【冲刺卷】数学中考模拟试卷(带答案)
初中中考冲刺试卷数学答案

一、选择题(每题3分,共30分)1. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 0答案:A2. 下列函数中,定义域为实数集R的是()A. y = √(x - 1)B. y = 1/xC. y = |x|D. y = √(x^2)答案:C3. 已知等差数列{an}中,a1 = 2,公差d = 3,则第10项an的值为()A. 27B. 30C. 33D. 36答案:C4. 若sinθ = 1/2,则cosθ的值为()A. √3/2B. -√3/2C. 1/2D. -1/2答案:A5. 下列各式中,正确的是()A. a^2 = b^2B. a^3 = b^3C. a^2 = b^3D. a^3 = b^2答案:B6. 下列图形中,外接圆半径最大的是()A. 正方形B. 矩形C. 菱形D. 等腰梯形答案:A7. 若一个等腰三角形的底边长为4,腰长为5,则该三角形的面积为()A. 6B. 8C. 10D. 12答案:C8. 已知直角三角形的两条直角边长分别为3和4,则斜边长为()A. 5B. 6C. 7D. 8答案:A9. 若一个平行四边形的对角线互相垂直,则该平行四边形是()A. 矩形B. 菱形C. 正方形D. 等腰梯形答案:B10. 下列函数中,单调递增的是()A. y = x^2B. y = -x^2C. y = 2xD. y = -2x答案:C二、填空题(每题3分,共30分)11. 若a > b,则a - b的符号为_________。
答案:+12. 函数y = √(x + 2)的定义域为_________。
答案:x ≥ -213. 等差数列{an}中,a1 = 3,公差d = -2,则第5项an的值为_________。
答案:-714. 若sinθ = √3/2,则cosθ的值为_________。
【冲刺卷】数学中考模拟试卷附答案

【冲刺卷】数学中考模拟试卷附答案一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .6 2.下列计算正确的是( ) A .2a +3b =5abB .( a -b )2=a 2-b 2C .( 2x 2 )3=6x 6D .x 8÷x 3=x 5 3.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .185.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤ B .54k > C .514k k ≠<且 D .514k k ≤≠且 6.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .7.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2) 8.若正比例函数y=mx (m≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是( ) A . B .C.D.9.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=35米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米B.6米C.8米D.(3+5)米10.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°11.下列各式化简后的结果为32的是()A.6B.12C.18D.3612.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18二、填空题13.如图,⊙O是△ABC的外接圆,∠A=45°,则cos∠OCB的值是________.14.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.15.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.16.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L的影长BC为5米,落在斜坡上的部分影长CD为4米.测得斜CD的坡度i=1:.太阳光线与斜坡的夹角∠ADC=80°,则旗杆AB的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)18.分解因式:2x2﹣18=_____.19.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.20.如图,在平面直角坐标系xOy 中,函数y=k x(k >0,x >0)的图象经过菱形OACD 的顶点D 和边AC 的中点E ,若菱形OACD 的边长为3,则k 的值为_____.三、解答题21.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?24.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?25.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.3.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.4.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .考点:等腰三角形的性质.5.D解析:D【解析】【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( ,解得:k ≤54且k ≠1. 故选:D .【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键6.A解析:A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A .7.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A ,B 答案,而3的个数应为3个,由此可排除C ,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.8.A解析:A【解析】【分析】【详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.9.A解析:A【解析】试题分析:根据CD:AD=1:2,CD=3米,AD=6米,根据AB=10米,∠D=90°可得:米,则BC=BD-CD=8-3=5米.考点:直角三角形的勾股定理10.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.11.C解析:C【解析】A、6不能化简;B、12=23,故错误;C、18=32,故正确;D、36=6,故错误;故选C.点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos ∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos ∠OCB=故答案为【点睛】解析:2【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =OC BC ==.故答案为2. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n ﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且解析:n <2且3n 2≠-【解析】 分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 15.12【解析】【详解】解:设点A 的坐标为(a )则点B 的坐标为()∵AB ∥x 轴AC=2CD ∴∠BAC=∠ODC ∵∠ACB=∠DCO ∴△ACB ∽△DCO ∴∵OD=a 则AB=2a ∴点B 的横坐标是3a ∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.16.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.17.2m【解析】【分析】延长AD交BC的延长线于点E作DF⊥CE于点F解直角三角形求出EFCF即可解决问题【详解】延长AD交BC的延长线于点E作DF⊥CE于点F 在△DCF中∵CD=4mDF:CF=1:3解析:2m.【解析】【分析】延长AD交BC的延长线于点E,作DF⊥CE于点F.解直角三角形求出EF,CF,即可解决问题.【详解】延长AD交BC的延长线于点E,作DF⊥CE于点F.在△DCF中,∵CD=4m,DF:CF=1:,∴tan∠DCF=,∴∠DCF=30°,∠CDF=60°.∴DF=2(m),CF=2(m),在Rt△DEF中,因为∠DEF=50°,所以EF=≈1.67(m)∴BE=EF+FC+CB=1.67+2+5≈10.13(m),∴AB=BE•tan50°≈12.2(m),故答案为12.2m.【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.20.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x 轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E 为AC 的中点,∴EF=12CM=12b ,AF=12AM=12OQ=12a , E 点的坐标为(3+12a ,12b ), 把D 、E 的坐标代入y=k x得:k=ab=(3+12a )12b , 解得:a=2, 在Rt △DQO 中,由勾股定理得:a 2+b 2=32,即22+b 2=9,解得:∴故答案为【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a 、b 的方程是解此题的关键.三、解答题21.(1)证明见解析;(2【解析】【分析】(1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论; (2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长.【详解】(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC ,又∵AC=AD ,∴MN=BM ; (2)∵∠BAD=60°且AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN =+,而由(1)知,MN=BM=12AC=12×2=1,∴. 考点:三角形的中位线定理,勾股定理. 22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.24.(1)y=26(2040)24(40)x x x x ⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式y=26(2040) 24(40)x xx x⎧⎨>⎩剟;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75 xx x>⎧⎨⨯-+⨯⎩…解得x≥50.由题意得w=8(75﹣x)+24x=16x+600.∵16>0,∴w的值随x的增大而增大.∴当x=50时,75﹣x=25,W最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.25.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣19225.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.。
2023初中数学中考真题模拟冲刺卷(含解析)

2023初中数学中考真题模拟冲刺卷(含解析)一、单选题1.用配方法解一元二次方程2640x x -+=,配方正确的是()A .()235x +=-B .()2313x -=C .()235x +=D .()235x -=2.若关于x 的一元二次方程20x x n -+=有两个相等的实数根,则实数n 的值为()A .4B .14C .14-D .-43.已知公式180n rl π=用,l r 表示n ,正确的是()A .180lr n π=B .180n l rπ=C .180r n lπ=D .180l n rπ=4.下列运算中,正确的是()A .3x ÷x=4x B .236()x x =C .3x -2x=1D .222()a b a b -=-5.不等式组2131532123(1)152(1)x x x x x -+⎧-≤-⎪⎨⎪-+>--⎩的解集为()A .102x -<<B .12x -<≤C .12x -≤<D .12x -≤≤6.若y 与x 成反比例,且x=3时,y=7,则比例系数是()A .3B .7C .21D .207.如图,四边形ABCD 是菱形,120ADC ∠=︒,4AB =,扇形BEF 的半径为4,圆心角为60︒,则图中阴影部分的面积是()A .8433π-B .8233π-C .243π-D .223π-8.如图是一个组合烟花的横截面,其中16个圆的半径相同,点A 、B 、C 、D 分别是四个角上的圆的圆心,且四边形ABCD 为正方形.若圆的半径为r ,组合烟花的高为h ,则组合烟花侧面包装纸的面积至少需要(接缝面积不计)..二、填空题11.在平面直角坐标系中,将二次函数()211y x =-+的图像向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为______.12.如图,ABC 的顶点均在坐标轴上,AE BC ⊥于点E ,交y 轴于点D ,已知点B ,C 的坐标分别为()0,6B ,()2,0C ,若AD BC =,则AOD △的面积为_______.13.如图,双骄制衣厂在厂房O 的周围租了三幢楼A 、B 、C 作为职工宿舍,每幢宿舍楼之间均有笔直的公路相连,并且厂房O 与每幢宿舍楼之间也有笔直公路相连,且BC AC AB >>.已知厂房O 到每条公路的距离相等.(1)则点O 为ABC 三条_____的交点(填写:角平分线或中线或高线);(2)如图,设BC a =,AC b =,AB c =,OA x =,OB y =,OC z =,现要用汽车每天接送职工上下班后,返回厂房停放,那么最短路线长是_____.14.如图,过⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,OP 交⊙O 于点C ,点D 是优弧 ABC 上不与点A 、点C 重合的一个动点,连接AD 、CD ,若∠APB =80°,则∠ADC 的度数是_____.15.如图,在△ABC 中,AB =AC═12,AD ⊥BC ,BE ⊥AC ,F 为AC 中点,连接BF 、DE ,当BE 2﹣DE 2最大时,则DE 长为_______.三、解答题19.甲、乙两人相约一起去登山,乙两人距地面的高度y(米)与登山时间据图象所提供的信息解答下列问题:参考答案与解析有三条路线可走:1d x c a =+++在BC 上截取BE BA =,连接OE ∵点O 为ABC 三条角平分线的交点,∴ABO OBE ∠=∠,在ABO 和EBO 中,AB BE ABO OBE BO BO =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABO EBO ≌,∴1252ADC AOP∠=∠=︒,故答案为:25︒CD如图所示:(2)线段'(3)将线段B C'绕C点旋转180︒(2)()()150********x x y x x ⎧≤≤⎪=⎨-<≤⎪⎩(3)甲、乙相遇后,甲再经过1.5分或10.5分与乙相距30米.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度⨯时间即可算出乙在A 地时距地面的高度b 的值;(2)分02x ≤≤和2x >两种情况,根据高度=初始高度+速度⨯时间即可得出y 关于x 的函数关系;(3)先求出甲、乙相遇时所用时间,在路程之间的关系列出方程求解即可.【详解】(1)解:()3001002010-÷=(米/分钟),151230b =÷⨯=.故答案为:10;30;(2)解:当02x ≤≤时15y x =;当2x >时,()3010323030y x x =+⨯-=-.当3030300y x =-=时,11x =.∴乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为()()150********x x y x x ⎧≤≤⎪=⎨-<≤⎪⎩;(3)解:甲登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为()10100011y x x =+≤≤.当101003030+=-x x 时,解得: 6.5x =;∴()()30 6.510 6.530x x ---=,解得8x =,∴ 6.5 1.5x -=;当甲距离山顶30米时,此时203 6.510.5--=(分),18【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,等腰直角三角形的性质,含30°直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于压轴题.23.(1)y=5x+30;(2)第23天去掉捐款后的利润是6235元;(3)W=﹣5(x﹣30)2+6480,第30天的利润最大,最大利润是6480元.【分析】(1)设函数解析式为y=kx+b(k≠0),从表中取两个点(1,35),(3,45),把两点坐标代入函数解析式中,求得k、b即可解决;(2)设第x天去掉捐款后的利润为6235元,根据等量关系:一件的利润×销量=总利润,列出方程,解方程即可;(3)根据:总利润=一件的利润×销量,即可得出W与x之间的二次函数关系式,然后求出此二次函数最大值即可.【详解】(1)设y与x满足的一次函数数关系式为y=kx+b(k≠0),将(1,35),(3,45)分别代入y=kx+b中,得:35453k bk b=+⎧⎨=+⎩,解得:530 kb=⎧⎨=⎩,∴y与x的函数关系式为y=5x+30;(2)设第x天去掉捐款后的利润为6235元根据题意得:(130﹣x﹣60﹣4)(5x+30)=6235,整理得:x2﹣60x+851=0,解得:x=23或x=37(舍),∴在这30天内,第23天去掉捐款后的利润是6235元;(3)由题意得:W=(130﹣x﹣60﹣4)(5x+30)=﹣5x2+300x+1980即W与x之间的函数关系式为W=﹣5x2+300x+1980∵W=﹣5x2+300x+1980=﹣5(x﹣30)2+6480,且a=﹣5<0,∴当x=30时,W有最大值,最大值为6480元.∴W与x之间的函数关系式是W=﹣5x2+300x+1980,第30天的利润最大,最大利润是6480元.【点睛】本题是函数与方程的综合性问题,考查了待定系数法求函数解析式,解一元二次方程,求二次函数的最值等知识,本题首先要正确理解题意,熟悉售价、进价、利润三者间的关系,其次要求有较好的运算能力.。
中考数学冲刺模拟试卷(有答案解析)

中 考 仿 真 模 拟 测 试数 学 试 卷学校________ 班级________ 姓名________ 成绩________满分:150分测试时间:120分钟一、选择题:(本大题共6小题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在相应位置上】 1.(本题4分)下列式子中,是单项式的是( ) A .12x 3y 2 B .x+y C .﹣m 2﹣n 2 D .12x2.(本题4分)下列函数中,y 是x 的反比例函数的是( ) A .2y x =- B .11y x =+ C .3y x =-D .2y x=3.(本题4分)我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为( ) A .3.5×106 B .3.5×107 C .35×105 D .0.35×1084.(本题4分)为了了解我市今年6000名学生参加初中毕业考试数学成绩情况,从中抽取了500名考生的成绩进行统计,下列说法:①这6000名学生的成绩的全体是总体;②每个考生是个体;③500名考生是总体的一个样本;④样本容量是500.其中说法正确的有( ) A .4个 B .3个 C .2个 D .1个 5.(本题4分)如图所示,在长方体1111ABCD A BC D -中,与棱AD 异面的棱有( )A .2条B .3条C .4条D .5条6.(本题4分)下列条件中,能判断四边形是菱形的是( ) A .对角线互相垂直且相等的四边形 B .对角线互相垂直的四边形 C .对角线相等的平行四边形D .对角线互相平分且垂直的四边形二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入相应位置】 7.(本题4分)(1)3的相反数是_____; (2)2-的绝对值是_____;(3)15-的倒数是_____; (4)比较大小:13-_____34-(用“>”、“<”或“=”填空).8.(本题4分)已知一次函数y =kx+B (k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则此一次函数的解析式为___.9.(本题4分)已知等边三角形的边长为x(C m),则此三角形的面积S(C m 2)关于x 的函数关系式是__. 10.(本题4分)已知方程²30x mx ++=的一个根是1,则m 的值是_______11.(本题4分)老师给出一个二次函数,甲、乙、丙三名同学各指出这个函数的一个性质. 甲:函数图象的顶点在x 轴上;乙:当x <1时,y 随x 的增大而减小;丙:该函数的开口大小、形状均与函数y=x 2的图像相同已知这三位同学的描述都正确,请你写出满足上述所有性质的一个二次函数表达式_________.12.(本题4分)从1,2,3,4这四个数字中任意取出两个不同的数字,取出的两个数字的和是偶数的概率为____. 13.(本题4分)小明从A 处出发沿北偏东40︒的方向走了30米到达B 处;小军也从A 处出发,沿南偏东(090)αα<<的方向走了40米到达C 处,若B 、C 两处的距离为50米,则α为________14.(本题4分)已知在一个样本中有50个数据,它们分别落在5个组内,第一、二、三、四、五组数据的个数分别为2,8,15,x,5,那么第四组的频率为_____________.15.(本题4分)如图,已知梯形A B C D ,A D ∥B C ,B C =3A D ,如果AD a =,AB b =,那么DC =_____(用a ,b 表示).16.(本题4分)如图,延长正方形A B C D 的边A B 到E,使B E=B D ,则∠E=__________.17.(本题4分)如图,矩形A B C D 中,A B =4,B C =3,连接A C ,⊙P 和⊙Q 分别是△A B C 和△A D C 的内切圆,则PQ 的长是_______.18.(本题4分)如图所示,已知OAC 和ABC 都是等腰直角三角形,90ACO ABC ∠=∠=︒,反比例函数ky x=在第一象限的图象经过点B ,连接OB ,且4=OAB S .则k 的值为______.三、解答题:(本大题共7题,满分78分)19.(本题10分)用适当的方法解方程: (1)x 2+2x=0 (2)x 2﹣4x+1=020.(本题10分)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣C os30°)×()﹣2;(2)先化简,再求值:﹣÷,其中A =.21.(本题10分)如图,在梯形A B C D 中,A B ∥D C ,A B =14C m,C D =6C m.点P 从点A 出发,以2C m/s 的速度沿A B 向终点B 运动;点Q 从点C 出发,以1C m/s 的速度沿C D 向终点D运动(P 、Q 两点中,有一个点运动到终点时,所有运动即终止),设P 、Q 同时出发并运动了t 秒. (1)当D Q=A P 时,四边形A PQD 是平形四边形,求出此时t 的值;(2) 试问在这样的运动过程中,是否存在某一时刻,使梯形PB C Q 的面积是梯形A B C D 面积的一半?若存在,求出这样的t 的值,若不存在,请说明理由.22.(本题10分)如图,A N 是⊙O 的直径,四边形A B MN 是矩形,与圆相交于点E,A B =15,D 是⊙O 上的点,D C ⊥B M,与B M 交于点C ,⊙O 的半径为R =30. (1)求B E 的长.(2)若B C =15,求DE 的长.23.(本题12分)如图,已知(),0A a , ()0,B b ,且a ,b 满足()240a b a -++=,D 为第一象限内一点,连接BD ,连接AD 交y 轴于C 点,且AC CD =. (1)求A 、 B 两点的坐标;(2)如图①,若ABD ∆的面积为20,求D 点的坐标;(3)如图②,在第四象限内过点B 作BE y ⊥轴,且2BE OC =,连接AE .求证:AE BD =, 且AE BD ⊥.24.(本题12分)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =+-≠与x 轴交于(1,0)A 、(3,0)B 两点,与y 轴交于点C ,其顶点为点D ,点E 的坐标为(0,1)-,该抛物线与B E 交于另一点F,连接B C . (1)求该抛物线的解析式;(2)若点(1,)H y 在B C 上,连接FH,求FHB △的面积;(3)一动点M 从点D 出发,以每秒1个单位的速度沿平行于y 轴方向向上运动,连接OM,B M,设运动时间为t 秒(0)t >,在点M 的运动过程中,当t 为何值时,90OMB ∠=︒?25.(本题14分)如图,等边 A B C ,边长为4,点P是边A B 上一动点(不与A ,B 重合),过点A ,P,C 三点作圆,交边B C 于点D ,作∠PC Q=60°,交圆于点Q,连接D Q交A C 于点E.(1)连接PQ,求证:PC Q是等边三角形;(2)求证:D Q//A B ;(3)连接A Q,设B P=x, A PQ的面积为y,当x为何值时,y的值最大;(4)取B P中点F,连接PE,FE,当∠PEF的值最大时,直接写出B P的值.参考答案1.A 【解析】A . ﹣x 3yz 2是单项式,故符合题意; B . x+y 是多项式,故不符合题意;C . ﹣m 2﹣n 2是多项式,故不符合题意;D .是分式,故不符合题意; 故选A . 2.D【解析】A 、y=-2x 是正比例函数,故选项错误; B 、,y 是x+1的反比例函数,故选项错误;C 、y=x-3是一次函数,故选项错误; D 、,y 是x 的反比例函数,故选项正确.故选D . 3.A【解析】3 500 000=3.5 ;故选A .4.D【解析】解:这6000名学生的初中毕业考试数学成绩的全体是总体,故①说法错误; 每个考生的初中毕业考试数学成绩是个体,故②说法错误;500名考生的初中毕业考试数学成绩是总体的一个样本,故③说法错误; 样本容量是500,故④说法正确. ∴说法正确的有④共1个. 故选:D . 5.C【解析】由题意得:与棱A D 异面的棱有:B B 1,C C 1,A 1B 1,C 1D 1 故选C . 6.D【解析】解:A 、对角线互相垂直相等的四边形不一定是菱形,此选项错误; B 、对角线互相垂直的四边形不一定是菱形,此选项错误; C 、对角线相等的平行四边形也可能是矩形,此选项错误; D 、对角线互相平分且垂直的四边形是菱形,此选项正确; 故选D .7. 2 >【解析】(1)3的相反数是; (2)的绝对值是2; (3;(4)∵,, ∵, 1212x11y x =+2y x=610⨯2y x =ABCD ABCD -2y x =ABCD ABCD -2-15-13-∴ ; 故答案为:;2;;>. 8.y =x+2或y =﹣x+2.【解析】∵一次函数y =kx+B (k≠0)图象过点(0,2), ∴B =2,设一次函数与x 轴的交点是(A ,0), 则×2×|A |=2,解得:A =2或﹣2.把(2,0)代入y =kx+2,解得:k =﹣1,则函数的解析式是y =﹣x+2; 把(﹣2,0)代入y =kx+2,得k =1,则函数的解析式是y =x+2. 故答案是:y =x+2或y =﹣x+2. 9.S =【解析】由题意得作出B C 边上的高A D .∵△A B C 是等边三角形,边长为x, ∴C D =,∴高为,∴.故答案为: S =.10.-4【解析】解:由题意可知,将x=1代入方程中得到:1²+m+3=0, 解得m=-4,故答案为:-4. 11..【解析】解:根据题意知,函数图象的顶点在x 轴上, 设函数的解析式为;该函数的开口大小、形状均与函数y=x 2的图像相同34-2y x =ABCD ABCD -²30x m x ++=m40︒(090)αα<<αAD a =AB b =DCa当x <1时,y 随x 的增大而减小;所以取满足上述所有性质的二次函数可以是:,故答案为:,(答案不唯一). 12.【解析】可知共有种可能,两个数字之和为偶数的有4种,所以概率为; 故答案是.13.50° 【解析】解:是直角三角形,且∴α=.故答案为50°. 14.【解析】解:x 的值为:,第四组的频数为20,数据总和为50,故答案为:0.4. 15.【解析】解:∵A D ∥B C ,B C =3A D , ,,∴.故答案为:. 16.22.5°【解析】∵四边形A B C D 是正方形, ∴∠A B C =90°,∠A B D =∠A B C =45°,∵B D =B E,b aAB b =AB b =OA C 90ACO ABC ∠=∠=︒ky x=OA C BO B 4=O A BSk ²30x m x ++=∴∠B D E=∠E,∵∠A B D =∠B D E+∠E, ∴∠E=22.5°故答案为22.5° 17【解析】∵四边形A B C D 是矩形,∴△A C D ≌△C A B ,∴⊙P 与⊙Q 的半径相等, 在Rt △A B C 中,A B =4,B C =3,∴=5,∴⊙P 的半径r=连接点P、Q,过点Q 作QE//B C ,过点作交QE 于点E,则∠QEP=90°,如图所示, 在Rt △QEP 中,QE=B C -2r=3-2=1,EP=A B -2r=4-2=2,∴PQ===,.18.6.【解析】设 是等腰直角三角形是等腰直角三角形和都是等腰直角三角形解得:DE(),0A a ()0,B b ba ()240a b a -++=DBDay CAC CD=a()240a b a -++=y AB ABD∆BE y ⊥,过作轴是等腰直角三角形反比例函数在第一象限的图象经过点故答案为:6.19.(1)x1=0,x2=﹣2;(2)x1,x2=2.【解析】(1)或所以,(2),即2BE OC=AEAE BD=AE BD⊥a22(0)y ax bx a=+-≠x(1,0)A(3,0)B(0,1)-(1,)H ya FHB△AE BD=(0)t>所以,20.(1)-+1;(2)原式= ,当A =时,原式=.【解析】(1)原式==﹣2﹣1+(1﹣)×4=-2-1+4-2=-+1;(2)原式=====,当A =时,原式=.考点:分式的化简求值;实数的运算.21.(1)t=2;(2)t=4.【解析】(1)由题意可得:A P=2t,D Q=6-t,∵A P=D Q,∴,解得,∴当时,A P=D Q;(2)如下图,过点C 作C E⊥A B 于点E,∵PB =14-2t,C Q=t,=,S∴=解得:t=4,即当t=4时,梯形PB C Q的面积是梯形A B C D 面积的一半.22.(1)30﹣;(2)15π【解析】解:(1)连接OE,过O作OF⊥B M于F,则四边形A B FO是矩形,∴FO=A B =15,B F=A O,在Rt△OEF中,EF==,∵B F=A O=30,∴B E=30﹣.(2)连接OD ,在直角三角形OD Q中,∵OD =30,OQ=30﹣15=15,∴∠OD Q=30°,∴∠QOD =60°,过点E作EH⊥A O于H,在直角三角形OEH中,∵OE=30,EH=15,=∴∠D OE=90°,∴==15π.23.(1)点A 坐标为(-4,0),点B 的坐标为(0,-4);(2)点D 的坐标为(4,2);(3)见解析【解析】解:(1)∵,∴解得:A =B =-4∴点A 坐标为(-4,0),点B 的坐标为(0,-4)(2)过点D 作D E⊥y轴于E∴∠D EC =∠A OC =90°在△D EC 和△A OC 中∴△D EC ≌△A OC∴D E=A O=4,S△D EC =S△A OC∵的面积为20∴S△A OB +S△A OC +S△D C B =20∴S△A OB +S△D EC +S△D C B =20∴S+S△∴OA ·OB D E=20∴×4×44=20解得:B E=6∴OE=B E-OB =2∴点D 的坐标为(4,2)(3)过点D 作D F⊥x轴于F,连接B F,设B D 与A E交于点G∴D F∥OC∵A C =C D∴A O=OF∴OB 垂直平分A F,D F=2OC∴A B =B F∴∠B A F=∠B FA∵OA =OB ,∠A OB =90°∴∠B A F=∠OB A =45°∴△A B F 为等腰直角三角形,∠A B F=90°∴∠A B E=135°,∠B FD =135°∴∠A B E=∠B FD ∵∴B E=D F在△A B E 和△B FD 中 ∴△A B E ≌B FD∴,∠EA B =∠D B F∴∠B GE=∠EA B +∠GB A =∠D B F +∠GB A =∠A B F=90°∴ 24.(1);(2);(3【解析】解:(1)抛物线与轴交于,两点, , , 抛物线解析式为; (2)如图1,过点作轴交于,交于,由(1),, 将,代入,得,a解得,直线的解析式为,在直线上,,,将点,代入, 得,,解得,直线的解析式为,直线与抛物线相交于,, ,;顶点动点从点出发,以每秒1个单位的速度沿平行于轴方向向上运动, a AE BDa设,,,,,,,,,(舍,,,当时,.25.(1)见解析;(2)见解析;(3)当时,y取得最大值,最大值为;(4)3.2【解析】(1)证明:∵等边 A B C ,∴∠PA C =∠B =∠A C B =60°,∴∠PQC =∠PA C =60°,∵∠PC Q=60°,∠PQC =60°,∴PC Q是等边三角形;(2)证明:∵PC Q是等边三角形,∴∠C PQ=∠PC Q=60°,∴∠C D Q=∠C PQ=60°,又∵∠B =60°,∴∠C D Q=∠B ,∴D Q//A B ;(3)解:如图,连接A Q,过点P作PG⊥A Q,交QA 的延长线于点G,∵∠A C B =∠PC Q=60°,∴∠PC B =∠A C Q,∵ A B C ,PC Q是等边三角形,∴B C =A C =A B =4,PC =QC ,在与中∴(SA S)∴A Q=B P=x,∠C A Q=∠B =60°,又∵A B =4,∴A P=A B -B P=4-x,∵∠B A C =∠C A Q=60°,∴∠PA G=60°,∴在Rt A PG中,sin∠PA G=,∴sin60°==∴PG∴当时,y取得最大值,最大值为;(4)解:如图,连接PD ,作线段PF的垂直平分线,交PF、D Q于点N、M,连接FD ,FM、PM,设B P=x,∵D Q∥A B ,,∴PD =A Q,∴PD =B P,又∵∠B =60°,∴ B PD 为等边三角形,∴B D = B P = PD =x,又∵F 为B P 的中点,∴FD ⊥B P,B F =PF =B P = 在Rt B FD 中,FD =∵FD ⊥B P,MN ⊥B P,A B ∥D Q,∴四边形FNMD 为矩形,∴MN =FD,FN =D M,∠FNM =90°, ∵MN 垂直平分PF,∴PN =FN =FP =PM,∠FMN =∠PMN, ∴在Rt FMN 中,tA n ∠FMN ===, ∴∠FMN 为定值,又∵∠FMP =∠FMN+∠PMN=2∠FMN, ∴∠FMP也为定值,∴当点E 在FMP 的外接圆外时,∠PEF <∠FMP, 当点E 在FMP 的外接圆上时,∠PEF =∠FMP, ∴当点E 与点M 重合时,∠PEF 的值最大, ∵B D =x,B C =4,∴D C =4-x,∵∠QD C =∠A C B =60°,∴ED C 为等边三角形,∴D E =D C =4-x,如图,当点E 与点M 重合时,D M =D E,FN D E,²30x m x ++=40︒²30x m x ++=解得,∴当∠PEF的值最大时, B P的值为3.2.。
初三冲刺数学试题及答案

初三冲刺数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. 0.333...C. πD. √22. 如果一个二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ =b² - 4ac小于0,那么这个方程:A. 有唯一解B. 有两组实数解C. 无实数解D. 无法确定3. 一个圆的半径为5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π4. 已知函数f(x) = 2x - 3,求f(-1)的值:A. 1B. -5C. -1D. 55. 下列哪个是等差数列的通项公式?A. an = a1 + (n-1)dB. an = a1 + ndC. an = a1 - (n-1)dD. an = a1 - nd二、填空题(每题2分,共10分)6. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是________。
7. 一个数的平方根是4,那么这个数是________。
8. 一个数的立方根是2,那么这个数是________。
9. 一个数的绝对值是5,那么这个数可以是________或________。
10. 如果一个数的相反数是-7,那么这个数是________。
三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3 + √5)² - 2√5。
12. 解方程:2x + 5 = 15。
13. 计算下列数列的前5项和:1, 3, 5, 7, 9。
四、解答题(每题10分,共20分)14. 已知一个直角三角形的斜边长为13,一个直角边长为5,求另一个直角边的长度。
15. 已知一个等差数列的前三项分别为3,7,11,求这个数列的第20项。
五、证明题(每题15分,共15分)16. 证明:直角三角形的斜边的平方等于两直角边的平方和。
答案一、选择题1. C2. C3. B4. B5. A二、填空题6. 57. 168. 89. 5, -510. 7三、计算题11. 1412. x = 513. 25四、解答题14. 另一个直角边的长度是12。
初三冲刺数学试题及答案人教版

初三冲刺数学试题及答案人教版一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1415B. πC. 0.5D. √42. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π3. 一个二次方程 \( ax^2 + bx + c = 0 \) 的判别式是 \( b^2 - 4ac \),当判别式小于0时,方程的根是什么?A. 无实数根B. 有两个实数根C. 有一个实数根D. 无法判断4. 函数 \( y = 3x - 2 \) 在 \( x = 1 \) 时的值是多少?A. 1B. 2C. 3D. 45. 下列哪个是等差数列?A. 2, 4, 6, 8B. 1, 3, 5, 7C. 3, 6, 9, 12D. 5, 4, 3, 26. 一个正方体的体积是27立方厘米,它的棱长是多少?A. 3厘米B. 6厘米C. 9厘米D. 27厘米7. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为60度,那么这个三角形的面积是多少?A. 3平方厘米B. 4平方厘米C. 6平方厘米D. 12平方厘米8. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 29. 下列哪个是完全平方数?A. 15B. 16C. 17D. 1810. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少?A. 24立方米B. 12立方米C. 16立方米D. 20立方米二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是_________。
12. 一个数的绝对值是5,这个数可以是_________或_________。
13. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是_________。
14. 一个数的立方根是2,这个数是_________。
15. 一个数的平方是36,这个数可以是_________或_________。
数学中考冲刺模拟试卷(带答案解析)

D、A4+A4=2A4,故本选项不合题意.
故选:C.
【点睛】本题主要考查了合并同类项,平方差公式,同底数幂的乘法以及积的乘方,熟记幂的运算法则是解答本题的关键.
6.若代数式 有意义,则实数x的取值范围是( )
A.x>0B.x≥0C.x>0且x≠2D.x≥0且x≠2
C.两直线平行的条件下,同旁内角互补,而缺少条件则同旁内角不一定互补,不符合题意,
D.概率是反映事件发生机会的大小,不一定是确定数据,不符合题意,
故选:B.
【点睛】本题考查统计与调查及概率,在一定条件下,方差越小数据越稳定是解题关键.熟练掌握全面调查的意义、方差的意义、事件的分类及概率的意义是解题关键.
中考仿真模拟测试
数学试卷
学校________班级________姓名________成绩________
(考试时间:120分钟 满分:120分)
一、单选题(每小题3分,共36分)
1.-2021的绝对值是()
A.-2021B.2021C. D.
2.嫦娥五号距离地球约160000公里,其中160000用科学记数法表示为( )
二、填空题(每小题5分,共20分,将答案填在题中横线上)
13.分解因式:A2B-4B3=______.
14.一组数据4,4,5,5, ,6,7 平均数是5,则这组数据的中位数是_________.
15.直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y= (k≠0)的图象经过▱OA B C的顶点C,则k=____.
【详解】解:俯视图是从物体的上面看得到的平面图形,该几何体从上面看得到一个圆里面有一个小圆
故选B.
【点睛】本题考查三视图,熟练掌握俯视图是从物体的上面看得到的平面图形是解题关键.
数学冲刺班中考试题及答案

数学冲刺班中考试题及答案中考临近,许多学生都在寻找有效的复习方法和资料。
数学冲刺班就是其中一种帮助学生快速提高成绩的方式。
以下是一份数学冲刺班中考试题及答案,供同学们参考和练习。
一、选择题1. 下列哪个数是无理数?A. 2.5B. 3.14C. πD. √2答案:C2. 如果一个三角形的两边长分别为3和4,且这两边夹角为90°,那么第三边的长度是多少?A. 5B. 6C. 7D. 8答案:A二、填空题1. 已知一个圆的半径为5,那么这个圆的面积是_________(答案:25π)。
2. 如果一个多项式f(x) = x^2 - 5x + 6,那么f(2)的值是_________(答案:0)。
三、解答题1. 解不等式:2x + 5 > 3x - 2。
首先,将不等式中的项进行整理,得到2x - 3x > -2 - 5,即-x > -7。
解得x < 7。
2. 已知一个直角三角形的两个直角边分别为6和8,求斜边的长度。
根据勾股定理,斜边的长度为√(6^2 + 8^2) = √(36 + 64) =√100 = 10。
四、证明题1. 证明:对于任意一个直角三角形,其斜边的平方等于两个直角边的平方和。
设直角三角形的两个直角边分别为a和b,斜边为c。
根据勾股定理,我们有c^2 = a^2 + b^2。
这就是需要证明的结论。
五、应用题1. 一个农场主想要围成一个矩形的鸡舍,他有120米的围栏。
如果鸡舍的长是宽的两倍,那么鸡舍的长和宽各是多少?设鸡舍的宽为x米,那么长为2x米。
根据题意,我们有2(x + 2x) = 120,解得x = 15,所以宽为15米,长为30米。
结束语通过以上的数学冲刺班中考试题及答案,同学们可以检验自己的数学知识掌握情况,同时也能够对中考的题型有一个大致的了解。
希望同学们能够通过不断的练习,提高自己的数学解题能力,为中考做好充分的准备。
祝所有考生中考顺利,取得优异的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【冲刺卷】数学中考模拟试卷(带答案)一、选择题1.已知反比例函数 y =的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a 在同一平面直角坐标系中的图象可能是( )A .B .C .D .2.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A .1 个B .2 个C .3 个D .4个3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数 4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =- 5.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠6.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大7.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .8.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF = 9.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .3 10.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1B .0,1C .1,2D .1,2,3 11.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A.B.C.D.12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18二、填空题13.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.15.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)16.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧»BC的长为 cm.17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.19.当m=____________时,解分式方程533x mx x-=--会出现增根.20.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=63cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)23.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 24.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 25.如图1,在直角坐标系中,一次函数的图象l 与y 轴交于点A (0 , 2),与一次函数y =x ﹣3的图象l 交于点E (m ,﹣5).(1)m=__________;(2)直线l 与x 轴交于点B ,直线l 与y 轴交于点C ,求四边形OBEC 的面积; (3)如图2,已知矩形MNPQ ,PQ =2,NP =1,M (a ,1),矩形MNPQ 的边PQ 在x 轴上平移,若矩形MNPQ 与直线l 或l 有交点,直接写出a 的取值范围_____________________________【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.2.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.3.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 4.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.5.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.6.A解析:A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x=1801841881901921946+++++=188,方差为S2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187, 方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=593∵188>187,683>593, ∴平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 7.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.8.A解析:A【解析】【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF , ∴AD BC DF CE=. 故选A .本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.9.B解析:B【解析】【分析】【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12 BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12S S =12.故选B.10.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.11.D解析:D【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a=->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S △ADC =S △ABC ,S △AMP =S △AEP ,S △PFC =S △PCN ,最终得到S 矩形EBNP = S 矩形MPFD ,即可得S △PEB =S △PFD ,从而得到阴影的面积.【详解】作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PFC =S △PCN∴S 矩形EBNP = S 矩形MPFD ,又∵S △PBE = 12S 矩形EBNP ,S △PFD =12S 矩形MPFD ,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴解析:6 5【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.15.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB=,利用两边及其夹角法可判定△ADE∽△ACB.16.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧»BC的长=606=2180ππ⋅⋅(cm).17.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s 故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.19.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m ,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分).估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分).【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1)证明见解析;(2)6πcm 2.【解析】【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线,∴OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD .由垂径定理可知,MD=MB=12. 在Rt △OBM 中, ∠COB=60°,OB=cos302MB ︒==6.在△CDM 与△OBM 中3090CDM OBM MD MBCMD OMB ︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩, ∴△CDM ≌△OBM (ASA ),∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC =2606360π⋅=6π(cm 2).考点:1.切线的判定;2.扇形面积的计算.23.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题. 试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值.24.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.25.(1)-2;(2);(3)≤a≤或3≤a≤6.【解析】【分析】(1)根据点E在一次函数图象上,可求出m的值;(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【详解】解:(1)∵点E(m,−5)在一次函数y=x−3图象上,∴m−3=−5,∴m=−2;(2)设直线l1的表达式为y=kx+b(k≠0),∵直线l1过点A(0,2)和E(−2,−5),∴,解得,∴直线l1的表达式为y=x+2,当y=x+2=0时,x=∴B点坐标为(,0),C点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.。