七年级数学上册 1.4.2 有理数的除法(第一课时)学案 (新版)新人教版

合集下载

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。

本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。

通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。

二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。

但是,对于除法运算,学生可能还存在一些困惑和误解。

因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。

三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。

2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。

四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。

2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。

2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。

3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。

六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。

2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。

人教版七年级数学上册第一章有理数1.4.2有理数的除法(1)导学案

人教版七年级数学上册第一章有理数1.4.2有理数的除法(1)导学案

人教版七年级数学上册第一章有理数1.4.2有理数的除法(1)导学案【学习目标】:1、理解除法是乘法的逆运算;2、理解倒数概念,会求有理数的倒数;3、掌握除法法则,会进行有理数的除法运算;【学习重点】:有理数的除法法则【学习难点】:有理数的除法法则【课前预习】1、求8÷(-4)的值∵(-2)⨯(-4)=8,∴8÷(-4) =____;又∵8⨯(-41)= ∴8÷(-4)___8⨯(-41),即一个数除以-4,等于乘以-4的倒数-41. 同样可得:-8÷4____-8⨯41, -8÷(-4)_____-8×(-41)(填“=”或“≠”) 除法法则(一):除以一个不等于0的有理数,等于乘以这个数的________.即a ÷b = (a 、b 是有理数,且b ≠0).2、从(-2)⨯4=____ 根据除法是乘法的逆运算(-8)÷(-2)=_____ (同号两数相除)(-8)÷4=_____ (异号两数相除)除法法则(二):两数相除,同号得_____,异号得_____,并把绝对值相______.零除以任一个不等于0的数,都得____. 0不能作 ,0没有 数.3、计算(1)(-90)÷15 (2)383÷(-2.25) (3)(-2512)÷(-53) 解:原式= -(90÷15) 解:原式= -(827 94) 解:原式= (4)(-45)÷5 (5)(-72)÷(-9) (6)-94÷131 【自主学习】1)、小红从家里到学校,每分钟走50米,共走了20分钟。

问小红家离学校有 米,列出的算式为 。

2)放学时,小红仍然以每分钟50米的速度回家,应该走 分钟。

列出的算式为从上面这个例子你可以发现,有理数除法与乘法之间的关系是3)写出下列各数的倒数-4 的倒数 ,3的倒数 ,-2的倒数 ;【交流、讨论】1、小组合作完成比较大小:8÷(-4) 8×(一14); (-15)÷3 (-15)×13; (一114)÷(一2) (-114)×(一12); 【小组展示】小组展示,然后,相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 ;2)、两数相除,同号得 ,异号得 ,并把绝对值相 ,0除以任何一个不等于0的数,都得 ;1.自学P34例5、例62. 师生共同完成例7【课堂练习】1、练习:P352、练习: P36第1、2题【要点归纳】:有理数的除法法则:【课后练习】1、若a + b <0,ab >0,那么下列结论成立的是( ) A .a >0,b > 0 B .a <0,b <0 C .a > 0, b <0 D .a < 0 ,b > 02、若ba = 0,那么( ) A .a = 0,b=0 B .a = 0,b ≠0 C .a ≠0 ,b = 0 D .a ≠0,b ≠03、(-0.009)÷0.3 = ÷(-7)=-71 -1÷(-121)= 4、计算(4)531÷(-751) (5)-3.5⨯78⨯(-43) (6)(-7)÷(-231) 5、如果b a ÷()0≠b 的商是负数,那么( )A.b a ,异号B.b a ,同为正数C.b a ,同为负数D.b a ,同号6、下列结论错误的是( )A.若b a ,异号,则b a ⋅<0,b a <0B.若b a ,同号,则b a ⋅>0,ba >0 C.b a b a b a -=-=- D.ba b a -=-- 7、实数b a ,在数轴上的位置如图所示,则下列结论正确的是( )A 、0a b +>B 、0a b ->C 、0a b ⋅>D 、0a b> 8、计算(1)-27÷(-3) (2)32÷(-4) (3)-153÷(-6)9、计算:①123()25125÷- ②551()2184-÷⨯- ③421||(1)932÷-⨯-。

1.4.2 第1课时 有理数的除法法则(说课稿)-2022-2023学年七年级上册初一数学(人教版)

1.4.2 第1课时 有理数的除法法则(说课稿)-2022-2023学年七年级上册初一数学(人教版)

1.4.2 第1课时有理数的除法法则(说课稿)一、教材分析本节课是初中数学七年级上册的第4章第2节课,将学习有理数的除法法则。

本节课的教学内容旨在帮助学生理解有理数的除法,掌握有理数的除法法则,并能灵活运用有理数的除法进行计算。

根据教材的难易程度和学生的实际情况,本节课的教学重点主要有以下几个方面:•掌握有理数的除法法则,理解除法的运算规则;•能够通过具体例子理解有理数的除法,培养学生的抽象思维能力;•能够解决有理数除法问题,掌握解决实际问题的方法。

二、教学目标1. 知识与技能目标•掌握有理数的除法法则,包括同号相除得正,异号相除得负;•理解除法的意义和运算规则,能够进行简单的有理数除法计算;•掌握解决实际问题的方法,运用有理数的除法解决实际问题。

2. 过程与方法目标•通过具体例子引导学生理解有理数的除法法则;•培养学生的抽象思维能力,能够将具体问题抽象化,并进行有理数的除法计算;•引导学生运用有理数的除法解决实际问题。

3. 情感、态度与价值观目标•培养学生的数学兴趣,激发学生学习数学的积极性;•培养学生的逻辑思维能力和解决问题的能力;•培养学生的合作意识和交流能力,通过小组合作完成任务。

三、教学重点和难点教学重点•掌握有理数的除法法则,理解除法的运算规则;•能够通过具体例子理解有理数的除法,培养学生的抽象思维能力;•能够解决有理数除法问题,掌握解决实际问题的方法。

教学难点•理解除法的意义和运算规则,能够进行简单的有理数除法计算;•引导学生将实际问题抽象化,并进行有理数的除法计算。

四、教学过程1. 导入与引入通过提问的方式,回顾上节课所学的有理数加法和减法法则,引导学生思考有理数的运算规则,并复习正、负数的性质。

2. 学习新知Step 1:引入有理数的除法法则通过一个具体的例子,引入有理数的除法法则。

例如:小明和小红分别做了30道数学题,小明做对了10题,小红做对了15题,问他们两个人做对题数的和是多少?这个问题可以用数学运算来表示:10 + 15 = ?然后再问:如果小明做对了10题,小红做对了15题,那么有多少道题是小明做对的呢?这个问题可以用数学运算来表示:25 ÷ 2 = ?通过对比两个问题,引导学生认识到除法是一种运算,可以用来求得整体中的部分数量。

人教版七年级上册 1.4.2有理数的除法(第一课时)

人教版七年级上册 1.4.2有理数的除法(第一课时)

(2)15 ( 3)= 5
15( 1)= 5
3
变为倒数
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)15 3= 5
15 1 = 5
3
变为倒数
“÷”变“×”
一变:符号; 二变:除数.
(2)15 ( 3)= 5
15( 1)= 5
3
变为倒数
三、典例精析
例1 计算:(1) 36 9
3
二、归纳法则
15 3 15 1
3
15
3
15
1 3
有理数的除法法则:
除以一个不等于0的数,等于乘这个数的倒数.
a b a 1 b≠0
b
比一比
让我们再来观察下列两个算式,商的符号及其 绝对值与被除数和除数有没有关系?试着总结 一下规律.
(1)15 3 5
(2)15 3 5
被除数与除 数符号相反
二、归纳法则
怎样计算 15 呢?
根据除法是乘法的逆运算,就是要求一个数,
使它与 相乘得 15 .
因为
(5) 3 15
所以
15 3 5

另一方面,我们有 (15) 1 5

3
于是有 15 3 15 1 ③
3
③式表明,一个数除以 可以 转化为乘 1 来进行,
3
即一个数除以 ,等于乘 的倒数 1 .
3
二、归纳法则
想一想
仿照上面的方法,我们再来看如何计算
15 3
因为 5 3 15 所以 15 3 5
想一想
(15)
1 3
(15)
1 3
5
于是有
15
3

七年级数学上册(人教版)1.4.2有理数的除法(第一课时)教学设计

七年级数学上册(人教版)1.4.2有理数的除法(第一课时)教学设计
1.学生对有理数除法法则的理解程度,特别是对“除以一个不等于0的数等于乘这个数的倒数”这一概念的理解。
2.学生在运算过程中对符号的处理能力,包括正负号的判断和运算顺序的掌握。
3.学生的合作能力和交流能力,如何在小组讨论中发挥各自的优势,共同解决问题。
针对学生的个体差异,教师应采取以下策略:
1.对于基础较好、理解能力较强的学生,可以适当提高要求,引导他们进行更深入的思考和实践。
(二)讲授新知
在导入新课的基础上,我会向学生讲解有理数除法的定义和法则。首先,通过具体例题,让学生理解除以一个不等于0的数等于乘这个数的倒数。接着,讲解有理数除法的运算步骤,特别是符号的处理方法。在此过程中,注重引导学生从具体实例中发现规律,逐步提炼出有理数除法的运算规则。
(三)学生小组讨论
讲授新知后,我会组织学生进行小组讨论。将学生分成若干小组,每组4-6人,让她们针对以下问题进行讨论:
1.引导学生通过观察、分析、归纳等方法,发现并理解有理数除法的运算规律。
2.培养学生运用数学语言进行表达、交流,提高学生的合作能力。
3.引导学生从不同角度思考问题,培养学生的逻辑思维和发散思维能力。
(三)情感态度与价值观
1.使学生感受到数学学习的乐趣,激发学生学习数学的热情。
2.培养学生勇于探索、积极思考的学习态度,提高学生的自主学习能力。
2.对于基础较弱、理解能力稍差的学生,教师要耐心指导,通过具体例题和实际操作,帮助他们理解和掌握有理数除法的运算规律。
3.创设轻松愉快的学习氛围,鼓励学生积极参与课堂讨论,提高他们的自信心。
四、教学内容与过程
(一)导入新课
在课程开始时,我将通过一个与学生生活密切相关的实际问题导入新课。例如,提出以下问题:“如果你有一块巧克力,要平均分给4个好朋友,每个人能得到多少巧克力?”通过这个问题,引导学生回顾之前学过的整数除法,并自然过渡到本节课的有理数除法。接着,我会追问:“如果这块巧克力不是完整的,而是3/4块,你们还能平均分给4个好朋友吗?该如何计算?”从而引出有理数除法的概念。

七年级数学上册 第一章 有理数 有理数的除法导学案 (新版)新人教版-(新版)新人教版初中七年级上册

七年级数学上册 第一章 有理数 有理数的除法导学案 (新版)新人教版-(新版)新人教版初中七年级上册

有理数的除法【学习目标】1.理解有理数除法的意义,熟练掌握有理数除法法则.2.根据有理数的除法法则,熟练进行除法及乘除混合运算.3.通过将除法运算转化为乘法运算,培养学生的转化思想;通过运算,培养学生的运算能力.【学习重点】有理数的除法法则.【学习难点】灵活运用运算律进行有理数的乘除混合运算.行为提示:点燃激情,引发学生思考本节课学什么.情景导入 生成问题旧知回顾:乘积是1的两个数互为倒数.说出下列各数的倒数:-4,3,-2,-25,115. 解:上面各数的倒数分别是-14,13,-12,-52,56. 行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.注意:1.0不能作除数,0作除数无意义;2.对于除法的两个法则,在不能整除时可选用法则1,能整除时一般选用法则2.注意:有理数的乘除混合运算,按照从左到右的顺序进行.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研 生成能力知识模块一 有理数的除法法则【自主学习】阅读课本P 34~P 35,探究有理数的除法法则.归纳:有理数的除法法则:(1)除以一个不等于0的数,等于乘以这个数的倒数,即a ÷b =a ×1b ; (2)两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不为0的数都得0.【合作探究】1.计算:(1)(-6.5)÷0.13; (2)-65÷⎝ ⎛⎭⎪⎫-25. 解:原式=-6.5×10013=-50; 解:原式=65×52=3. 2.化简: (1)-729; (2)-30-45; (3)-123. 解:原式=-8; 解:原式=23; 解:原式=-16. 知识模块二 有理数的乘除混合运算【自主学习】认真学习课本P 35例7,完成下面的内容:归纳:乘除混合运算往往先将除法转化成乘法,然后确定积的符号,最后求出结果.练习:计算:(1)(-12)÷(-4)÷⎝ ⎛⎭⎪⎫-115; (2)⎝ ⎛⎭⎪⎫-23×⎝ ⎛⎭⎪⎫-85÷(0.25). 解:原式=-12×14×56=-52; 解:原式=23×85×4=6415. 交流展示 生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 有理数的除法法则知识模块二 有理数的乘除混合运算检测反馈 达成目标【当堂检测】1.(1)若a +b<0,b a>0,则下列成立的是( B ) A .a>0,b>0B .a<0,b<0C .a>0,b<0D .a<0,b>0(2)a 、b 互为倒数,则3ab =3.2.计算.(1)⎝ ⎛⎭⎪⎫-217÷⎝ ⎛⎭⎪⎫-514=6; (2)3.5÷78÷⎝ ⎛⎭⎪⎫-117=-72; (3)-32÷(-7)÷⎝ ⎛⎭⎪⎫-514=-35; (4)(-1)÷⎝ ⎛⎭⎪⎫+35÷⎝ ⎛⎭⎪⎫-37=359. 【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。

人教版数学七年级上册1.4.2《有理数的除法(2)》教学设计

人教版数学七年级上册1.4.2《有理数的除法(2)》教学设计一. 教材分析《有理数的除法(2)》是人教版数学七年级上册第1章第4节的一部分,主要介绍了有理数除法法则,以及如何运用这些法则进行计算。

在学习这部分内容之前,学生已经掌握了有理数的加法、减法和乘法,为本节课的学习打下了基础。

教材通过具体的例题和练习,帮助学生理解和掌握有理数除法的运算方法,提高他们的运算能力。

二. 学情分析七年级的学生在数学学习方面已经有了一定的基础,对有理数的加、减、乘法有一定的了解。

但是,对于有理数的除法,他们可能还存在一些困惑,例如除以一个负数该如何计算等问题。

因此,在教学过程中,需要注重引导学生理解有理数除法的运算规则,并通过大量的练习,让他们熟练掌握。

三. 教学目标1.理解有理数除法的运算规则,掌握有理数除法的计算方法。

2.能够运用有理数除法法则,解决实际问题。

3.培养学生的运算能力,提高他们的数学思维能力。

四. 教学重难点1.教学重点:有理数除法的运算规则,有理数除法的计算方法。

2.教学难点:如何引导学生理解除以一个负数的运算方法。

五. 教学方法1.采用问题驱动法,引导学生通过解决实际问题,理解有理数除法的运算规则。

2.使用示例教学法,通过具体的例题,讲解有理数除法的计算方法。

3.运用练习法,让学生在大量的练习中,熟练掌握有理数除法的运算方法。

六. 教学准备1.准备相关的教学PPT,展示例题和练习题。

2.准备黑板,用于板书解题过程。

3.准备练习题,用于课堂练习和巩固知识。

七. 教学过程1.导入(5分钟)通过提问方式,回顾上节课所学的内容,引导学生复习有理数的加法、减法和乘法。

然后,引出本节课的主题——有理数的除法。

2.呈现(10分钟)展示PPT,呈现本节课的主要内容:有理数除法的运算规则和计算方法。

通过讲解和示例,让学生初步理解有理数除法的运算方法。

3.操练(15分钟)让学生在课堂上完成一些具有代表性的练习题,巩固所学的内容。

2012年新人教版七年级数学上册《1.4.2有理数的除法》第一课时课件


问题:怎样计算8÷(-4)?
根据除法的意义,这就是说要求一个数,使它 与-4相乘等于8
因为(-2)×(-4)=8 4
换其他数的除法进行 类似的讨论,是否应有 除以a (a≠0)可以转 化为乘以
1 a
1 于是有 8 ( 4)= 8 ③ 4
义务教育课程标准实验教科书 七年级上册
问题1:小明从家里到学校,每分钟走50 米,共走了20分钟,问小明家离学校有多远?
50 20 1000
问题2:放学时,小明仍然以每分钟50米 的速度回家,应该走多少分钟?
1000 50 20
从上面这个例子你可以发现,有理数除法与有理数乘 法之间满足怎样的关系?
5 8 1 1 2 5 4
5 1 1 5 1 1 125 25 7 5 5 7 5 7 1 25 7
1、化简
72 ( 72) 8 9 9
0 75
30 2 ( 30) ( 45) 45 3
0
2、计算

重点知识内容:

有理数除法法则:
有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数.
这个法则也可以表示成:
1 a b a (b 0) b
两数相除,同号得正,异号得负,并把绝对值相
除。0除以任何一个不等于0的数,都得0.
例 计算:
5 ( 1 ) 125 5 7
5 1 (2) 2.5 8 4
解: ( 1 ) 125 5 125
5 7

5 1 (2) 2.5 8 4
9 405 1 1 36 9 4 ( ) 11 11 11 9

142有理数的除法(第1课时有理数的除法法则)(学案)-七年级数学上册(人教版)

1.4.2 有理数的除法(第1课时有理数的除法法则)学案1. 掌握有理数除法法则,会进行有理数的除法运算.2. 会进行有理数的乘除混合运算.3. 体会转化的思想在解决数学问题中的作用.★知识点1:有理数的除法法则有理数的除法法则有两个:①除以一个不等于0的数,等于乘这个数的倒数.用此法则可将除法转化为乘法,从而将有理数乘除混合运算,统一成乘法运算.②两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.此法则可与有理数乘法法则类比,适合能整除时的情形.要通过具体的问题灵活选择运用这两个法则.★知识点2:倒数概念的再升华倒数概念的理解在学习了有理数除法之后可以从这两个方面考虑:①零没有倒数,正数的倒数仍为正数,负数的倒数仍为负数.②求一个数的倒数的方法,根据定义由1除以这个数,或将这个数的分子、分母颠倒位置即可.1. 有理数的除法法则:.2. 两数相除,,,.3. a(a≠0)的倒数是.4. 若两个有理数的商为正数,则这两个数一定.1. 说一说有理数的乘法法则.2. 计算:(1)(-5)×(-3);(2)(-7)×4;(3)2934⎛⎫⎛⎫⨯-⎪ ⎪⎝⎭⎝⎭;(4)(-6)×0.3. 求下列各数的倒数:(1)25-;(2)-1;(3)0.25;(4)16.问题1:某班4名同学参加计算机技能测试,以80分为标准,超过的分数记为正,不足的记为负,记录如下:+15,-10,-9,-4,求这4名同学的平均成绩,并说明这4名同学平均成绩是超过80分还是不足80分?追问:求这4位同学的平均成绩应如何列式?之后再看这4位同学的平均成绩是超过80分还是不足80分.问题2:你能根据除法是乘法的逆运算,以及小学学习的除法运算的经验,说明如何计算(-8)÷4吗?追问1:把-8换为其它数,是否也能得到类似的结论?你能用上一句话叙述上述结论吗?追问2:换其它数的除法进行类似的讨论,是否仍有除以a(a≠0)可以转化为乘1a?问题3:你能归纳一下上述讨论结果,给出有理数除法法则吗?除以一个不等于0的数,等于乘这个数的倒数.用符号表示就是a÷b=a•1b(b≠0).追问:你能类比有理数乘法法则,给出除法法则的另一种说法吗?两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9; (2)123255⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.例2:化简下列分数:(1)123-; (2)4512--.例3:计算: (1)()512557⎛⎫-÷- ⎪⎝⎭; (2)512.584⎛⎫-÷⨯- ⎪⎝⎭.1. 填空题:(1)若a ,b 互为相反数,且a ≠b ,则a b = ,2b +2a = . (2)当a >0时,aa = .(3)若a >b ,a b<0,则a ,b 的符号是 . 2. 化简下列分数:(1)0.63-; (2)()2712---.3.计算:(1)936911⎛⎫-÷ ⎪⎝⎭;(2)()()112415⎛⎫-÷-÷- ⎪⎝⎭;(3)()280.2535⎛⎫⎛⎫-⨯-÷- ⎪ ⎪⎝⎭⎝⎭.4.计算:(1)31112424⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)()21354⎡⎤⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.1.(3分)(2022•玉林)计算:2÷(-2)=.2.(3分)(2020•山西1/23)计算1(6)()3-÷-的结果是()A.-18B.2C.18D.-21. 有理数除法法则是什么?两种表述形式,分别有什么特点?2. 本节课的学习,你体会到哪些数学思想方法?(一)有理数除法法则:(1)1a b ab÷=⨯(b≠0).(2)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0(二)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.(三)乘除混合运算:往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)【参考答案】1. 除以一个不等于0的数等于乘这个数的倒数;2. 同号得正;异号得负;并把绝对值相除;3. 1a;4.同号.1.两数相乘,同号得正,异号得负,并把绝对值相乘;2.(1)15;(2)-28;(3)32-;(4)0.3.(1)52-;(2)-1;(3)4;(4)116.例1:解:(1)(-36)÷9=-36×19=-4; 或(-36)÷9=-(36÷9)=-4;(2)12312542552535⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 或1231254+2552535⎛⎫⎛⎫⎛⎫-÷-=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 例2:解:(1)()1212343-=-÷=-; (2)4512--=(-45)÷(-12)=45÷12=154. 例3:解:(1)()512557⎛⎫-÷- ⎪⎝⎭ =512557⎛⎫+⨯ ⎪⎝⎭ =151125575⨯+⨯=1257+ =1257; (2)512.584⎛⎫-÷⨯- ⎪⎝⎭=581254⨯⨯=1.答案:1.(1)-1,0; (2)-1;(3)a >0,b <0.2.(1)15-;(2)94-. 3.(1)1411-;(2)52-;(3)6415-. 4.(1)解:原式=33214294-⨯⨯=-; (2)解:原式=()2515343588⎛⎫-÷⨯=-⨯=- ⎪⎝⎭.1.【解答】解:2÷(-2)=-(2÷2)=-1.故答案为:-1.2.【解答】解:1(6)()(6)(3)183-÷-=-⨯-=. 故选:C .。

2.2.2有理数的除法(1)除法法则(教案,新教材)七年级数学上册(人教版2024)

2.2.2有理数的除法(1)---除法法则(教案,新教材)【教学目标】1.在有理数除法法则探索过程中,理解有理数除法法则;2. 会进行有理数除法运算;3.经历探索有理数除法法则的过程,发展学生类比、观察、归纳、概括等能力.从除法不同解释中培养学生的发散思维.【教学重点】有理数的除法运算.【教学难点】有理数除法法则灵活运用.【教学过程】一、情境导入问题1.小学我们学习除法时,知道除法是乘法的逆运算.在把除法推广到有理数范围内时,怎样进行有理数除法呢?本节课开始学习2.2.2有理数的除法(1)----除法法则(板书课题)二、合作探究活动一:探究除法法则问题1.怎样计算()84÷-?教师活动:引导学生和小学学习的除法法则进行比较.学生活动:()()()248842-⨯-=-∴÷-=- ① 1824⎛⎫⨯-=- ⎪⎝⎭ ② 由①②得, ()18484⎛⎫÷-=⨯- ⎪⎝⎭③ 师生共同观察结论:和小学学习的除法法则一样,除以一个数等于乘以这个数的倒数. 问题2.我们任意换几组数,进行计算,看能否得到上面的结论?学生分组讨论,师生共同归纳结论.进一步探讨:对于任意不为0的除数a ,仍然有除以(0)a a ≠,可以转化为乘以1a吗? 问题3.根据上面探究的结果,请你归纳除法法则.学生用自己的语言表述除法法则.教师规范表述:有理数的除法法则:除以一个不为0的数,等于乘以这个数的倒数.用字母表示为:1(0)a b a b b÷=⨯≠ 有理数的除法法则还可以表达为:两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.0除以任何一个不等于0的数,都得0.活动二:有理数的除法运算例1.计算:()123(1)369(2).255;⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭学生活动:采用有理数的除法法则进行计算.教师活动:注意符号“同号得正,异号得负”和绝对值等于“被除数的绝对值除以除数的绝对值”.以上运算可以看到:两个有理数相除(除数不为0),商是有理数.活动三:探究有理数的分数表达形式例2.化简:245(1)(2).312;--- 学生活动:启发学生把他们看成两个有理数相除,采用有理数的除法法则进行化简. 教师活动:评价学生活动,规范写出结果.探究:上面的有理数相除,结果是有理数;反过来,有理数也都可以表示成分数的形式. 学生活动:列举若干个数,说明上面的结论. 师生归纳:有理数就是形如q p(p 、q 是整数,0q ≠).这也判断一个数是不是有理数的方法.三、强化巩固1.练习1、2.抽学生板演,其余学生独立完成,教师评价订正.2.拓展训练:如果0m n +<,0m n>,那么你能判定这两个数的符号吗?请你试一试. 教师启发学生根据加法、除法运算符号特点判断.(根据“两数相除,同号得正”可知m 、n 同号,0m n +<,可以判断m 、n 均为负数.)四、总结拓展学生小组合作对知识总结:1.除法法则的三种形式:①除以一个不为0的数,等于乘以这个数的倒数; ②用字母表示为:1(0)a b a b b÷=⨯≠; ③两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.0除以任何一个不等于0的数,都得0.2. 有理数的分数表达形式.学生小组合作对思想方法总结:有理数除法法则的探究过程,体现了特殊到一般、整体等数学思想.从除法不同解释可以培养我们的发散思维.五、作业布置必做作业:课本习题2.2第6、7、8题选做作业:课本习题2.2第16题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.2有理数的除法(第一课时)
学习目标:
理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算.
学习重点:正确运用有理数除法法则进行有理数除法运算.
学习难点:寻找有理数除法转化为有理数乘法的方法和条件.
教学方法:引导、探究、归纳与练习相结合
教学过程
活动一 探讨有理数除法法则:
独立完成——合作交流——展示成果
阅读课本P35例5以上的内容,谈谈有理数除法法则是如何得出的?换其他数的除法进行类似讨论,是否任有除以a )0(≠a 可以转化为乘a
1?(请举一例) (组内交流)
归纳:
①有理数除法法则:除以________________的数,等于___________________ .
这个法则也可以表示成:_________=÷b a ( ) .
②从有理数除法法则,可得出:
两数相除,同号得_____ ,异号得____ ,并把_________相____ ,
0除以_______________________的数,都得_____ .(你能说说为什么吗?)
1. 有理数除法的运算步骤:第一步,先确定______________;
第二步,后求出______________.
完成课本P36练习
2.完成P36练习
小结:
怎么样,这节课有什么收获,还有那些问题没有解决?
活动二 运用有理数除法法则进行计算!
六、当堂清
一、填空题:
1.下列各数中互为倒数的是()
A.-51
2

2
11
B.-0.75和-
4
3
C.-1和1 D.-5
1
2

2
11
2.若a<b<0,那么下列式子成立的是()
A.1
a
<
1
b
B.ab<1 C.
a
b
>1 D.
a
b
<1
二、填空题
3.直接写出运算结果:
(-9)×2
3
= ,-1
1
2
÷0.5= ,(
1
2
+
1
3
)÷(-6)=
4.若一个数的相反数是,这个数的倒数是.
三、计算题
5.(-42
3
)÷(-2
1
3
)÷(-1
1
7
)=
6.(-5)÷(-12
7
)×
4
5
×(-2
1
4
)÷7=
7.已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求3x-(a+b+cd)-x.
【答案】 1.B 2.C 3. -6,-3,- 5
36
4. -
1
5
,-5
5.-7
4
6.-1
7.1或-3
六、学习反思。

相关文档
最新文档