第 7 章 受拉构件的截面承载力
第7章 偏心受压构件的正截面承载力

第7章偏心受压构件的正截面承载力计算当轴向压力N的作用线偏离受压构件的轴线时[图7-1a)],称为偏心受压构件。
压力N的作用点离构件截面形心的距离e称为偏心距。
截面上同时承受轴心压力和弯矩的构件[图7-1b)],称为压弯构件。
根据力的平移法则,截面承受偏心距为e的偏心压力N相当于承受轴心压力N和弯矩M(=Ne)的共同作用,故压弯构件与偏心受压构件的基本受力特性是一致的。
β)图7-1 偏心受压构件与压弯构件a)偏心受压构件b)压弯构件钢筋混凝土偏心受压(或压弯)构件是实际工程中应用较广泛的受力构件之一,例如,拱桥的钢筋混凝土拱肋,桁架的上弦杆、刚架的立柱、柱式墩(台)的墩(台)柱等均属偏心受压构件,在荷载作用下,构件截面上同时存在轴心压力和弯矩。
钢筋混凝土偏心受压构件的截面型式如图7-2所示。
矩形截面为最常用的截面型式,截面高度h大于600mm的偏心受压构件多采用工字形或箱形截面。
圆形截面主要用于柱式墩台、桩基础中。
图7-2 偏心受压构件截面型式a)矩形截面b)工字形截面c)箱形截面d)圆形截面在钢筋混凝土偏心受压构件的截面上,布置有纵向受力钢筋和箍筋。
纵向受力钢筋在截面中最常见的配置方式是将纵向钢筋集中放置在偏心方向的两对面[图7-3a)],其数量通过正截面承载力计算确定。
对于圆形截面,则采用沿截面周边均匀配筋的方式[图7-3b)]。
箍筋的作用与轴心受压构件中普通箍筋的作用基本相同。
此外,偏心受压构件中还存在着一定的剪力,可由箍筋负担。
但因剪力的数值一般较小,故一般不予计算。
箍筋数量及间距按普通箍筋柱的构造要求确定。
图7-3 偏心受压构件截面钢筋布置形式a)纵筋集中配筋布置b)纵筋沿截面周边均匀布置7.1 偏心受压构件正截面受力特点和破坏形态钢筋混凝土偏心受压构件也有短柱和长柱之分。
本节以矩形截面的偏心受压短柱的试验结果,介绍截面集中配筋情况下偏心受压构件的受力特点和破坏形态。
7.1.1 偏心受压构件的破坏形态钢筋混凝土偏心受压构件随着偏心距的大小及纵向钢筋配筋情况不同,有以下两种主要破坏形态。
建筑结构第7章 钢筋混凝土受拉构件

公式适用条件:
2a s x b h0
a's h0 -a's h0 as
as
7-2 大偏心受拉构件
第7 章
钢筋混凝土受拉构件
当时 x 2a s ,令 x 2a s ,则:
Ne As ) f y (h0 as
h e eo a s 2
截面设计时,当其他条件已知,求As和A's时,可设 x=ξbh0,将
λ: 计算截面的剪跨比 λ=a/h0(a为集中荷载至支座截面或节点边缘的距
离),
nA 当 λ<1.5 时,取 λ=1.5 ;当 λ=3。 sv时,取 1 当上式右侧计算值小于 f yv λ>3 h 0 时,应取等
于 f nAsv1 h ,且 0.36 f t bh0 yv 0
s
nAsv1 f yv h0 s
本章结束
轴心受拉构件纵向受拉钢筋在截面中对称布置或沿截Байду номын сангаас周边均匀布置。
从限制裂缝宽度的角度,宜选配直径小的受拉钢筋。 轴心受拉构件一侧的受拉钢筋的配筋率应不小于0.2%和0.45ft / fy中的较
大值。
轴拉构件及小偏心受拉构件的纵向受力钢筋不得采用绑扎接头。
第7 章
钢筋混凝土受拉构件
二、 正截面承载力计算
贯通全截面的斜裂缝,使斜截面受剪承载力降低。受剪承载力的降低与轴 向拉力N近乎成正比。 《混凝土设计规范》规定矩形截面偏心受拉构件的受剪承载力 的计算公式为
nAsv1 1.75 V f t bh0 f yv h0 0.2 N 1.0 s
N: 与剪力设计值V相应的轴向拉力设计值;
第7 章
钢筋混凝土受拉构件
精编第七章 钢筋溷凝土偏心受力构件承载力计算资料

本章的重点是: 了解偏心受压构件的受力特性,熟悉两种不同的受压
破坏特性及两类受压构件 掌握其判别方法; 熟悉偏心受压构件的二阶效应及计算方法; 掌握偏心受压构件的受力特性及正截面承载力计算方
法; 掌握偏心受压构件斜截面受剪承载力计算方法。
§7.1 概述
结构构件的截面上受到轴力和弯矩的共同作用或受 到偏心力的作用时,该结构构件称为偏心受压构件。
xn
cu
h0 xnb
cu
h0
3. 矩形截面偏心受压构件不对称配筋计算
(1)构件大小偏心的判别
理论判别式:当
时,为大偏心受压构件;
b
当 b时,为小偏心受压构件。
经验判别式:
当偏心距ηei≤0.3h0 时,按小偏心受压计算;
当偏心距ηei>0.3h0时,先按大偏心受压计算.
1 1 1400 ei
fyAs
f'yA's
◆ 截面受拉侧混凝土较早出现裂缝,As的应力随荷载增加发展
较快,首先达到屈服。
◆ 裂缝迅速开展,受压区高度减小。
◆ 最后受压侧钢筋A's 受压屈服,压区混凝土压碎而达到破坏。
◆ 这种破坏具有明显预兆,变形能力较大,破坏特征与配有受 压钢筋的适筋梁相似,承载力主要取决于受拉侧钢筋。
D3
D2
D1
ÓÐ ²à ÒÆ ¿ò ¼Ü ½á ¹ µÄ ¶þ ½×Ч¦Ó
(1)无侧移钢筋混凝土柱:η-l0法
对于无侧移钢筋混凝土柱在偏心压力作用下将产生挠曲
变形,即侧向挠度 。侧向挠度引起附加弯矩N 。当柱的长
细比较大时,挠曲的影响不容忽视,计算中须考虑侧向挠度 引起的附加弯矩对构件承载力的影响。
结构设计原理第七章受拉构件正截面承载力习题及答案

第七章受拉构件正截面承载力一、选择题1.仅配筋率不同的甲、乙两轴拉构件即将开裂时,其钢筋应力()A.甲乙大致相等; B甲乙相差很多; C 不能肯定2.轴心受拉构件从加载至开裂前()A.钢筋与砼应力均线性增加; B.钢筋应力的增长速度比砼快;C.钢筋应力的增长速度比砼慢; D.两者的应力保持相等。
3.在轴心受拉构件砼即将开裂的瞬间,钢筋应力大致为()A.400N/mm2; mm2; mm2; D210N/mm24.偏心受拉构件的受拉区砼塑性影响系数Y与轴心受拉构件的塑性影响系数Y相比()A. 相同;B.小;C.大.5.矩形截面对称配筋小偏拉构件在破坏时()A. A s´受压不屈服;B. A s´受拉不屈服;C. A s´受拉屈服;D. A s´受压屈服6.矩形截面不对称配筋小偏拉构件在破坏时()A. 没有受压区,A s´受压不屈服;B. 没有受压区,A s´受拉不屈服;C. 没有受压区,A s´受拉屈服;D. 没有受压区,A s´受压屈服二、思考题1. 如何划分受拉构件是大偏心受拉还是小偏心受拉?它们的各自的受力特点和破坏特征是什么?第七章受拉构件正截面承载力答案一、A B C C B B二、1、根据受拉构件偏心距的大小,并以轴向拉力的作用点在截面两侧纵向钢筋之间或在纵向钢筋之外作为区分界限,即:当轴向拉力N在纵向钢筋A合力点及s A'合力点范围以外时为大偏心受拉构s件;当轴向拉力N在纵向钢筋A合力点及s A'合力点范围以内时为小偏心受拉构s件。
大偏心受拉构件的受力特点是:当拉力增大到一定程度时,受拉钢筋首先达到抗拉屈服强度,随着受拉钢筋塑性变形的增长,受压区面积逐步缩小,最后构件由于受压区混凝土达到极限压应变而破坏。
其破坏形态与小偏心受压构件相似。
小偏心受拉构件的受力特点是:混凝土开裂后,裂缝贯穿整个截面,全部轴向拉力由纵向钢筋承担。
七章钢筋混凝土受扭构件承载力计算

翼缘 —— 纯扭;
腹板—— 剪扭;
全截面——弯剪扭分别配筋再叠加。
(五)箱形截面剪扭构件承载力计算
1、一般剪扭构件 抗扭承载力下式计算:
T 0.35ht ftWt 1.2
f yv
Ast1 Acor s
2、集中力作用下的独立剪扭构件
(7-14)
(六)箱形截面弯剪扭构件承载力计算
(3)按照叠加原则计算剪扭的箍筋用量和纵筋用量。
(二)矩形截面弯扭构件承载力计算
图7-11 弯扭构件的钢筋叠加
(三)矩形截面弯剪扭构件承载力计算
﹡《规范》规定,其纵筋截面面积由受弯承载力和受扭 承载力所需的钢筋截面面积相叠加,箍筋截面面积则由 受剪承载力和受扭承载力所需的箍筋截面面积相叠加, 其具体计算方法如下:
(3)当箍筋或纵筋过多时,为部分超配筋破坏。
(4)当箍筋和纵筋过多时,为完全超配筋破坏。
因此,在实际工程中,尽量把构件设计成(2)、(3), 避免出现(1)、(4)。
(二)抗扭钢筋配筋率对受扭构件受力性能的影响
《规范》采用纵向钢筋与箍筋的配筋强度比值 进行控制, (0.6≤ ≤1.7)
f y Astl s
﹡像矩形、T形和I形截面一样,箱形截面弯剪扭 构件承载力计算中,弯矩按纯弯构件计算剪力和 扭矩按剪扭构件计算。
三、受扭构件计算公式的适用条件及构造要求
(一)截面尺寸限制条件
当 hw b 4
时,
V bh0
T 0.8Wt
0.25c
fc
(7-15)
当
hw
b6
时,
V bh0
T 0.8Wt
0.2c
fc
——混凝土抗拉强度设计值;
偏心受压构件承载力.

N
N
As 太
多
ssAs
f'yA's
ssAs
f'yA's
7.2 偏心受压构件的破坏形态
第七章 偏心受压构件承载力
2、受压破坏compressive failure
N
产生受压破坏的条件有两种情况:
⑴当相对偏心距e0/h0较小 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
ssAs
f'yA's
◆ 纵向钢筋的保护层厚度要求见表8-3,且不小于钢筋直径d。 ◆ 当柱为竖向浇筑混凝土时,纵筋的净距不小于50mm; ◆ 对水平浇筑的预制柱,其纵向钢筋的最小应按梁的规定取值。 ◆ 截面各边纵筋的中距不应大于350mm。当h≥600mm时,在柱
侧面应设置直径10~16mm的纵向构造钢筋,并相应设置复合 箍筋或拉筋。
◆ 对于长细比较大的构件,二阶 N ei 效应引起附加弯矩不能忽略。
◆ 图示典型偏心受压柱,跨中侧 向挠度为 f 。
N ( ei+ f ) ◆ 对跨中截面,轴力N的偏心距 为ei + f ,即跨中截面的弯矩为 M =N ( ei + f )。 ◆ 在截面和初始偏心距相同的情 况下,柱的长细比l0/h不同,侧 向挠度 f 的大小不同,影响程度 会有很大差别,将产生不同的破 坏类型。
◆ 当柱中全部纵筋的配筋率超过3%,箍筋直径不宜小于8mm, 且箍筋末端应应作成135°的弯钩,弯钩末端平直段长度不 应小于10箍筋直径,或焊成封闭式;箍筋间距不应大于10倍 纵筋最小直径,也不应大于200mm。
◆ 当柱截面短边大于400mm,且各边纵筋配置根数超过多于3 根时,或当柱截面短边不大于400mm,但各边纵筋配置根 数超过多于4根时,应设置复合箍筋。
偏心受拉构件

新疆建设职业技术学院土木工程系
建筑结构精品课
BUILDING STRUCTURE EXCELLENT COURSES
• 小偏拉构件承载力计算公式:
' Ne f y As' (h0 as )
' Ne' f y As (h0 as )
e h e0 as 2 e ' e0 h as' 2
当拉力N的作用点与截面形心偏离时,称为偏心受拉构件。
• 7.2轴心受拉构件正截面受拉承载力计算
• 轴拉构件所受的拉力,全部由钢筋承担,最终由于受拉钢
筋屈服而导致构件破坏。
N Nu f y As
新疆建设职业技术学院土木工程系
建筑结构精品课
BUILDING STRUCTURE EXCELLENT COURSES
新疆建设职业技术学院土木工程系
建筑结构精品课
BUILDING STRUCTURE EXCELLENT COURSES
• 大偏拉构件承载力计算公式:
h e e0 ( as ) 2
N f y As f A 1 fcbx
' y ' s
x Ne 1 f c bx (h0 ) f y' As' (h0 as' ) 2
第七章 受拉构件的截面承载力
• 7.3偏心受拉构件
按照轴向拉力N作用在截面上位置的不同,偏拉构件有两种 破坏形态:小偏心受拉破坏和大偏心受拉破坏。
• 小偏拉:
拉力N作用在纵向钢筋As和As’之间(e0≤h/2-as)时,全 截面受拉。
• 大偏拉: • 拉力N在As和As ’之外(e0>h/2-as),部份受拉,部份
第7章(受扭构件的扭曲截面承载力)习题参考答案

习题
习题 7.3 参考答案
第7章 受扭构件
bcor + 2 × 0.25hcor ρ min bh + ρ stl ,min bh ucor 150 + 2 × 0.25 × 350 = 0.002 × 200 × 400 + 0.00269 × 200 × 400 × 1000 = 230mm 2 < 710mm 2
Asv V − 0.7(1.5 − β t ) f t bh0 = s 1.25 f yv h0 40 ×103 − 0.7 × (1.5 − 1)×1.27 × 200 × 365 = 1.25 × 210 × 365 = 0.079mm 2 / mm Ast1 Asv 0.079 + = 0.417 + = 0.457mm 2 / mm s 2 2s 选取φ8 50.3 s= = 110mm 取 s = 100mm 0.457 选配箍筋φ8@100 或 φ8@110
40 ×103 9 ×106 V T + = + bh0 0.8Wt 200 × 365 0.8 × 666.7 ×10 4 = 2.235N / mm 2 < 0.25β c f c = 0.25 ×1×11.9 = 2.975N / mm 2 40 ×103 9 ×106 V T + = + bh0 Wt 200 × 365 666.7 ×10 4 = 1.898N / mm 2 > 0.7 f t = 0.7 ×1.27 = 0.889 N / mm 2
或 Astl = 350mm 2 > ρ stl ,min bh = 0.00269 × 200 × 400 = 215mm 2
(7)验算梁截面弯曲受拉边的纵筋最小配筋量 ft 1.27 ρ min = 0.45 = 0.45 × = 0.191% < 0.2% fy 300
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 7 章受拉构件的截面承载力
7.1 轴心受拉构件正截面受拉承载力计算
1.三个受力阶段(与适筋梁相似)
(1) 第Ⅰ阶段:未裂阶段——加载~混凝土受拉开裂前;
(2) 第Ⅱ阶段:裂缝阶段——混凝土开裂~钢筋即将屈服;
(3) 第Ⅲ阶段:破坏阶段——受拉钢筋开始屈服~全部受拉钢筋达到屈服。
2.计算公式
全部拉力由钢筋来承担。
Nu = fy As (7-1)
7.2 偏心受拉构件正截面受拉承载力计算
偏心受拉构件正截面受拉承载力计算,按纵向拉力N的位置不同,可分为大偏心受拉与小偏心受拉两种情况:
(1) 当N作用在钢筋As合力点及As′合力点范围以外时,属于大偏心受拉;
(2) 当N作用在钢筋As合力点及As′合力点范围以内时,属于小偏心受拉。
7.2.1 大偏心受拉构件正截面的承载力计算
1.计算公式图7-1
当N作用在钢筋As合力点及As′合力点范围以外时,截面虽开裂,但截面不会裂通,还有受压区。
构件破坏时,钢筋As及As′的应力都达到屈服强度,受压区混凝土强度达到α1fc。
基本公式如下:
Nu = fy As - fy′As′-α1fcbx (7-2)
Nu e = α1fcbx(h0-x/2)+fy′As′(h0-as′) (7-3)
式中 Nu ——受拉承载力设计值;
e ——轴拉力作用点至受拉钢筋As合力点之间的距离;
e′——轴拉力作用点至受压钢筋As′合力点之间的距离;
e = e0- h/2 + as (6-23)
e′= e0 + h/2 - as′
x ——受压区计算高度;
as′——纵向受压钢筋合力点至受压区边缘的距离。
2.适用条件
① x ≤ξbh0 —→ 保证构件破坏时,受拉钢筋先达到屈服;
② x ≥ 2as′—→ 保证构件破坏时,受压钢筋能达到屈服。
若x<2as′时,取 x=2as′,则有As=N(e0 + h/2 - as′)/fy(h0-as′)
3.截面设计
(1) 不对称配筋
已知: b×h、 fc、 fy、fy′、N
求: As 和As′
计算步骤:
① 补充条件:取ξ = ξ b
使(As+ As′)之和最小,应充分发挥受压区混凝土的强度,按界限配筋设计。
② 求As′
As′={N e -α1 fc bh02ξb(1-0.5ξb)}/ fy′(h0-as′) (7-5)
e = e0- h/2 + as
③ 求 As
As = (α1 fcbξ b h0 + N)/ fy + As′fy′/ fy (7-6)
④ 适用条件x ≤ξbh0 和x ≥ 2as′均满足,不需再验算。
(2) 对称配筋
已知: b×h、 fc、fy =fy′、As = As′、 N
求: As = As′值
计算步骤:
① 求受压区计算高度x
由 Nu = fy As - fy′As′-α1fcbx可得
x = - N /α1fcb
② 验算适用条件
求得x为负值,即属于x <2as′的情况。
取x=2as′,假设混凝土压应力合力C也作用在受压钢筋合力点处,对受压钢筋和混凝土共同合力点取矩,此时As内力臂为(h0-as′),直接求解As 。
As = As′= As=N(e0 + h/2 - as′)/fy(h0-as′)
另外,再按不考虑受压钢筋As′,即取As′=0,利用下式求算As值,
Nu = fy As -α1fcbx
N e =α1fcbx(h0-x/2)
e = e0- h/2 + as
然后与上式求得的As值作比较,取其中较小值配筋。
7.2.2 小偏心受拉构件正截面的承载力计算
1.计算公式图7-2
当N作用在钢筋As合力点及As′合力点范围以内时,临破坏前,一般情况
是截面全裂通,拉力完全由钢筋承担。
在这种情况下,不考虑混凝土的受拉工作。
设计时,可假定构件破坏时钢筋As及As′的应力都达到屈服强度。
基本公式如下:
Nu e = fyAs′(h0′-as) (7-7)
Nu e′ = fyAs(h0-as′) (7-8)
式中 Nu ——受拉承载力设计值;
e ——轴拉力作用点至受拉钢筋As合力点之间的距离;
e′——轴拉力作用点至受压钢筋As′合力点之间的距离;
e = h/2 - e0- as (6-9)
e′= e0 + h/2 - as′ (7-10)
as′——纵向受压钢筋合力点至受压区边缘的距离。
3.截面设计
对称配筋
已知: b×h、 fc、fy =fy′、As = As′、 N
求: As = As′值
As = As = N e′/ fy (h0-as′) (7-11)
式中e′= e0 + h/2 - as′ (7-12)
7.3 偏心受拉构件斜截面受剪承载力计算
一般偏心受拉构件,在承受弯矩和拉力的同时,也存在着剪力,当剪力较大时,不能忽视斜截面承载力的计算。
轴向拉力有时会使斜裂缝贯穿全截面,使斜截面末端没有剪压区,构件的斜截面承载力比无轴向拉力时要降低一些,降低的程度与轴向拉力的数值有关。
1.计算公式
Vu=1.75ftbho/(λ+1.0) + 1.0fyv?(Asv/s)?ho - 0.2N (7-13)式中λ——偏心受拉构件计算截面的剪跨比,按式(6-73)规定取值;
(1) 对各类结构的框架柱,取λ= M/ Vho,此处,M为计算截面上与剪力设计值V相应的弯矩设计值;
当框架结构中柱的反弯点在层高范围内时,可取λ= Hn/2h0,Hn 为柱净高;当λ<1时,取λ=1;当λ>3时,取λ=3。
(2) 对其他偏心受压构件
① 当承受均布荷载时,取λ=1.5;
② 当承受集中荷载时(包括作用有多种荷载,且其中集中荷载对支座截面
或节点边缘所产生的剪力值占总剪力值的75%以上的情况),取λ= a/ho,a为集中荷载至支座或节点边缘的距离;
③ 当λ<1.5时,取λ=1.5;当λ>3时,取λ=3。
N ——与剪力设计值V相应的轴拉力设计值;
2.若式(7-13)右侧的计算值小于1.0fyv×(Asv/s)×ho时,应取等于1.0fyv ×(Asv/s)×ho,且1.0fyv×(Asv/s)×ho值不得小于0.36ftbho 。
3.与偏心受压构件相同,受剪截面尺寸尚应符合《混凝土结构设计规范》(GB50010-2002)有关规定。
7.1试说明为什么大、小偏心受拉构件的区分只与轴向力的作用位置有关,与配筋率无关?
答:大、小偏心受拉构件的区分,与偏心受压构件不同,它是以到达正截面承载力极限状态时,截面上是否存在有受压区来划分的。
当纵向拉力作用N于A s与A's之间时,受拉区混凝土开裂后,拉力由纵向钢筋A s负担,而A s位于N的外侧,有力的平衡可知,截面上将不可能再存在有受压区,纵向钢筋A's受拉。
因此,只要N作用在A s与A's之间,与偏心距大小及配筋率无关,均为全截面受拉的小偏心受拉构件。
当纵向拉力作用N于A s 与A's间距之外,部分截面受拉,部分受压。
拉区混凝土开裂后,有平衡关系可知,与A s的配筋率无关,截面必须保留有受压区,A's受压为大偏心受拉构件。
7.2怎样区别偏心受拉构件所属的类型?
答:偏心受拉构件的正截面承载力计算,按纵向拉力的位置不同,可分为大偏心受拉与小偏心受拉两种情况:当纵向拉力作用N作用在钢筋A s合力点及A's的合力点范围以外时,属于大偏心受拉的情况;当纵向拉力作用N 作用在钢筋A s合力点及A's的合力点范围以内时,属于小偏心受拉的情况。
7.3怎样计算小偏心受拉构件的正截面承载力?
答:在小偏心拉力作用下,临破坏前,一般情况是截面全部裂通,拉力完全由钢筋承担,不考虑混凝土的受拉工作,设计时,可假定构件破坏时钢筋A s与A's的应力都达到屈服强度。
根据内外力分别对钢筋A s与A's的合力点取矩的平衡条件,可得:
7.4
答:1)当有轴压力的存在,能推迟斜裂缝的出现,减小其宽度,增大剪压区高度,从而有利于斜截面承载力,因此,受压构件的斜截面承载力公式是在受弯构件相应公式的基础上加上轴压力所提高的抗剪部分0.07N 。
2)轴拉力的存在使裂缝贯通全截面,从而不存在剪压区,降低了斜截面承载力。
因此,受拉构件的斜截面承载力公式是在受弯构件相应公式的基础上减去轴拉力所降低的抗剪强度部分,即0.2N 。
7.5为什么对称配筋的矩形截面偏心受拉构件,无论大、小偏心受拉情况,均可按下列公式计算: 答:对称配筋的矩形截面偏心受拉构件: A s=A 's ,a =a ',且h 0=h '0,而e '>e 。
对小偏心受拉构件,受拉承载力设计值N 应按上式确定;对大偏心受拉构件,由于是对称配筋,x 肯定小于2a ',应取 x =2a ',对A 's 合力中心取矩来计算承载力设计值N 。
因此,对称配筋的矩形截面偏心受拉构件,无论大、小偏心受拉,受拉承载力设计值均可按上式计算。
N sv u t 0yv 0sv u t 0yv 01.750.071.01.750.21.0A V f bh f h N s A V f bh f h N s λλ=+++=+-+偏心受压:偏心受拉:()
a h A f e N s y '-≤'0。