性质
双曲线标准方程: x 2 y 2 1 a2 b2
双曲线性质:
1、 范围: x≥a或x≤-a
练习题:填表
标 准 方 x 2 8 y 2 32
程
2a
9 x 2 y 2 81 x 2 y 2 4
6
4
x2 y 2 1 49 25
10
42 82
2b
4
18
4
14
范围
|x|≥
|x|≥3
|y|≥2
|y|≥5
顶点 焦点
离心率 渐进线
4 2,0
6,0
e 3 2 2
(±3,0)
(0,±2)
31,00 0,2 2