钢筋混凝土受弯构件正截面承载力计算

合集下载

03受弯构件正截面承载力计算

03受弯构件正截面承载力计算
越显
0.4
著,受压区应力图形逐渐呈曲线分
Mcr
xn=xn/h0
布。
0 0.1 0.2 0.3 0.4 0.5
15
3.2 梁的受弯性能
第三章 钢筋混凝土受弯构件正截面承载力
带裂缝工作阶段(Ⅱ阶段) ◆ 荷载继续增加,钢筋拉应力、挠度 变形不断增大,裂缝宽度也不断开展, 但中和轴位置没有显著变化。
M/Mu
1.0 Mu 0.8 My
0.6
0.4
Mcr
0
fcr
fy
3.2 梁的受弯性能
fu f
18
第三章 钢筋混凝土受弯构件正截面承载力
屈服阶段(Ⅲ阶段)
◆ 由于混凝土受压具有很长的下
降段,因此梁的变形可持续较长,
但有一个最大弯矩Mu。
◆ 超过Mu后,承载力将有所降低,
直至压区混凝土压酥。Mu称为极
增大,混凝土受压的塑性特征表现的更为充分。
◆ 同时,受压区高度xn的减少使得钢筋拉力 T 与混凝土压力C
之间的力臂有所增大,截面弯矩也略有增加。
◆ 由于在该阶段钢筋的拉应变和 受压区混凝土的压应变都发展很
快,截面曲率f 和梁的挠度变形f 也迅速增大,曲率f 和梁的挠度变
形f的曲线斜率变得非常平缓,这 种现象可以称为“截面屈服”。
限弯矩,此时的受压边缘混凝土
的压应变称为极限压应变ecu,对
应截面受力状态为“Ⅲa状态”。
M/Mu
1.0
Mu
◆ ecu约在0.003 ~ 0.005范围,超过
0.8 My
0.6
该应变值,压区混凝土即开始压
0.4
第三章 钢筋混凝土受弯构件正截面承载力
h0
分布筋

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章钢筋混凝土受弯构件正截面承载力计算受弯构件(bendingmember)是指截面上通常有弯矩和剪力共同作用而轴力可以忽视不计的构件。

钢筋混凝土受弯构件的主要形式是板(Slab)和梁(beam),它们是组成工程结构的基本构件,在桥梁工程中应用很广。

在荷载作用下,受弯构件的截面将承受弯矩M和V的作用。

因此设计受弯构件时,一般应满意下列两方面的要求:(1)由于弯矩M的作用,构件可能沿弯矩最大的截面发生破坏,当受弯构件沿弯矩最大的截面发生破坏时,破坏截面与构件轴线垂直,称为正截面破坏。

故需进行正截面承载力计算。

(2)由于弯矩M和剪力V的共同作用,构件可能沿剪力最大或弯矩和努力都较大的截面破坏,破坏截面与构件的轴线斜交,称为沿斜截面破坏,故需进行斜截面承载力计算。

为了保证梁正截面具有足够的承载力,在设计时除了适当的选用材料和截面尺寸外,必需在梁的受拉区配置足够数量的纵向钢筋,以承受因弯矩作用而产生的拉力;为了防止梁的斜截面破坏,必需在梁中设置肯定数量的箍筋和弯起钢筋,以承受由于剪力作用而产生的拉力。

第一节受弯构件的截面形式与构造一、钢筋混凝土板的构造板是在两个方向上(长、宽)尺度很大,而在另一方向上(厚度)尺寸相对较小的构件。

钢筋混凝土板可分为整体现浇板和预制板。

在施工场地现场搭支架、立模板、配置钢筋,然后就地浇筑混凝土的板称为整体现浇板。

通常这种板的截面宽度较大,在计算中常取单位宽度的矩形截面进行计算。

预制板是在预制厂和施工场地现场预先制好的板,板宽度一般掌握在Inl左右,由于施工条件好,预制板不仅能采纳矩形实心板,还能采纳矩形空心板,以减轻板的自重。

板的厚度h由截面上的最大弯矩和板的刚度要求打算,但是为了保证施工质量及耐久性的要求,《大路桥规》规定了各种板的最小厚度;行车道板厚度不小于IOOmm人行道板厚度,就地浇注的混凝土板不宜小于80mm,预制不宜小于60mm。

空心板桥的顶板和底板厚度,均不宜小于80mm。

(整理)钢筋混凝土受弯构件正截面承载力的计算

(整理)钢筋混凝土受弯构件正截面承载力的计算

第3章钢筋混凝土受弯构件正截面承载力的计算§1概述1、受弯构件(梁、板)的设计内容:图3-1①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而破坏,叫做正截面受弯破坏。

②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破坏,叫做斜截面受剪破坏。

③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规范规定的要求。

比如最小配筋率、纵向2①板⑴板的形状与厚度:a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观区别是高宽比不同,有时也将板叫成扁梁。

其计算与梁计算原理一样。

b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度通常不小于板跨度的1/35(简支)~1/40(弹性约束)或1/12(悬臂)左右;一般民用现浇板最小厚度60mm,并以10mm为模数(讲一下模数制);工业建筑现浇板最小厚度70mm。

⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向板中两个方向均为受力钢筋。

一般情况下互相垂直的两个方向钢筋应绑扎或焊接形成钢筋网。

当采用绑扎钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm时,不应大于200mm,当板厚度h﹥150mm时,不应大于1.5h,且不应大于250mm。

板中受力筋间距一般不小于70mm,由板中伸入支座的下部钢筋,其间距不应大于400mm,其截面面积不应小于跨中受力钢筋截面面积的1/3,其锚固长度l as不应小于5d。

板中弯起钢筋的弯起角不宜小于30°。

板的受力钢筋直径一般用6、8、10mm。

对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定:a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内),其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨度)。

b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l1/4。

c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算摘要:一、引言二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念2.影响因素3.计算公式及步骤三、简便计算方法1.经验公式2.修正系数法3.截面分类法四、计算实例1.实例一2.实例二3.实例三五、结论与建议正文:一、引言钢筋混凝土受弯构件在我国建筑行业中有着广泛的应用,其正截面承载力计算一直是工程技术人员关注的问题。

为了简化计算过程,本文将介绍一种简便的计算方法,以提高工程实践中的工作效率。

二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念正截面承载力:指受弯构件在正截面上能承受的最大弯矩引起的内力。

影响因素:材料强度、截面尺寸、钢筋配置等。

2.影响因素(1)材料强度:包括混凝土抗压强度fc和钢筋抗拉强度fs。

(2)截面尺寸:截面宽度b、截面高度h。

(3)钢筋配置:包括钢筋直径d、钢筋间距s和钢筋数量n。

3.计算公式及步骤根据我国现行的设计规范,正截面承载力计算公式如下:c = fc * b * h * γcs = fs * d * (h - d / 2) * γs其中,Nc为混凝土截面承载力,Ns为钢筋截面承载力,γc和γs分别为混凝土和钢筋的截面折减系数。

三、简便计算方法1.经验公式根据工程实践经验,可得以下经验公式:c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)2.修正系数法针对不同钢筋直径和截面尺寸,采用修正系数进行计算。

3.截面分类法根据截面尺寸和钢筋配置,将受弯构件分为若干类别,各类别计算公式如下:(1)类别一:h / d ≤ 25c = 0.75 * fc * b * hs = 0.75 * fs * d * (h - d / 2)(2)类别二:25 < h / d ≤ 50c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)(3)类别三:h / d > 50c = 1.0 * fc * b * hs = 1.0 * fs * d * (h - d / 2)四、计算实例1.实例一某受弯构件,混凝土抗压强度fc = 20MPa,截面宽度b = 200mm,截面高度h = 300mm,钢筋直径d = 16mm,钢筋间距s = 200mm,钢筋数量n = 4。

钢筋混凝土受弯构件正截面承载力计算

钢筋混凝土受弯构件正截面承载力计算

为保证钢筋混凝土结构的耐久性、防火性以及钢
筋与混凝土的粘结性能,钢筋的混凝土保护层厚
5度、一配般筋不率小于2A 5msm% ; ....4...2()
bh0
用下述公式表示
As bh0
%
公式中各符号含义:
As为受拉钢筋截面面积; b为梁宽;h0为梁的有效 高度,h0=h-as;as为所有受拉钢筋重心到梁底面 的距离,单排钢筋as= 35mm ,双排钢筋as= 55~60mm 。
M/ M u
Mu
1.0
0.8 My
0.6
II
0.4
III III a II a
M cr I a
I
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
说明:
对于配筋合适的梁,在III
阶段,其承载力基本保持不 变而变形可以很大,在完全
M/ M u
Mu
1.0
破坏以前具有很好的变形能 力,破坏预兆明显,我们把
0.8 My
通常采用两点对称集中加荷,加载点位于梁跨度 的1/3处,如下图所示。这样,在两个对称集中荷载间 的区段(称“纯弯段”)上,不仅可以基本上排除剪力的 影响(忽略自重),同时也有利于在这一较长的区段上(L /3)布置仪表,以观察粱受荷后变形和裂缝出现与开 展的情况。在“纯弯段”内,沿梁高两侧布置多排测 点,用仪表量测梁的纵向变形。
梁破坏时的极限弯矩Mu小于在正常情况下的开
裂弯矩Mcr。梁配筋率越小, Mcr -Mu的差值越大; 越大(但仍在少筋梁范围内), Mcr -Mu的差值越小。
当Mcr -Mu =0时,它就是少筋梁与适筋梁的界限。这
时的配筋率就是适筋梁最小配筋率的理论值min。

钢筋混凝土受弯构件正截面承载力计算

钢筋混凝土受弯构件正截面承载力计算
在实际工程中要做到经济合理,梁的截面
配筋率要比b 低一些。
4.2.1 正截面受弯的三个受力阶段
试验方法
荷载分配梁
试验梁
P
外加荷载
数据采集系统
应变计
位移计
L/3
L/3
L
h0
h
As
b
As
bh0
矩M/Mu~ af 关系曲线如图:
af
第一阶段 —— 截面开裂前阶段。 第二阶段 —— 从截面开裂到纵向受拉钢筋
屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
各阶段和各特征点的截面应力 — 应变分析:
cu
应变图
应力图 M
t u
Mcr
M
y
My
M
xc C
Mu Z
sAs
I
ftk sAs
Ia
sAs
II
fyAs IIa
fyAs III
fyAs=T IIIa
进行受弯构件截面各受力工作阶段的分析, 可 以详细了解截面受力的全过程, 而且为裂缝、变形 及承载力的计算提供依据。
(1)受弯构件、偏心受拉、轴心受拉构件其 一侧纵向受拉钢筋的配筋百分率不 应小于0.2%和0.45ft/fy中的较大值 ;
(2)卧置于地基上的混凝土板,板的受拉钢 筋的最小配筋百分率可适当降低, 但不应小于0.15%。
4.4 单筋矩形截面的承载力计算
4.4.1 基本计算公式及适用条件
1fc
x
Mu
C=1fc bx
• 破坏前裂缝、变形有明显的发展, 有破坏征 兆, 属延性破坏
• 钢材和砼材料充分发挥
• 设计允许
4.2.2 正截面受弯的三种破坏

第三章-钢筋混凝土受弯构件正截面承载力计算

第三章-钢筋混凝土受弯构件正截面承载力计算
截面抗裂验算是建立在第Ⅰa阶段的基础之上,构 件使用阶段的变形和裂缝宽度的验算是建立在第 Ⅱ阶段的基础之上,而截面的承载力计算则是建 立在第Ⅲa阶段的基础之上的。
§3.3 建筑工程中受弯构件正截面承载力计算方法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
fcu,k——混凝土立方体抗压强度标准值;
n——系数,当计算的n大于2.0时,应取为2.0。
n,ε0,εcu的取值见表3—1。
由表3-1可见,当混凝土的强度等级小于和等于C50时,
n,ε0和εcu均为定值。当混凝土的强度等级大于C50时,随 着混凝土强度等级的提高,ε0的值不断增大,而εcu值却逐渐
M
f y As (h0
x) 2
(3-9b)
式中M——荷载在该截面上产生的弯矩设计值; h0——截面的有效高度,按下式计算
h0=h-as
h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。
对于处于室内正常使用环境(一类环境)的梁和板,
当混凝土强度等级> C20,保护层最小厚度(指从构件 边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝 士保护层厚度不得小于15mm
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;

03--水工钢筋砼--钢筋混凝土受弯构件正截面承载力计算(1-7) 2012

03--水工钢筋砼--钢筋混凝土受弯构件正截面承载力计算(1-7) 2012

3.1 受弯构件的截面形式和构造
五.板内钢筋直径和间距
(一)受力筋 1、直径 ➢一般板:6~12mm ➢水工厚板:12mm~25mm~36mm~40mm ➢同一板受力筋可有两种直径,但差2mm以上
h0
分布筋(f6@300)
≥ 70
C≥Cmin
受力筋
3.1 受弯构件的截面形式和构造
五.板内钢筋直径和间距
h
1、常用梁宽:
为统一模板尺寸、便于施工,通常采用 梁宽度b=120、150、180、200、220、 b
250mm,250mm以上者以50mm为模
数递增。
2、常用梁高:
h
梁 高 度 h=250 、 300 、 350 、
400 、 …800mm , 800mm 以 上 者 以
b
100mm为模数递增。
梁的试验
b
As
h h0
a
3.2 受弯构件正截面的试验研究
一、梁的试验和应力—应变阶段
(一)梁的试验 3、试验过程: ➢开裂前,截面为平面 ➢开裂后不再平面但接近平面,认为符合平截面假定 ➢荷载加大,中和轴上移 ➢整个过程分3阶段
3.2 受弯构件正截面的试验研究
一、梁的试验和应力应变阶段
(二)应力应变3阶段 1、第I阶段--未裂阶段: ➢荷载很小,应力应变之间线性; ➢ 荷载↑,砼拉应力达到ft,拉区 呈塑性变形;压区应力图接近三 角形; ➢ 砼达到极限拉应变(εt=εtu),截面 即将开裂(Ⅰ状态),弯矩为开裂弯 矩Mcr; ➢ Ⅰ状态是抗裂计算依据
二、截面尺寸
(二)板厚(Slab Thickness) 水工建筑物的板厚度变化范围很大,厚的可达几米,
薄的可为100mm。 板厚度模数为10mm,250mm以上板厚模数可为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h0 —— 截 面 有 效 高 度 , h0=h–as 单 排 布 置 钢 筋 时 : as=35mm 双排布筋时:as=50~60mm 对于板 : as=20mm
由相对界限受压区高度b可推出最大配筋率 b及单筋矩形截面的最大受弯承载力Mumax。

As bh0

b
1
f
fc
y
4.3.5 适筋和少筋破坏的界限条件
min.h/h0 b min —— 最小配筋率, 根据钢筋混凝土梁的破坏弯
矩等于同样截面尺寸素砼梁的开裂弯矩 确定的。
确定的理论依据为:
Mu = Mcr
《规范》对min作出如下规定:
(1)受弯构件、偏心受拉、轴心受拉构件其 一侧纵向受拉钢筋的配筋百分率不 应小于0.2%和0.45ft/fy中的较大值 ;
梁的宽度和高度
宽度 :b = 120、150、(180)、200、(220)、 250、300、350、…(mm)
高度:h=250、300、350、400、……、750、800、 900、…(mm)。
二、 截面尺寸和配筋构造
2. 板
c15mm d
分布钢筋
h0
h
d 6 ~ 12mm
h0 h 20
(2)卧置于地基上的混凝土板,板的受拉钢 筋的最小配筋百分率可适当降低, 但不应小于0.15%。
4.4 单筋矩形截面的承载力计算
4.4.1 基本计算公式及适用条件
1fc
x
Mu
C=1fc bx
Ts = fyAs
1. 基本计算公式
N 0
M 0
1 fcbx fyAs (3 - 20)
架立
箍筋
弯矩引起的 垂直裂缝
弯筋
4.1.2 材料的选择与一般构造
一、材料 混凝土 常用混凝土强度等级:C20、C25、C30、C35、C40
钢筋 梁:箍筋常用HPB235、 HRB335、 HRB400级
主筋常用HRB400、 RRB400 、HRB335级 板: HPB235、HRB335、 HRB400级
第三阶段 —— 钢筋屈服到破坏阶段。
各阶段和各特征点的截面应力 — 应变分析:
cu
应变图
应力图 M
t u
Mcr
M
y
My
M
xc C
Mu Z
sAs
I
ftk sAs
Ia
sAs
II
fyAs IIa
fyAs III
fyAs=T IIIa
进行受弯构件截面各受力工作阶段的分析, 可 以详细了解截面受力的全过程, 而且为裂缝、变形 及承载力的计算提供依据。
结论三
•在适筋和少筋破坏之间也存在一种“界限” 破坏。其破坏特征是屈服弯矩和开裂弯矩相 等,是区分适筋破坏和少筋破坏的定量指标
最小配筋率ρmin
混凝土结构设计原理
第4章
配筋率与破坏形态的关系:
(a)少筋梁:一裂即坏。
(b)适筋梁:受拉区钢筋 先屈服,受压区混凝 土后压碎。
(c)超筋梁:受压区混凝 土压碎,受拉区钢筋 不屈服。
4.2.1 正截面受弯的三个受力阶段
试验方法
荷载分配梁
试验梁
P
外加荷载
数据采集系统
应变计
位移计
L/3
L/3
L
h0
h
As
b
As
bh0
主页 目录 上一章 下一章 帮助
跨中弯矩M/Mu~ af 关系曲线如图:
af
第一阶段 —— 截面开裂前阶段。 第二阶段 —— 从截面开裂到纵向受拉钢筋
屈服前阶段。
≤C50 C55 C60 C65 C70 C75 C80
1 1.00 0.99 0.98 0.97 0.96 0.95 0.94 1 0.80 0.79 0.78 0.77 0.76 0.75 0.74
4.3.4 适筋梁和超筋梁的界限条件
b —— 界限配筋率, 是适筋梁的最大配筋率。 适
筋梁和超筋梁的界限为“平衡配筋梁”, 即受拉纵筋屈服的同时,混凝土受压边 缘纤维达到其极限压应变。
两个等效条件:
1)混凝土压应力合力C大小相等; 2)受压区合力C的作用点不变。
xc
C
xc
Cx
1 fc C
Mu
Asfy
实际应力图
Mu
Asfy
理论应力图
Mu
Asfy
计算应力图
xc— 实际受压区高度 x — 计算受压区高度,x = β1 xc
C 1 fc.bx x 1xc
系数1 和 1
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第4章
§4.1 概 述
4.1.1几个基本概念
1.受弯构件:主要指各种类型的梁和板。 内力特点:截面上通常有弯矩和剪力共同作用。
2. 正截面:与构件计算轴线相垂直的截面。
3. 承载力计算公式: M ≤Mu
M —— 受弯构件正截面弯矩设计值; Mu——受弯构件正截面受弯承载力设计值。
• 破坏前裂缝、变形有明显的发展, 有破坏征 兆, 属延性破坏
• 钢材和砼材料充分发挥
• 设计允许
4.2.2 正截面受弯的三种破坏
当配筋很多时----超筋梁的破坏
发生条件: ρ>ρb
c
c
c
(c=cu) c
MI
Mcr
MII
Mu
t<ft
sAs
sAs t=ft(t =tu)
s<y
Mu
1 fcbx(h0
x) 2
(3- 21)

Mu

fy As (h0

x) 2
(3- 22)
引入相对受压区高度 也可表为:
1 fcbh0 f y As
Mu 1 fcbh02 (1 0.5 )

M u fy Ash0 (1 0.5 )
Mu —— 正截面抗弯矩承载力
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第4章
受弯构件从加载到破坏的播放: 超筋梁、适筋梁、少筋梁
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第4章
§4.3 正截面受弯承载力计算原则
4.3.1 基本假设
截面应变保持平面; 不考虑混凝土抗拉强度; 钢筋的应力-应变具有以下关系:
混凝土结构设计原理
第4章
室内正常环境中,板和梁的保护层厚度:
板: fcu,k ≤ C20时,c=20mm; fcu,k ≥ C25时,c=15mm。
梁: fcu,k ≤ C20时,c=30mm; fcu,k ≥ C25时,c=25mm。
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第4章
§4.2 受弯构件正截面受力性能试验分析
h0 ——梁截面的有效高度, h0=h-as h0=h-as
as——所有受拉钢筋合力点到梁底面的距离, 单排筋a s= 35mm ,双排筋a s= 60mm。
h0
as b
提示: 在一定程度上标志
了正截面纵向受拉钢筋与混 凝土截面的面积比率,对梁 的受力性能有很大的影响。
混凝土保护层厚度:
纵向受力钢筋的外表面到截面边缘的垂直距 离。用c表示。
能力,超筋梁和少筋梁
的破坏具有突然性,设
计时应予避免
II
少筋 I
O
超筋 平衡
III
适筋
最小配筋率
4.2.2 正截面受弯的三种破坏形态
结论二 •在适筋和超筋破坏之间存在一种平衡破坏。 其破坏特征是钢筋屈服的同时,混凝土碎, 是区分适筋破坏和超筋破坏的定量指标
平衡破坏(界限破坏,ρ=ρb )
4.2.2正截面受弯的三种破坏
cu 0.0033 ( fcu,k 50)105 0.0033 …4-7
主页 目录 上一章 下一章 帮助

fc
0 0


fy
cu
0
fy
0.01
钢筋
4.3.2 基本方程
xc
C
xc
Cx
C
Mu
Asfy
实际应力图
Mu
Asfy
理论应力图
Mu
Asfy
计算应力图
C
xc 0
sAs
sAs
s <y
超筋梁特点: > max
• 开裂, 裂缝多而细,钢筋应力不高, 最终由于 压区砼压碎而破坏
• 裂缝、变形均不太明显, 破坏具有脆性性质 • 钢材未充分发挥作用 • 设计不允许
4.2.2 正截面受弯的三种破坏形态
当配筋很少时----少筋梁的破坏
发生条件: ρ< ρmin.(h/h0 )

c
.b.dy
yc
xc 0

c
.b.
y.dy

C
xc 0

c
.b.
y.dy
xc 0

c
.b.dy
ccu xxcn
h0
s
xc
Cx
C
yc
Mu
Asfy Mu
Asfy
理论应力图
计算应力图
混凝土的压应变及钢筋拉应变的表达式:
c
cu
y xc
; s
cu
h0 xc xc
Ia —— 抗裂计算的依据; II —— 正常工作状态, 变形和裂缝宽度计算的依据;
IIIa —— 承载能力极限状态。
4.2.2 正截面受弯的三种破坏
• 配筋率
As
bh0
纵 向 受 力 钢 筋 截 面 面 积 As 与 截 面 有 效 面 积的百分比。
相关文档
最新文档