2017年春季学期新版新人教版七年级数学下学期6.2、立方根学案11
最新人教版七年级数学下册6.2立方根(教案)

-在实际应用中,如计算一个立方体木块的体积,已知边长为2米,通过立方根计算得出体积为8立方米。
2.教学难点
-立方根的求法:对于一些复杂的数,学生可能难以直接得出其立方根。
-立方根的近似计算:在解决实际问题时,需要估算立方根的值,学生可能对近似计算方法掌握不足。
三、教学难点与重点
1.教学重点
-立方根的定义:理解立方根的概念,明确正数、负数和零的立方根的求法。
-立方根的计算方法:掌握计算立方根的基本方法,如分解因数法、近似计算法等。
-立方根的应用:学会将立方根应用于解决实际问题,如体积、密度等计算。
举例解释:
-通过立方根的定义,让学生明白一个数的立方根是什么,例如:2的立方根是8,-2的立方根是-8,0的立方根是0。
然而,我也注意到,在小组讨论过程中,部分学生过于依赖同学,缺乏独立思考。为了培养学生的独立思考能力,我打算在接下来的教学中,增加一些个人任务,让学生在学习过程中学会独立分析问题和解决问题。
同时,我也在思考如何更好地关注到每一个学生的学习情况。在今天的课堂上,我尽量让每个学生都有发言的机会,但仍然担心有些学生可能没有完全掌握知识点。我计划在课后对这部分学生进行个别辅导,以确保他们能够跟上教学进度。
最后,我认为在今后的教学中,要更加注重培养学生的逻辑推理能力和数学建模能力。这两项能力对于学生理解立方根以及解决相关问题具有重要意义。我会通过设计更多有针对性的问题和案例,引导学生运用所学知识进行推理和建模。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
七年级数学下册(人教版)6.2立方根教学设计

一、教学目标
(一)知识与技能
1.理解立方根的概念,掌握立方根的表示方法,能正确书写立方根的数学符号。
2.学会使用计算器或手算求解简单正整数的立方根,并掌握其基本性质。
3.能够运用立方根解决实际问题,如体积、密度等计算,以及日常生活中的一些问题。
4.通过立方根的学习,加深对整数、平方根概念的理解,形成完整的数系概念。
6.联系实际,学以致用:设计一些与生活密切相关的实际问题,让学生运用立方根知识进行解决,增强学生的数学应用意识。
7.情感教育,全面发展:在教学过程中,关注学生的情感态度,通过鼓励、赞扬等方式,培养学生的自信心和面对挑战的勇气。
四、教学内容与过程
(一)导入新课
在课堂的开始,我将以一个简单的数学魔术作为导入,激发学生的好奇心。我会拿出一个立方体模型,并告诉学生这个立方体的体积是8立方厘米,然后提问:“同学们,你们知道这个立方体的边长是多少厘米吗?”通过这个问题,引导学生思考立方体边长与体积之间的关系。
2.立方根的计算,特别是非整数的立方根计算,是本章节的难点。学生需要掌握计算方法和技巧,并能应用于解决实际问题。
-教学设想:设计不同难度的计算题,从简单的整数立方根计算开始,逐步过渡到小数和分数的立方根计算。通过示例演示和练习,帮助学生掌握计算方法。
3.立方根与平方根的关系及应用是另一个重点。学生需要理解两者之间的联系,并能灵活运用。
(三)学生小组讨论
在讲授完新知后,我会组织学生进行小组讨论。每个小组都会得到几个立方根的计算题,包括整数、小数和分数的立方根。我会要求学生在小组内共同探讨解题方法,并尝试找出立方根计算的规律。
在这个过程中,我会巡回指导,解答学生的疑问,并引导学生发现立方根与平方根的关系。此外,我还会鼓励学生分享自己的解题心得,以促进小组间的交流与学习。
人教版数学七年级下册6.2《立方根》教学设计

人教版数学七年级下册6.2《立方根》教学设计一. 教材分析人教版数学七年级下册6.2《立方根》是初中数学中重要的一部分,主要让学生了解立方根的概念,掌握求立方根的方法,并能够应用立方根解决实际问题。
本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习四次根式等知识打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数、实数等知识,对数的概念有一定的了解。
但学生对立方根的概念和求法还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对负数的立方根存在疑惑,需要通过具体例子进行解释和引导。
三. 教学目标1.了解立方根的概念,掌握求立方根的方法。
2.能够应用立方根解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.立方根的概念和求法。
2.负数的立方根的理解。
3.应用立方根解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,通过引导、讲解、实践、讨论等方式,帮助学生理解和掌握立方根的知识。
六. 教学准备1.PPT课件。
2.练习题和实际问题。
3.教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如“一个正方体的体积是27立方米,求这个正方体的棱长。
”引导学生思考和讨论,引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,通过PPT展示立方根的图像,让学生直观地理解立方根的概念。
同时,讲解如何求一个数的立方根,以及负数的立方根。
3.操练(15分钟)让学生进行一些立方根的练习题,巩固所学知识。
练习题包括求一个数的立方根,以及判断一个数的立方根的正负等。
4.巩固(10分钟)通过一些实际问题,让学生应用立方根的知识解决问题,巩固所学内容。
如“一个立方体的体积是-8立方米,求这个立方体的棱长。
”5.拓展(10分钟)讲解立方根在实际生活中的应用,如计算物质的体积、求解方程等。
引导学生思考和讨论,培养学生的数学思维能力。
人教版数学七年级下6.2《立方根》同步教学设计

3.学生在解决实际问题时,可能难以将立方根知识与其他数学知识相结合。教师应通过丰富多样的教学活动,帮助学生建立知识间的联系,提高解决问题的能力。
4.学生的学习兴趣和动机对立方根的学习效果有重要影响。教师应关注学生的情感需求,激发学生的学习兴趣,提高学习积极性。
2.知识传授,重点突破
-使用直观教具,如立方体模型,帮助学生建立立方根的直观形象。
-通过数学推导,引导学生理解立方根的性质,并掌握计算方法。
-对计算过程中常见的错误进行归纳和讲解,帮助学生规避误区。
3.实践应用,难点攻克
-设计具有挑战性的练习题,让学生在解决问题中深化对立方根的理解。
-结合实际问题,如科学实验中的密度计算,指导学生运用立方根知识,提高应用能力。
人教版数学七年级下6.2《立方根》同步教学设计
一、教学目标
(一)知识与技能
1.理解立方根的概念,知道立方根与平方根的区别与联系,能够准确地区分和运用。
2.学会计算立方根,掌握利用计算器求解立方根的方法,提高解题速度和准确性。
3.能够运用立方根解决实际问题,如体积、密度等计算,培养学以致用的能力。
4.掌握立方根的性质,如正数的立方根为正数,负数的立方根为负数,0的立方根为0等,并能灵活运用。
-立方根性质的推导和证明。
-立方根计算过程中的错误理解和操作。
-将立方根知识应用于解决实际问题。
(二)教学设想
针对上述重难点,我提出以下教学设想:
1.创设情境,引入新课
-通过生活实例,如体积的计算,让学生感受到立方根的实际意义。
-利用数学问题,如求解一个立方体的体积,激发学生对立方根的好奇心和探究欲望。
(新人教版)数学七年级下册:6.2《立方根》教案(3份)

《立方根》教案一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a”表示,读作“三次根号a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.(四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0.让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?.练一练:抢答1.判断下列说法是否正确,并说明理由.(1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0(6)互为相反数的两个数的立方根也互为相反数.例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果.不同点: (1)定义不同.(2)个数不同.(3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业827-+《立方根》教案教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的唯一性.4、分清一个数的立方根与平方根的区别.教学重点:立方根的概念和求法。
七年级数学下册 6.2《立方根》教学案 (新版)新人教版

立方根班级: 学生姓名:●自学 自学---质疑---解疑教学目的:1、理解并掌握立方根的概念,会用符号表示一个数的立方根。
2、会求一个数的立方根。
教学重点、难点:1.重点:理解立方根的概念,理解立方与开立方是互为逆运算。
2.难点与关键:理解3a -与—3a 的相等关系教学方法:1、学生独立阅读课本P49-51页,探究课本基础知识,提升自己的阅读理解能力。
2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。
3、教师巡视,及时指导、帮助学生解决疑难问题。
●量学 自测---互查---互教1、回顾算术平方根和平方根的概念。
2、平方根和算术平方根怎样用符号表示。
3.计算:=31 ,=3)21( ,=30 =32.0 ,=-3)3.0( ,=-3)43( ,=-3)51( 。
4.填一填:27(____)3=,64(____)3-=,125(____)3-=,1258(____)3-= 5.要制作一种容积为273m 的正方体形状的包装箱,这种包装箱的边长应该是多少?解:设这种包装箱的边长是xm ,则有 =27●助学 展示---反馈---导学---点播.什么叫立方根?什么叫开立方?①一般的,如果一个数x 的 等于a ,即a x =3,那么这个数x 叫做 立方根...或. ,.a 叫做 。
求一个数的 的运算,叫做 .立方与 互为逆运算。
②填一填:∵125(____)3=,∴125的立方根是 ;∵0(____)3=,∴0的立方是0根是 ;∵8(____)3-=,∴-8的立方根是 ;∵6427(__)3-=,∴6427-的立方根是 ;③.正数的立方根是 数; 0的立方根是 ;负数的立方根是 数。
(一)立方根如何表示?①一个数a 的立方根记为 ,读作“ ”。
②3a 读作 ,a 叫 ,3叫 。
④38表示 ,38= ,-27的立方根是 ,-3的立方根是 。
(二)平方根与立方根性质有何区别?数项 目 正数 0 负数平方根立方根(三)有何性质?1.(1)∵_____,8___,833=-=-∴338__________8--;(2)∵_____,27___,2733=-=-∴3327__________27--。
人教版数学七年级下册6.2《立方根》教案
人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。
二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。
但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。
因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。
三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。
2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。
2.难点:立方根与平方根的联系与区别。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。
3.小组合作学习:分组讨论,培养学生的团队协作能力。
六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。
2.黑板:准备黑板,用于板书重要知识点和示例。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。
例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。
引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。
2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。
通过PPT展示立方根的性质,让学生观察、思考、归纳。
3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。
教师在旁边巡回指导,解答学生的疑问。
人教版七年级数学下册6.2《立方根》教学设计
人教版七年级数学下册6.2《立方根》教学设计一. 教材分析人教版七年级数学下册6.2《立方根》是学生在掌握了有理数的乘方、平方根的基础上,进一步研究立方根的概念和性质。
本节内容主要让学生了解立方根的定义,掌握求一个数的立方根的方法,以及会运用立方根解决实际问题。
教材通过引入立方根的概念,引导学生探究立方根的性质,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、平方根的概念和性质,具备了一定的数学基础。
但部分学生对平方根的概念还不是很清晰,可能在理解立方根时会受到干扰。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生建立清晰的概念。
三. 教学目标1.知识与技能:让学生掌握立方根的概念和性质,学会求一个数的立方根,会用立方根解决实际问题。
2.过程与方法:通过观察、探究、总结,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根的方法。
2.难点:立方根在实际问题中的应用。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立概念。
2.互动法:教师与学生相互交流,共同探讨问题,提高学生的参与度。
3.实例法:教师运用实际例子,让学生更好地理解立方根的应用。
六. 教学准备1.课件:制作与立方根相关的课件,包括图片、动画、实例等。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:黑板、粉笔、直尺等。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引出立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。
”让学生思考并讨论,激发学生的学习兴趣。
2.呈现(10分钟)教师给出立方根的定义,解释立方根的概念,并通过动画、图片等形式展示立方根的性质。
同时,引导学生回顾平方根的知识,对比二者之间的异同。
(人教版)七年级下册数学配套教案:6.2《 立方根》
(人教版)七年级下册数学配套教案:6.2《立方根》一. 教材分析人教版七年级下册数学第6.2节《立方根》是学生在学习了有理数、整式乘法等基础知识后的进一步拓展。
本节内容主要介绍立方根的概念、性质和求法,旨在让学生理解并掌握立方根的知识,能够运用立方根解决一些实际问题。
教材通过引入立方根的概念,让学生通过观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数、整式乘法等基础知识,具备了一定的数学思维能力。
但部分学生对抽象的数学概念理解起来较为困难,需要通过具体的操作和实例来帮助理解。
此外,学生的学习兴趣和学习积极性也需要进一步激发。
三. 教学目标1.知识与技能目标:让学生理解立方根的概念,掌握立方根的性质和求法,能够运用立方根解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生的学习兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:立方根的概念、性质和求法。
2.难点:立方根的应用和解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。
同时,学生进行小组合作学习,激发学生的学习兴趣,培养学生的合作意识。
六. 教学准备1.准备相关教学案例和实例。
2.准备教学课件和板书设计。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)通过设置问题,引导学生回顾已学知识,如整式乘法、有理数等,为新课的学习做好铺垫。
2.呈现(10分钟)介绍立方根的概念,让学生通过观察、操作、思考,理解立方根的定义和性质。
通过PPT展示立方根的图形,帮助学生形成直观的认识。
3.操练(10分钟)让学生通过实际操作,求解一些立方根的问题。
教师引导学生运用立方根的性质和求法,培养学生的动手能力和解决问题的能力。
七年级数学下册 第六章 实数6.2 立方根学案(新版)新人教版
6.2 立方根【学习目标】1、了解立方根的概念,初步学会用根号表示一个数的立方根;2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;3、体会一个数的立方根的惟一性,分清一个数的立方根与平方根的区别。
【学习重点和难点】1.学习重点:立方根的概念和求法。
2.学习难点:立方根与平方根的区别。
【学习过程】一、自主探究1.平方根是如何定义的 ? 平方根有哪些性质?2、问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是3、思考:(1) 的立方等于-8?(2)如果上面问题中正方体的体积为5cm3,正方体的边长又该是4、立方根的概念:如果一个数的立方等于a,这个数就叫做a的 .(也叫做数a的).换句话说,如果 ,那么x叫做a的立方根或三次方根. 记作: .读作“”,其中a是,3是,且根指数3 省略(填能或不能),否则与平方根混淆.5、开立方求一个数的的运算叫做开立方,与开立方互为逆运算(小组合作学习)6、立方根的性质(1)教科书49页探究(2)总结归纳:正数的立方根是数,负数的立方根是数,0的立方根是 .(3)思考:每一个数都有立方根吗?一个数有几个立方根呢?(4)平方根与立方根有什么不同?被开方数平方根立方根正数负数零二、边学边练例1、 求下列各式的值:(1)364; (2)327102例2、求满足下列各式的未知数x :(1)3x 0.008=练习1. 判断正误:(1)、25的立方根是 5 ;( )(2)、互为相反数的两个数,它们的立方根也互为相反数;( )(3)、任何数的立方根只有一个;( )(4)、如果一个数的平方根与其立方根相同,则 这个数是1;( )(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;( )(6)、一个数的立方根不是正数就是负数.( )(7)、–64没有立方根.( )2、(1) 64的平方根是________立方根是________. (2) 的立方根是________. (3) 37-是_______的立方根. (4) 若 ,则 x=_______, 若 ,则 x=________. (5) 若 , 则x 的取值范围是__________, 若 有意义,则x 的取值范围是_______________.3、计算:(1)38321+ 4、已知x-2的平方根是4±,2x y 12-+的立方根是4,求()x y x y ++的值. 三、我的感悟这节课我的最大收获是: 我不能解决的问题是:四、课后反思327()92=-x ()93=-x x x -=23x -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方根
学习目标: 理解并掌握立方根的概念,会用符号表示一个数的立方根。
会求一个数的立方根。
学习重点:理解立方根的概念并求一个数的立方根。
学习难点:立方根与平方根的区别
学习过程:
一 复习回顾
1、你记得吗?
13= 23= 33= 43= 53=
63= 73= 83= 93= 103=
求下列各式的值
(1)225= (2)64.0- =
(3)±8149= (4))9(2-=
二 自主学习
自学课本49—51页内容,完成下列要求:
1、理解立方根的概念,理解立方与开立方是互为逆运算。
(1)如果一个数的立方根等于 ,那么这个数叫做 的 或 。
(2)求一个数的 的运算,叫做 开立方 。
与 互为逆运算。
(3)符号3a 中,3是 ,3a 中的 不能省略,被开方数a 数可以是 、 或 。
(4)求下列各数的立方根:
① 27 ②-125 ③641 ④ -8
1 ⑤0
2、独立完成49页探究内容,组内合作交流,归纳出正数、负数、0的立方根的特点。
(1)正数的立方根是 数,负数的立方根是 数,0的立方根是 。
(2)你能归纳出平方根和立方根的异同点吗? 被开方数3、独立完成50页探究,理解3a -与—3a 的相等关系。
3a - —3a
三 检测
1、根据立方根的意义填空
① ∵3
28=,∴8的立方根是 ;即=38
② ∵()30.50.125=,∴0.125的立方根是 ;即=3125.0 ③∵()300=,∴0的立方根是 ;即=30
④ ∵()328-=-,∴-8的立方根是 ;即=-38 ⑤∵328327⎛⎫-=- ⎪⎝⎭
,∴278-的立方根是 ;即=-3278 2、求下列各数的立方根
(1)—8 (2)
6427 (3) ±125 (4) 81×9
3、求下列各式的值:
(1)364= (2)327-= (3)327
102 = (4)31000
1-= (5)64±= (6)64= 4、求下列各式的值。
(1)—327102 = (2)—364
27—= (3)3064.0-= (4)—
31125
98-= 5、求下列各式的值: ① 3125-= ② 31000 =
③ 31000
1- = ④ 3001.0-+01.0= 6、解下列方程 ⑴3512x = ⑵3641250x -= ⑶()31216x -=-
7、当x x 时,
8、的立方根是 ,的平方根是 ,的立方根是
94=,则x =
10、-8的一个平方根的和等于 。
11、已知4=,且(20y =,求3x y z +-的值。