2020届江苏省高考压轴卷 数学(文)

合集下载

2020届江苏省高考数学押题试卷含解析

2020届江苏省高考数学押题试卷含解析

2020届江苏省高考数学押题卷数学I一、填空题:本大题共14小题,每小题5分,计70分.请把答案写在答题纸的指定位置上.1.已知集合{|02}A x x =<<,{|11}B x x =-<<,则A B =U .2.设复数z 满足(1i)i z ⋅-=(其中i 为虚数单位),则z 的模为 .3.一组数据3,x ,5,6,7的均值为5,则方差为 .4.右图是一个算法的伪代码,其输出的结果为 .5.袋中有形状、大小都相同的5只球,其中2只白球,3只红球,从中一次随机摸出2只球,则这2只球颜色相同的概率为 .6.已知正四棱柱1111ABCD A B C D -中,AB =3,AA 1=2,P ,M 分别为BD 1,B 1C 1上的点. 若112BP PD =,则三棱锥M -PBC 的体积为______.7.在平面直角坐标系xOy 中,若双曲线)0,0(12222>>=-b a by a x 的一个焦点到一条渐近线的距离为2a ,则该双曲线的离心率为 .8. 若将函数f (x )的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f =______. 9. 已知函数()f x 是R 上的奇函数,当x ≥0时,f (x )=2x +m (m 为常数),则2(log 5)f -的值为______.10.已知函数2()e (1)x f x x ax =++的单调减区间为()ln ln e e b a ,,则a b 的值为______. 11.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的 圆C 与直线l 交于另一点D .若AB ⊥CD ,则点A 的横坐标为 .12.设H 为三角形ABC 的垂心,且3450HA HB HC ++=u u u r u u u r u u u r r ,则cos BHC ∠= .13.已知函数f (x )满足1()+()x f x f x e'=,且f (0)=1,则函数[]21()3()()2g x f x f x =-的零点个数是 .14.若数列{}n a 满足21321111222n n a a a a a a --<-<<-<L L ,则称数列{}n a 为“差半递增”数列.若数列{}n a 为“差半递增”数列,其前n 项的和为n S ,且满足221()n n S a t n N *=+-∈,则实数t 的取值范围为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出 文字说明、证明过程或演算步骤.15.(本小题满分14分)在三棱锥S —ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB ,过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ‖平面ABC .(2)求证:BC ⊥SA .16.(本小题满分14分)已知△ABC 的内角的对边分别为a 、b 、c .(1)若π3B =,b =,△ABC 的面积S ,求a+c 值; (2)若()22cos C BA BC AB AC c ⋅+⋅=u u u v u u u v u u u v u u u v ,求角C .椭圆22221x y a b +=(a >b >0)的离心率为13,左焦点F 到直线l :x =9的距离为10, 圆G :(x -1)2+y 2=1.(1)求椭圆的方程;(2)若P 是椭圆上任意一点,EH 为圆G :(x -1)2+y 2=1的任一直径,求PE PH ⋅u u u r u u u r 的取值 范围;(3)是否存在以椭圆上点M 为圆心的圆M ,使得圆M 上任意一点N 作圆G 的切线,切点为T ,都满足NF NT =M 的方程;若不存在,请说明理由.18.(本小题满分16分)如图,在某商业区周边有两条公路1l 和2l ,在点O 处交汇;该商业区为圆心角π3, 半径3km 的扇形.现规划在该商业区外修建一条公路AB ,与12l l 、分别交于A B 、,要求AB 与扇形弧相切,切点T 不在12l l 、上.(1)设km,km,OA a OB b == 试用,a b 表示新建公路AB 的长度,求出,a b 满足的关系式,并写出,a b 的范围;(2)设α=∠AOT ,试用α表示新建公路AB 的长度,并且确定A B 、的位置,使得新建公路AB 的长度最短.已知函数f (x )=x 3-x +2x .(1)求函数y =f (x )在点(1,f (1))处的切线方程;(2)令g (x )2ln x +,若函数y =g (x )在(e ,+∞)内有极值,求实数a 的取值范围;(3)在(2)的条件下,对任意t ∈(1,+∞),s ∈(0,1),求证:1()()e 2eg t g s ->+- .20.(本小题满分16分)已知数列{a n },{b n }满足,2S n =(a n +2)b n ,其中n S 是数列{a n }的前n 项和.(1)若数列{a n }是首项为23,公比为13-的等比数列,求数列{b n }的通项公式; (2)若b n =n ,a 2=3,求证:数列{a n }满足a n +a n +2=2a n +1,并写出数列{a n }的通项公式;(3)在(2)的条件下,设 n n na cb =.试问,数列{c n }中的任意一项是否总可以表示成该数列其他两项之积?若可以,请证明之;若不可以,请说明理由.数学Ⅱ(附加题)满分40分考试时间30分钟21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答,每小题10分.若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.B.(选修4-2:矩阵与变换)已知线性变换T1是按逆时针方向旋转90︒的旋转变换,其对应的矩阵为M,线性变换T2:2,3x xy y'=⎧⎨'=⎩对应的矩阵为N.(1)写出矩阵M、N;(2)若直线l在矩阵NM对应的变换作用下得到方程为y=x的直线,求直线l的方程.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为,2sinxyαα⎧=⎪⎨=⎪⎩(α∈R,α为参数),曲线C2的极坐标方程为cos sin50ρθθ-=.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)设P为曲线C1上一点,Q曲线C2上一点,求线段PQ的最小值.【必做题】第22、23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,已知长方体ABCD-A1B1C1D1,AB=2,AA1=1,直线BD与平面AA1B1B所成的角为30︒,AE垂直BD于点E、F为A1B1的中点.(1)求异面直线AE与BF所成角的余弦值;(2)求平面BDF与平面AA1B1B所成二面角(锐角)的余弦值.23.(本小题满分10分)设集合S={1,2,3,…,n}(n≥5,n∈N*),集合A={a1,a2,a3}满足a1<a2<a3,且a3-a2≤2,A⊆S.(1)若n = 6,求满足条件的集合A的个数;(2)对任意的满足条件的n及A,求集合A的个数.。

2020年江苏省高考数学压轴试卷(6月份)(含答案解析)

2020年江苏省高考数学压轴试卷(6月份)(含答案解析)

2020年江苏省高考数学压轴试卷(6月份)一、填空题(本大题共14小题,共70.0分)1.已知集合,,则______.2.已知复数,则______.3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S为______.5.已知双曲线的离心率为,则该双曲线的渐近线方程是______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为________.7.已知点P在抛物线上运动,F为抛物线的焦点,点A的坐标为,则的最小值是______.8.已知,都是锐角,,,则的值等于______.9.在体积为9的斜三棱柱中,S是上的一点,的体积为2,则三棱锥的体积为______10.在等差数列中,,则数列的前11项和等于______ .11.如图,三棱锥中,已知平面ABC,是边长为2的正三角形,E为PC的中点.若直线AE与平面PBC所成角的正弦值为,则PA的长为______.12.如图,在四边形ABCD中,,点M,N分别是边AD,BC的中点,延长BA和CD交MN的延长线于不同的两点P,Q,则的值为______.13.已知函数,若有两个零点,,则的取值范围______.14.在中,记角A,B,C所对的边分别是a,b,c,面积为S,则的最大值为______.二、解答题(本大题共11小题,共142.0分)15.在中,角A,B,C所对的边分别为a,b,c,已知,,求a的值;若,求周长的取值范围.16.如图,在直三棱柱中,,D,E分别是AB,AC的中点.求证:平面;求证:平面平面.17.如图所示,为美化环境,拟在四边形ABCD空地上修建两条道路EA和ED,将四边形分成三个区域,种植不同品种的花草,其中点E在边BC的三等分处靠近B点,百米,,,百米,.求区域的面积;为便于花草种植,现拟过C点铺设一条水管CH至道路ED上,求当水管CH最短时的长.18.己知椭圆的左、右焦点分别为,,离心率为,P是椭圆C上的一个动点,且面积的最大值为.求椭圆C的方程;设斜率不为零的直线与椭圆C的另一个交点为Q,且PQ的垂直平分线交y轴于点,求直线PQ的斜率.19.数列的前n项和记为,且,数列是公比为q的等比数列,它的前n项和记为若,且存在不小于3的正整数k,m,使若,,求,证明:数列为等差数列;若,是否存在整数m,k,使,若存在,求出m,k的值;若不存在,说明理由.20.已知函数.当时,求函数的图象在处的切线方程;若对任意,不等式恒成立,求a的取值范围;若存在极大值和极小值,且极大值小于极小值,求a的取值范围.21.求椭圆C:在矩阵对应的变换作用下所得曲线的方程.22.在平面直角坐标系xOy中,曲线C的参数方程为为参数,以原点为极点,x轴非负半轴为极轴建立极坐标系.求曲线C的极坐标方程;在平面直角坐标系xOy中,,,M是曲线C上任意一点,求面积的最小值.23.已知x,y,z均为正数,且,求证:.24.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.若厂家库房中视为数量足够多的每件产品合格的概率为,从中任意取出3件进行检验,求至少有2件是合格品的概率;若厂家发给商家20件产品,其中有4不合格,按合同规定商家从这20件产品中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数的分布列,并求该商家拒收这批产品的概率.25.已知数列满足,,其中m为常数,.求m,的值;猜想数列的通项公式,并证明.-------- 答案与解析 --------1.答案:解析:【分析】利用交集定义直接求解.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【解答】解:集合,,.故答案为:.2.答案:解析:解:复数,则,故答案为:.利用复数的运算法则、模的计算公式即可得出.本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.答案:8解析:解:高一年级有30名学生,在高一年级的学生中抽取了6名,每个个体被抽到的概率是高二年级有40名学生,要抽取人,故答案为:8首先根据高一年级的总人数和抽取的人数,求出每个个体被抽到的概率,根据在抽样过程中每个个体被抽到的概率相等,利用这个概率乘以高二的学生数,得到高二要抽取的人数.本题考查分层抽样,在分层抽样过程中每个个体被抽到的概率相等,是基础题.4.答案:205解析:解:模拟程序语言的运行过程,得:,满足条件,执行循环体,满足条件,执行循环体,满足条件,执行循环体,满足条件,执行循环体,此时,不满足条件,退出循环,输出S的值为205.故答案为:205.根据已知中的程序代码,可知本程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析各个变量的变化规律,可得答案.本题考查了程序语言的应用问题,解题时应模拟程序语言的运行过程,以便得出输出的结果,是基础题目.5.答案:解析:解:由已知可知离心率,,即,双曲线焦点在y轴,渐近线方程为,即.故答案为:.利用双曲线的离心率求出a,b关系,然后求解渐近线方程即可.本题考查双曲线的简单性质的应用,是基本知识的考查.6.答案:解析:【分析】由于学校有两个食堂,不妨令他们分别为食堂A、食堂B,则甲、乙、丙三名学生选择每一个食堂的概率均为,代入相互独立事件的概率乘法公式,即可求出他们同在食堂A用餐的概率,同理,可求出他们同在食堂B用餐的概率,然后结合互斥事件概率加法公式,即可得到答案.本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的分几类还是分步的分几步,然后再利用加法原理和乘法原理进行求解.【解答】解:甲、乙、丙三名学生选择每一个食堂的概率均为,则他们同时选中A食堂的概率为:;他们同时选中B食堂的概率也为:;故们在同一个食堂用餐的概率故答案为:7.答案:7解析:【分析】本题考查抛物线的定义,考查抛物线的性质,属于基础题.过P作准线l,交l于D,求得抛物线的焦点坐标,根据抛物线的定义,可得:当A,P,D三点共线时,取最小值.【解答】解:抛物线的焦点,准线l:,过P作准线l,交l于D,由抛物线的定义:,当且仅当A,P,D三点共线时,取最小值,最小值为,故答案为7.8.答案:解析:【分析】此题考查了同角三角函数间的基本关系,以及两角和与差的正弦函数公式,熟练掌握公式是解本题的关键,同时注意角度的范围.由,都是锐角,得出的范围,由和的值,利用同角三角函数间的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的正弦函数公式化简,把各自的值代入即可求出值.【解答】解:,都是锐角,,又,,,,则.故答案为:9.答案:1解析:解:如图,设三棱柱的底面积为,高为h,则,,再设S到底面ABC的距离为,则,得,,则S到上底面的距离为.三棱锥的体积为.故答案为:1.由已知棱柱体积与棱锥体积可得S到下底面距离与棱柱高的关系,进一步得到S到上底面距离与棱锥高的关系,则答案可求.本题考查棱柱、棱锥体积的求法,考查空间想象能力与思维能力,是中档题.10.答案:132解析:解:等差数列中,,即,,,.故答案为:132.由已知条件,利用等差数列的通项公式推导出,由此利用等差数列的前n项和公式能求出.本题考查数列的前11项和的求法,是基础题,解题时要熟练掌握等差数列的通项公式和前n项和公式.11.答案:2或解析:解:以A为原点,在平面ABC内过A作AC的垂线为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,设,则0,,2,,0,,1,,1,,1,,,2,,设平面PBC的法向量y,,则,取,得a,,直线AE与平面PBC所成角的正弦值为,,解得或.的长为2或.故答案为:2或.以A为原点,在平面ABC内过A作AC的垂线为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出PA的长.本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.12.答案:0解析:解:设,,,则,,,,,,,,,,,又,,故答案为:0.建立坐标系,设,,,求出和的坐标,即可得出结论.本题考查了平面向量的数量积运算,建立坐标系可使运算较简单.13.答案:解析:解:当时,,则,,当时,,则,,综上可知,,令,得,依题意,有两个根,,不妨设,当时,,当时,,令,则,,设,则,在上单调递减,,的取值范围为.故答案为:.分析可知,,则有两个根,,令,则,故,再构造函数,利用导数求其取值范围即可.本题考查函数零点与方程根的关系,考查利用导数研究函数的最值,考查转化思想及运算求解能力,属于较难题目.14.答案:解析:解:因为,当且仅当时取得等号,令,,故,因为,且,故可得点表示的平面区域是半圆弧上的点,如下图所示:目标函数,表示圆弧上一点到点点的斜率,数形结合可知,当且仅当目标函数过点,即时,取得最小值;故可得又,故可得,当且仅当,,也即三角形为等边三角形时,取得最大值.故答案为:.由已知可得,令,,可得,数形结合可知,又,可得,当且仅当,,也即三角形为等边三角形时,取得最大值.本题考查三角形中边角互化、面积以及利用基本不等式求最值时,代数式的变形技巧,本题的难点一是不会建立已知条件与目标式之间的关系;二是式子结构较复杂不会变形,三角函数与基本不等式交汇一直是高考考查的热点,也是难点,属于难题.15.答案:解:中,角A,B,C所对的边分别为a,b,c,,利用三角函数关系式的展开式整理得,,,利用正弦定理得,解得.由得,,所以,整理得.所以三角形的周长为,,由于,故,所以所以三角形的周长的范围为.解析:直接利用三家函数关系式的变换和正弦定理的应用求出结果.利用的结论和正弦定理及正弦型函数的性质的应用求出三角形的周长的范围.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力16.答案:证明:因为D,E分别是AB,AC的中点,所以,分又因为在三棱柱中,,所以分又平面,平面,所以平面分在直三棱柱中,底面ABC,又底面ABC,所以分又,,所以,分又,平面,且,所以平面分又平面,所以平面平面分解析:证明,即可证明平面;证明平面,即可证明平面平面.本题考查线面平行、线面垂直、面面垂直的判定,考查学生分析解决问题的能力,属于中档题.17.答案:解:由题意得:,,,在中,,,解得百米分平方百米.分记,在中,,即,,,分当时,水管长最短,在中,百米分解析:由余弦定理求出百米,由此能求出区域的面积.记,在中,,求出,,当时,水管长最短,由此能求出当水管CH最短时的长.本题考查三角形面积的求法,考查线段长的最小值的求法,考查余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.答案:解:因为椭圆离心率为,当P为C的短轴顶点时,的面积有最大值,所以,所以,故椭圆C的方程为:设直线PQ的方程为,当时,代入,得:,设,,线段PQ的中点为,,,即因为,则,所以,化简得,解得或.解析:因为椭圆离心率为,当P为C的短轴顶点时,的面积有最大值,由此列方程组可解得a,b,c.设直线PQ的方程为,当时,代入,得:,得到PQ的中点N的坐标后利用,则,所以,可解得.本题考查了椭圆的性质,属中档题.19.答案:解:由,得,,,;由,得,两式相减,得,,,两式相减,得,数列为等差数列;由题意,得,,,,,,且,,又,且为奇数,时,是整数,此时,,.解析:本题考查了等差中项和等差数学的证明,考查了方程思想和运算能力,属难题.根据,和,取,可直接求出;由,得,利用作差法可得,从而证明数列为等差数列;根据,可得关于m,k的方程,再由m,k为整数,可最终得到m,k的值.20.答案:解:时,,,则,又,故函数在处的切线方程为,即;,故,且,,,当即时,在恒成立,故在递增,故时,,故满足条件;当时,即时,由,得,,当时,,则在递减,故当时,,这与时,恒成立矛盾,故不满足条件,综上,a的范围是;当时,区间恒成立,故在递增,故不存在极值,故不满足条件,当时,,故函数的定义域是,由,得,,列表如下:x00递增极大值递减极小值递增由于在递减,此时极大值大于极小值,不合题意,故不满足条件;当时,由,解得:,列表如下:x2递减极小值递增此时仅存在极小值,不合题意,故时满足题意,当时,函数的定义域是,且,,列表如下:x00递增极大值递减递减极小值递增故存在极大值和极小值,此时,,故,,,,故,即,故满足题意,综上,a的范围是解析:代入a的值,根据以及,求出切线方程即可;求出函数的导数,通过讨论a的范围,求出函数的单调区间,结合函数恒成立确定a的范围即可;通过讨论a的范围,结合函数的单调性结合函数的极值确定a的范围即可.本题考查了函数的单调性,极值,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.21.答案:解:设是曲线上的任意一点,它是椭圆上的点在矩阵对应变换作用下的对应点,则:即:,所以代入椭圆,得到.解析:直接利用矩阵的变换的应用,伸缩变换的应用求出结果.本题考查的知识要点:矩阵的变换的应用,伸缩变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.22.答案:解:曲线C的参数方程为为参数,曲线C的直角坐标方程为,将,代入得曲线C的极坐标方程为:.设点到直线AB:的距离为d,则,当时,d有最小值,.所以面积的最小值.解析:本题考查曲线的极坐标方程的求法,考查三角形的面积的最小值的求法,考查极坐标方程、直角坐标方程、参数方程等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.曲线C的参数方程消去参数得到曲线C的直角坐标方程,由此能求出曲线C的极坐标方程.设点到直线AB:的距离,求出d有最小值,由此能滶出面积的最小值.23.答案:证明:因为x,y,z均为正数,所以,,均为正数,由柯西不等式得,当且仅当时,等式成立.因为,所以,所以.解析:由x,y,z均为正数,运用柯西不等式和不等式的性质,即可得证;本题考查不等式的证明,注意运用柯西不等式和不等式的性质,考查推理和运算能力,属于中档题.24.答案:解:“从中任意取出3件进行检验,至少有2件是合格品”记为事件A,其中包含两个基本事件“恰有2件合格”和“3件都合格”,.该商家可能检验出不合格产品数,可能的取值为0,1,2,,,,的分布列为:012P因为只有件都合格时才接收这批产品,故商家拒收这批产品的对立事件为商家任取2件产品检验都合格,记“商家拒收”为事件B,则,商家拒收这批产品的概率为.解析:“从中任意取出3件进行检验,至少有2件是合格品”记为事件A,其中包含两个基本事件“恰有2件合格”和“3件都合格”,由此能求出至少有2件是合格品的概率.该商家可能检验出不合格产品数,可能的取值为0,1,2,分别求出相应的概率,由此能求出的分布列;只有2件都合格时才接收这批产品,从而商家拒收这批产品的对立事件为商家任取2件产品检验都合格,由此能求出商家拒收这批产品的概率.本题考查概率、离散型别随机变量的分布列的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是中档题.25.答案:解:因为,所以,所以,此时;猜想:,用数学归纳法证明如下:当时,由可知结论成立,假设时结论成立,则有,则时,,由得:,又,于是,所以,故时结论也成立,由得,,解析:由,可求出,此时;猜想:,用数学归纳法证明即可.本题主要考查数列的递推式,以及数学归纳法,是中档题.。

2020年江苏省高考数学试卷(文科)-含详细解析

2020年江苏省高考数学试卷(文科)-含详细解析

2020年江苏省高考数学试卷(文科)副标题题号一二总分得分一、填空题(本大题共14小题,共70.0分)1.已知集合A={−1,0,1,2},B={0,2,3},则A∩B=______.2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是______.3.已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图,若输出y的值为−2,则输入x的值是______.6.在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是______.7.已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)的值是______.8.已知sin2(π4+α)=23,则sin2α的值是______.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是______cm3.10. 将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是______.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______. 12. 已知5x 2y 2+y 4=1(x,y ∈R),则x 2+y 2的最小值是______.13. 在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9.若PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ (m 为常数),则CD 的长度是______.14. 在平面直角坐标系xOy 中,已知P(√32,0),A 、B 是圆C :x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是______. 二、解答题(本大题共6小题,共90.0分)15. 在三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a =3,c =√2,B =45°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos∠ADC =−45,求tan∠DAC 的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?18.在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1、F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f(x),y =g(x)与ℎ(x)=kx +b(k,b ∈R)在区间D 上恒有f(x)≥ℎ(x)≥g(x).(1)若f(x)=x 2+2x ,g(x)=−x 2+2x ,D =(−∞,+∞),求ℎ(x)的表达式; (2)若f(x)=x 2−x +1,g(x)=klnx ,ℎ(x)=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f(x)=x 4−2x 2,g(x)=4x 2−8,ℎ(x)=4(t 3−t)x −3t 4+2t 2(0<|t|≤√2),D =[m,n]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k =λa n+11k成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.答案和解析1.【答案】{0,2}【解析】解:集合B ={0,2,3},A ={−1,0,1,2}, 则A ∩B ={0,2}, 故答案为:{0,2}.运用集合的交集运算,可得所求集合.本题考查集合的交集运算,考查运算能力,属于基础题. 2.【答案】3【解析】解:复数z =(1+i)(2−i)=3+i , 所以复数z =(1+i)(2−i)的实部是:3. 故答案为:3.利用复数的乘法的运算法则,化简求解即可.本题考查复数的乘法的运算法则以及复数的基本概念的应用,是基本知识的考查. 3.【答案】2【解析】解:一组数据4,2a ,3−a ,5,6的平均数为4, 则4+2a +(3−a)+5+6=4×5, 解得a =2. 故答案为:2.运用平均数的定义,解方程可得a 的值.本题考查平均数的定义的运用,考查方程思想和运算能力,属于基础题.4.【答案】19【解析】解:一颗质地均匀的正方体骰子先后抛掷2次,可得基本事件的总数为6×6=36种,而点数和为5的事件为(1,4),(2,3),(3,2),(4,1),共4种, 则点数和为5的概率为P =436=19. 故答案为:19.分别求得基本事件的总数和点数和为5的事件数,由古典概率的计算公式可得所求值. 本题考查古典概率的求法,考查运算能力,属于基础题. 5.【答案】−3【解析】解:由题意可得程序框图表达式为分段函数y ={2x ,x >0x +1,x ≤0,若输出y 值为−2时,由于2x >0, 所以解x +1=−2, 即x =−3,故答案为:−3,由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.【答案】32【解析】解:双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,可得√5a=√52,所以a=2,所以双曲线的离心率为:e=ca =√4+52=32,故答案为:32.利用双曲线的渐近线方程,求出a,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,是基本知识的考查.7.【答案】−4【解析】【分析】本题考查函数的奇偶性的定义和运用:求函数值,考查转化思想和运算能力,属于基础题.由奇函数的定义可得f(−x)=−f(x),由已知可得f(8),进而得到f(−8).【解答】解:y=f(x)是奇函数,可得f(−x)=−f(x),当x≥0时,f(x)=x23,可得f(8)=823=4,则f(−8)=−f(8)=−4,故答案为:−4.8.【答案】13【解析】解:因为sin2(π4+α)=23,则sin2(π4+α)=1−cos(π2+2α)2=1+sin2α2=23,解得sin2α=13,故答案为:13根据二倍角公式即可求出.本题考查了二倍角公式,属于基础题.9.【答案】12√3−π2【解析】【分析】本题考查柱体体积公式,考查了推理能力与计算能力,属于基础题.通过棱柱的体积减去圆柱的体积,即可推出结果.【解答】解:六棱柱的体积为:6×12×2×2×sin60°×2=12√3,圆柱的体积为:π×(0.5)2×2=π2,所以此六角螺帽毛坯的体积是:(12√3−π2)cm3,故答案为:12√3−π2.10.【答案】x =−5π24【解析】【分析】本题考查三角函数的平移变换,对称轴方程,属于中档题.利用三角函数的平移可得新函数g(x)=f(x −π6),求g(x)的所有对称轴x =7π24+kπ2,k ∈Z ,从而可判断平移后的图象中与y 轴最近的对称轴的方程, 【解答】解:因为函数y =3sin(2x +π4)的图象向右平移π6个单位长度可得 g(x)=f(x −π6)=3sin(2x −π3+π4)=3sin(2x −π12),则y =g(x)的对称轴为2x −π12=π2+kπ,k ∈Z , 即x =7π24+kπ2,k ∈Z ,当k =0时,x =7π24,当k =−1时,x =−5π24,所以平移后的图象中与y 轴最近的对称轴的方程是x =−5π24, 故答案为:x =−5π24.11.【答案】4【解析】解:因为{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),因为{a n }是公差为d 的等差数列,设首项为a 1;{b n }是公比为q 的等比数列,设首项为b 1, 所以{a n }的通项公式a n =a 1+(n −1)d ,所以其前n 项和:n[a 1+a 1+(n−1)d]2=d2n 2+(a 1−d 2)n ,{b n }中,当公比q =1时,其前n 项和S n =nb 1,所以{a n +b n }的前n 项和S n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1, 则{b n }的前n 项和为:b 1(q n −1)q−1=b 1q n q−1+b 1q−1,所以S n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4, 故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值.本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.12.【答案】45【解析】解:方法一、由5x 2y 2+y 4=1,可得x 2=1−y 45y 2,由x 2≥0,可得y 2∈(0,1], 则x 2+y 2=1−y 45y 2+y 2=1+4y 45y 2=15(4y 2+1y 2)≥15⋅2√4y 2⋅1y 2=45,当且仅当y 2=12,x 2=310, 可得x 2+y 2的最小值为45; 方法二、4=(5x 2+y 2)⋅4y 2≤(5x 2+y 2+4y 22)2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310时取得等号, 可得x 2+y 2的最小值为45. 故答案为:45.方法一、由已知求得x 2,代入所求式子,整理后,运用基本不等式可得所求最小值; 方法二、由4=(5x 2+y 2)⋅4y 2,运用基本不等式,计算可得所求最小值.本题考查基本不等式的运用:求最值,考查转化思想和化简运算能力,属于中档题.13.【答案】0或185【解析】解:如图,以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,则B(4,0),C(0,3),由PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ ,得PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ), 整理得:PA ⃗⃗⃗⃗⃗ =−2m AB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =−2m(4,0)+(2m −3)(0,3)=(−8m,6m −9).由AP =9,得64m 2+(6m −9)2=81,解得m =2725或m =0.当m =0时,PA ⃗⃗⃗⃗⃗ =(0,−9),此时C 与D 重合,|CD|=0; 当m =2725时,直线PA 的方程为y =9−6m 8mx ,直线BC 的方程为x4+y3=1,联立两直线方程可得x =83m ,y =3−2m . 即D(7225,2125),∴|CD|=√(7225)2+(2125−3)2=185.∴CD 的长度是0或185. 故答案为:0或185.以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,求得B 与C 的坐标,再把PA ⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP =9列式求得m 值,然后分类求得D 的坐标,则CD 的长度可求.本题考查向量的概念与向量的模,考查运算求解能力,利用坐标法求解是关键,是中档题.14.【答案】10√5【解析】解:圆C :x 2+(y −12)2=36的圆心C(0,12),半径为6,如图,作PC 所在直径EF ,交AB 于点D ,因为PA =PB ,CA =CB =R =6,所以PC ⊥AB ,EF 为垂径,要使面积S △PAB 最大,则P ,D 位于C 的两侧,并设CD =x ,可得PC =√14+34=1,故PD =1+x ,AB =2BD =2√36−x 2,可令x =6cosθ,S △PAB =12|AB|⋅|PD|=(1+x)√36−x 2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ,0<θ≤π2,设函数f(θ)=6sinθ+18sin2θ,0<θ≤π2, f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ−6),由f′(θ)=6(12cos 2θ+cosθ−6)=0,解得cosθ=23(cosθ=−34<0舍去), 显然,当0≤cosθ<23,f′(θ)<0,f(θ)递减;当23<cosθ<1时,f′(θ)>0,f(θ)递增,结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos 2θ=√53,故f(θ)max =6×√53+36×√53×23=10√5,则△PAB 面积的最大值为10√5. 故答案为:10√5.求得圆的圆心C 和半径,作PC 所在直径EF ,交AB 于点D ,运用垂径定理和勾股定理,以及三角形的面积公式,由三角换元,结合函数的导数,求得单调区间,计算可得所求最大值.本题考查圆的方程和运用,以及圆的弦长公式和三角形的面积公式的运用,考查换元法和导数的运用:求单调性和最值,属于中档题.15.【答案】证明:(1)E ,F 分别是AC ,B 1C 的中点. 所以EF//AB 1,因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1;(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABB 1, 所以B 1C ⊥AB ,又因为AB ⊥AC ,AC ∩B 1C =C ,AC ⊂平面AB 1C ,B 1C ⊂平面AB 1C , 所以AB ⊥平面AB 1C , 因为AB ⊂平面ABB 1,所以平面AB 1C ⊥平面ABB 1.【解析】(1)证明EF//AB 1,然后利用直线与平面平行的判断定理证明EF//平面AB 1C 1;(2)证明B 1C ⊥AB ,结合AB ⊥AC ,证明AB ⊥平面AB 1C ,然后证明平面AB 1C ⊥平面ABB 1. 本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用,直线与平面平行的判断定理的应用,是中档题.16.【答案】解:(1)因为a =3,c =√2,B =45°.,由余弦定理可得:b =√a 2+c 2−2accosB =√9+2−2×3×√2×√22=√5,由正弦定理可得csinC =bsinB ,所以sinC =cb ⋅sin45°=√2√5⋅√22=√55, 所以sinC =√55;(2)因为cos∠ADC =−45,所以sin∠ADC =√1−cos 2∠ADC =35, 在三角形ADC 中,易知C 为锐角,由(1)可得cosC =√1−sin 2C =2√55, 所以在三角形ADC 中,sin∠DAC =sin(∠ADC +∠C)=sin∠ADCcos∠C +cos∠ADCsin∠C =2√525,因为∠DAC ∈(0,π2),所以cos∠DAC =√1−sin 2∠DAC =11√525,所以tan∠DAC =sin∠DAC cos∠DAC =211.【解析】(1)由题意及余弦定理求出b 边,再由正弦定理求出sin C 的值;(2)三角形的内角和为180°,cos∠ADC =−45,可得∠ADC 为钝角,可得∠DAC 与∠ADC +∠C 互为补角,所以sin∠DAC =sin(∠ADC +∠C)展开可得sin∠DAC 及cos∠DAC ,进而求出tan∠DAC 的值.本题考查三角形的正弦定理及余弦定理的应用,及两角和的正弦公式的应用,属于中档题.17.【答案】解:(1)ℎ2=−1800b 3+6b ,点B 到OO′的距离为40米,可令b =40, 可得ℎ2=−1800×403+6×40=160, 即为|O′O|=160,由题意可设ℎ1=160, 由140a 2=160,解得a =80, 则|AB|=80+40=120米; (2)可设O′E =x ,则CO′=80−x ,由{0<x <400<80−x <80,可得0<x <40,总造价为y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)] =k800(x 3−30x 2+160×800), y′=k 800(3x 2−60x)=3k 800x(x −20),由k >0,当0<x <20时,y′<0,函数y 递减;当20<x <40时,y′>0,函数y 递增,所以当x =20时,y 取得最小值,即总造价最低.答:(1)桥|AB|长为120米;(2)O′E 为20米时,桥墩CD 与EF 的总造价最低.【解析】(1)由题意可令b =40,求得ℎ2,即O′O 的长,再令ℎ1=|OO′|,求得a ,可得|AB|=a +b ;(2)可设O′E =x ,则CO′=80−x ,0<x <40,求得总造价y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)],化简整理,应用导数,求得单调区间,可得最小值. 本题考查函数在实际问题中的应用,考查导数的应用:求最值,考查运算能力和分析问题与解决问题的能力,属于中档题.18.【答案】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2−b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A(1,32),设P(t,0),则直线AP 方程为y =321−t(x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q(4,32⋅4−t1−t ),OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ =(t,0)⋅(t −4,0−32⋅4−t1−t )=t 2−4t =(t −2)2−4≥−4,当t =2时,(OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ )min =−4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB|×d 2=12×|AB|×d 1,即d 2=3d 1,A(1,32),F 1(−1,0),可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95,由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以9+16=95,即m =−6或12, 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2),联立{y =34(x −2)x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127, 所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36−56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127).【解析】(1)由椭圆标准方程可知a ,b ,c 的值,根据椭圆的定义可得△AF 1F 2的周长=2a +2c ,代入计算即可.(2)由椭圆方程得A(1,32),设P(t,0),进而由点斜式写出直线AP 方程,再结合椭圆的右准线为:x =4,得点Q 为(4,32⋅4−t1−t ),再由向量数量积计算最小值即可.(3)在计算△OAB 与△MAB 的面积时,AB 可以最为同底,所以若S 2=3S 1,则O 到直线AB 距离d 1与M 到直线AB 距离d 2,之间的关系为d 2=3d 1,根据点到直线距离公式可得d 1=35,d 2=95,所以题意可以转化为M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,根据两平行直线距离公式可得,m =−6或12,然后在分两种情况算出M 点的坐标即可.本题考查椭圆的定义,向量的数量积,直线与椭圆相交问题,解题过程中注意转化思想的应用,属于中档题.19.【答案】解:(1)由f(x)=g(x)得x =0,又f′(x)=2x +2,g′(x)=−2x +2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图象为过原点,斜率为2的直线,所以ℎ(x)=2x , 经检验:ℎ(x)=2x ,符合任意, (2)ℎ(x)−g(x)=k(x −1−lnx), 设φ(x)=x −1−lnx ,设φ′(x)=1−1x =x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0,令p(x)=f(x)−ℎ(x)所以p(x)=x2−x+1−(kx−k)=x2−(k+1)x+(1+k)≥0,得,当x=k+1≤0时,即k≤−1时,f(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥−1,所以k=−1,当k+1>0时,即k>−1时,△≤0,即(k+1)2−4(k+1)≤0,解得−1<k≤3,综上,k∈[0,3].423所以函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)(x−x0)+(x04−2x03)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.由函数y=f(x)的图象可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2],又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0,,设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t2−8)=√t6−5t4+3t2+8,t2=λ,则λ∈[1,2],由图象可知,n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√7,即n−m≤√7.【解析】(1)由f(x)=g(x)得x=0,求导可得f′(0)=g′(0)=2,能推出函数ℎ(x)的图象为过原点,斜率为2的直线,进而可得ℎ(x)=2x,再进行检验即可.(2)由题可知ℎ(x)−g(x)=k(x−1−lnx),设φ(x)=x−1−lnx,求导分析单调性可得,φ(x)≥φ(1)=0,那么要使的ℎ(x)−g(x)≥0,则k≥0;令p(x)=f(x)−ℎ(x)为二次函数,则要使得p(x)≥0,分两种情况,当x=k+1≤0时,当k+1>0时进行讨论,进而得出答案.(3)因为f(x)=x4−2x2,求导,分析f(x)单调性及图象得函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)x−3x04+2x02,可推出直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.进而f(x)≥ℎ(x)在区间D上恒成立;在分析g(x)−ℎ(x)=0,设4x2−4(t3−t)x+3t4−2t2−8=0,两根为x1,x2,由韦达定理可得x1+ x2,x1x2,所以n−m=|x1−x2|=√t6−5t4+3t2+8,再求最值即可得出结论.本题考查恒成立问题,参数的取值范围,导数的综合应用,解题过程中注意数形结合思想的应用,属于中档题.20.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ), 从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ), 由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0, ①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n }; ②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n 2+(1−t)p n +1=0有两解α,β, 设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β,则对任意n ∈N ∗,S n+1Sn=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n={1,n =1,2β3,n ≥3均符合条件. 对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4, 则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值;(2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则Sn+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.。

2020江苏省高考压轴卷 数学 打印版含解析

2020江苏省高考压轴卷   数学  打印版含解析

绝密★启封前2020江苏省高考压轴卷数 学一、 填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______2.已知复数(1)(2),z i i =+-则|z |= .3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S 为____.5.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.7.已知点P 在抛物线28y x =上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则PA PF +的最小值是______.8.已知,αβ都是锐角,45sin ,cos()513ααβ=+=,则sin β=_____ 9.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.10.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =____________. 11.三棱锥P ABC -中,已知PA ⊥平面ABC ,ABC 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC所成角的正弦值为7,则PA 的长为_____. 12.如图,在四边形ABCD 中,1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点,P Q ,则·()PQ AB DC -的值为_________.13.已知函数()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()()()1F x f f x m =++有两个零点12,x x ,则12x x 的取值范围______.14.在ABC 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则22Sa bc+的最大值为______.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2A π≠,sin 26cos sin b A A B =.(1)求a 的值;(2)若3A π=,求ABC ∆周长的取值范围.16.如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE;(2)求证:平面1A DE ⊥平面11ACC A .17.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=,EA =60AED ∠=.(1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.18.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,点P是椭圆C 上的一个动点,且12PF F ∆. (1)求椭圆C 的方程;(2)设斜率不为零的直线2PF 与椭圆C 的另一个交点为Q ,且PQ 的垂直平分线交y 轴于点1(0,)8T ,求直线PQ 的斜率.19.已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =. (1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列; (3)若2q,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.20.已知()22ln 12x f x x x a-=--+,0a >.(1)当2a =时,求函数()f x 图象在1x =处的切线方程;(2)若对任意[)1,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围; (3)若()f x 存在极大值和极小值,且极大值小于极小值,求a 的取值范围.数学附加题(满分40分,考试时间30分钟)21. 【选做题】在A,B,C三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)求椭圆22:1164x yC+=在矩阵1412A⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦对应的变换作用下所得曲线C'的方程.B. (选修44:坐标系与参数方程)在平面直角坐标系xOy中,曲线C的参数方程为3242x cosy sinθθ=+⎧⎨=+⎩,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.C. (选修45:不等式选讲)已知x,y,z均为正数,且1113112x y y z++≤+++,求证:4910x y z++≥.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为0.7,从中任意取出3件进行检验,求至少有2件是合格品的概率;(2)若厂家发给商家20件产品,其中有4不合格,按合同规定商家从这20件产品中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.23.已知数列{}n a 满足123*12323,N 2222n n n n n nn n C C C C a m n ++++=++++⋯+∈,其中m 为常数,24a =. (1)求1, m a 的值(2)猜想数列{}n a 的通项公式,并证明.参考答案及解析1.【答案】{|12}x x << 【解析】因为集合{|02}A x x =<<,{|1}B x x =>, 所以{|12}AB x x =<<.故答案为:{|12}x x <<2.【解析】12z i i =+-==3.【答案】8【解析】设样本容量为N ,则306,14,70N N ⨯== 高二所抽人数为4014870⨯=. 故答案为:8 4.【答案】205【解析】模拟程序语言,运行过程,可得1I =, 满足条件100I <,执行循环体3,9I S ==; 满足条件100I <,执行循环体5,13I S ==;满足条件100I <,执行循环体99,201I S ==;满足条件100I <,执行循环体101,21013205I S ==⨯+=, 此时,不满足条件100I <,退出循环,输出S 的值为205, 故答案为205.5.【答案】y x = 【解析】由已知可知离心率32c e a ==,2222294c a b a a +==,即2254b a =.∵双曲线22221x y a b-=的焦点在x 轴上∴该双曲线的渐近线方程为b y x a =±,即2y x =±.故答案为:y =. 6.【答案】14【解析】由题意,三名学生各自随机选择两个食堂中的一个用餐的情况共有2228⨯⨯=(种),其中他们在同一个食堂用餐的情况有2种,根据古典概型概率的计算公式得,所求概率为2184=. 7.【答案】7【解析】PA PF +55272A L Pd -≥=+=+= 8.【答案】1665【解析】∵,αβ都是锐角,∴(0,)αβπ+∈, 又45sin ,cos()513ααβ=+=, ∴3cos 5α=,12sin()13αβ+=, ∴sin sin[()]sin()cos cos()sin βαβααβααβα=+-=+-+123541613513565=⨯-⨯=. 故答案为1665. 9.【答案】1【解析】设三棱柱111ABC A B C -的底面积为'S ,高为h ,则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=, 所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故答案为1. 10.【答案】132【解析】 由a 912=a 12+6,得2a 9﹣a 12=12, 即2a 1+16d ﹣a 1﹣11d =12,∴a 1+5d =12,a 6=12. 则S 11=11a 6=11×12=132. 故答案为:13211.【答案】2【解析】设F 是BC 的中点,连接sin cos 210k k ρθρθ-+-=,PA ⊥平面ABC ,PA BC ∴⊥, ABC ∆为正三角形,BC AF ∴⊥,BC ∴⊥平面PAF ,在平面PAF 内作AH PF ⊥,则BC AH ⊥,AH ∴⊥平面PBC ,连接EH ,则AEH ∠是AE 与平面PBC 所成的角, 设PA m =,在直角三角形PAF 中,AH PF PA AF ⋅=⋅,求得PA AF AH PF ⋅==,12AE PC == AE ∵平面PBC所成的角的正弦值为7,sin 7AH AEH AE ∴∠===,解得2m =或m =,即PA 的长为2212.【答案】0【解析】如图,连AC ,取AC 的中点E ,连ME ,NE ,则,ME NE 分别为,ADC CAB ∆∆的中位线,所以11,22EN AB ME DC ==, 所以1()2MN ME EN DC AB =+=+.由PQ 与MN 共线, 所以()PQ MN R λλ=∈,故()()()()2PQ AB DC MN AB DC AB DC ABDC λλ⋅-=⋅-=+⋅-22()02AB DC λ=-=.答案:013.【答案】(),e -∞【解析】当1x ≥时,()ln 0f x x =≥, ()11f x ∴+≥, [()1]ln(()1)f f x f x ∴+=+,当131()1()1[()1]ln(()1)222x x f x f x f f x f x <=->+>+=+,,,, 综上可知:()()()1ln(()1)0F x f f x m f x m =++=++=,则()1mf x e-+=,()1mf x e-=-有两个根1x ,2x ,(不妨设)12x x <,当1x ≥时,2ln 1mx e -=-,当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,2t x e =,112x t -=,122x t =-,12(22)t x x e t ∴=-,12t >, 设()(22)tg t e t =-,12t >, 所以()2tg t te '=-, 1,()02t g t '⎛⎫∈+∞< ⎪⎝⎭,,函数()g t 单调递减, 1()2g t g ⎛⎫∴<=⎪⎝⎭()g x ∴的值域为(-∞, 12x x ∴取值范围为(-∞,故答案为:(-∞.14.【解析】因为22S a bc +2211222222bcsinAsinA b c b c bccosA bc cosA c b==⨯+-+++- 142sinA cosA ≤-⨯-(当且仅当b c =时取得等号)令,sinA y cosA x ==, 故22S a bc +142y x ≤-⨯-,因为221x y +=,且0y >,故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-,表示圆弧上一点到点()2,0A 点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =︒时,取得最小值故可得[2y z x =∈-,又22S a bc +142y x ≤-⨯-,故可得22S a bc +14≤-⨯=. 当且仅当60,A b c =︒=,也即三角形为等边三角形时,取得最大值.. 15.【答案】(1)3;(2)(]6,9.【解析】(1)由sin 26cos sin b A A B =及二倍角公式得sin 3sin b A B =, 又sin sin a bA B=即sin sin b A a B =,所以3a =;(2)由正弦定理得sin sin a B b B A ==,sin sin a Cc C A==ABC ∆周长:233sin()3a b c B C B B π++=++=++-33sin 36sin 226B B B π⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎭, 又因为2(0,)3B π∈,所以1sin (,1]2B ∈.因此ABC ∆周长的取值范围是(]6,9. 16.【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】证明:(1)因为D ,E 分别是AB ,AC 的中点,所以//DE BC , ...........2分 又因为在三棱柱111ABC A B C -中,11//B C BC,所以11//B C DE. ...............4分 又11B C ⊄平面1A DE,DE ⊂平面1A DE,所以11B C ∥平面1A DE. ...............6分(2)在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,又DE ⊂底面ABC ,所以1CC DE⊥. .............8分又BC AC ⊥,//DE BC ,所以DE AC ⊥, ..........10分 又1,CC AC ⊂平面11ACC A ,且1CC AC C=,所以DE ⊥平面11ACC A . ...............12分又DE ⊂平面1A DE,所以平面1A DE ⊥平面11ACC A . ............14分17.【答案】(1(2)7百米. 【解析】(1)由题知1,120,BE ABC EA =∠==在ABE 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 4122ABESAB BE ABE =⋅⋅∠=⨯⨯=.(2)记AEB α∠=,在ABE 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin 7αα===, 当CH DE ⊥时,水管CH 最短,在Rt ECH 中,2π2π2πsin 2sin 2sin cos 2cos sin 333CH CE HEC ααα⎛⎫=∠=-=-⎪⎝⎭=7百米. 18.【答案】(1)22143x y +=(2)12或32【解析】 (1)因为椭圆离心率为12,当P 为C 的短轴顶点时,12PF F △所以22212122c a a b c c b ⎧=⎪⎪=+⎨⎪⎪⨯⨯=⎩,所以21a b c =⎧⎪=⎨⎪=⎩C 的方程为:22143x y +=.(2)设直线PQ 的方程为()1y k x =-,当0k ≠时,()1y k x =-代入22143x y +=,得:()22223484120k x k x k +-+-=.设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,N x y ,212024234x x k x k +==+,()1200231234y y k y k x k +-==-=+ 即22243,3434k k N k k ⎛⎫- ⎪++⎝⎭因为TN PQ ⊥,则1TN PQ k k ⋅=-,所以222314381443k k k k k --+⋅=-+,化简得24830k k -+=,解得12k =或32k ,即直线PQ 的斜率为12或32.19.【答案】(1)23a =(2)见解析(3)存在8,340m k ==满足题意。

全国卷Ⅲ2020届高三高考压轴卷数学试题(文科)(含解析)

全国卷Ⅲ2020届高三高考压轴卷数学试题(文科)(含解析)

又 a2 = 3 ,所以 an = a2qn−2 = 3 3n−2 = 3n−1
所以 bn = log3 an = log3 3n−1 = n − 1
所以T9 = b1 + b2 +
+ b9
=
9(b1 + b9 )
2
=
9(1−1+ 9 −1)
2
=
36
故选:A
9、【答案】D
【解析】由 f (x) = a ln x + bx2 可得: f (x) = a + 2bx , x
18.(12 分)
已知数列 an
满足
1 2a1 −
5
+
2 2a2 −
5
+
3 2a3 −
5
+
(1)求数列an 的通项公式;
+ n =n 2an − 5 3
(2)设数列
an
1 an+1
的前
n
项和为
Tn
,求
Tn
.
19 .(12 分) 将棱长为 2 的正方体 ABCD − A1B1C1D1 截去三棱锥 D1 − ACD 后得到如图所示几何体,
23.已知函数 f (x) = x − 2 . (1)解不等式: f (x) 4 − f (x +1) (2)若函数 g(x) = x − 3, (x 4) 与函数 y = m − f (x) − 2 f (x − 2) 的图象恒有公共点,求 实数 m 的取值范围.
5 / 16
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
标值进行统计分析,得到表格如表:
质量指标值
等级
频数

江苏省2020年高考数学压轴卷(含解析)

江苏省2020年高考数学压轴卷(含解析)

江苏省2020年高考数学压轴卷(含解析)注意事项考生在答题前请认真阅读本注意事项及答题要求1.本试卷共4页,包含填空题(第1题~第14题)、解析题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:球体的体积公式:V=334Rπ,其中为球体的半径.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.全集12{}345U=,,,,,集合134{}}35{A B=,,,=,,则UA B⋂()ð═.2.已知i是虚数单位,若12i a i a R+∈(﹣)()=,,则a=.3.我国古代数学算经十书之一的《九章算术》一哀分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽人.4.如图是一个算法的流程图,则输出y的取值范围是.5.已知函数22353log(1)3x xf xx x-⎧-<⎨-+≥⎩()=,若f(m)=﹣6,则f(m﹣61)=.6.已知f (x )=sin (x ﹣1),若p ∈{1,3,5,7},则f (p )≤0的概率为 . 7.已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<2π)的部分图象如图所示,则f (76π)的值为 .8.已知A ,B 分别是双曲线2212x y C m :-=的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为 .9.已知f (x )是R 上的偶函数,且当x ≥0时,f (x )=|x 2﹣3x |,则不等式f (x ﹣2)≤2的解集为 .10.若函数f (x )=a 1nx ,(a ∈R )与函数g (x )=x ,在公共点处有共同的切线,则实数a 的值为 .11.设A ,B 在圆x 2+y 2=4上运动,且23AB =,点P 在直线3x +4y ﹣15=0上运动.则|PA PB |+u u u r u u u r的最小值是 .12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =23π,∠ABC 的平分线交AC 于点D ,BD =1,则a +c 的最小值为 .13.如图,点D 为△ABC 的边BC 上一点,2BD DC =u u u r u u u r,E n (n ∈N )为AC 上一列点,且满足:11414n n n n n E A E D E a B a +=+u u u u r u u u u ru u u u r (﹣)﹣5,其中实数列{a n }满足4a n ﹣1≠0,且a 1=2,则111a -+211a -+311a -+…+11n a -= .14.已知函数2910(1)e ,023xx x f x x x ⎧++<⎪⎨⎪-≥⎩()=+6,x 0,其中e 是自然对数的底数.若集合{x ∈Z|x(f (x )﹣m )≥0}中有且仅有4个元素,则整数m 的个数为 .二、解答题(本大题共6小题,计90分.解析应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内)15.(本小题满分14分) 如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中,已知点M 为棱BC 上异于B ,C 的一点.(1)若M 为BC 中点,求证:A 1C ∥平面AB 1M ; (2)若平面AB 1M ⊥平面BB 1C 1C ,求证:AM ⊥BC .16.(本小题满分14分)已知12(,),(0,cos(),.2273πππαπβαβαβ∈∈-=+=), (1)求22sin αβ(﹣)的值; (2)求cos α的值.17.(本小题满分14分) 学校拟在一块三角形边角地上建外籍教室和留学生公寓楼,如图,已知△ABC 中,∠C =2π,∠CBA =θ,BC =a .在它的内接正方形DEFG 中建房,其余部分绿化,假设△ABC 的面积为S ,正方形DEFG 的面积为T . (1)用a ,θ表示S 和T ; (2)设f (θ)=TS,试求f (θ)的最大值P ;18.(本小题满分16分) 已知椭圆22221x y C a b:+=0a b (>>)的离心率为22,短轴长为22(Ⅰ)求C 的方程;(Ⅱ)如图,经过椭圆左项点A 且斜率为k (k ≠0)直线l 与C 交于A ,B 两点,交y 轴于点E ,点P 为线段AB 的中点,若点E 关于x 轴的对称点为H ,过点E 作与OP (O 为坐标原点)垂直的直线交直线AH 于点M ,且△APM 面积为23,求k 的值.19.(本小题满分16分) 已知函数()212ln 2f x x x ax a R =+-∈,. (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由. 20.(本小题满分16分) 已知集合A =a 1,a 2,a 3,…,a n ,其中a i ∈R (1≤i ≤n ,n >2),l (A )表示和a i +a j (1≤i <j ≤n )中所有不同值的个数.(Ⅰ)设集合P =2,4,6,8,Q =2,4,8,16,分别求l (P )和l (Q ); (Ⅱ)若集合A =2,4,8, (2),求证:(1)()2n n l A -=; (Ⅲ)l A ()是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由? 数学Ⅱ(附加题)21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.请在答题卡...指定区域内.....作答.解析应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲如图,已知AB为半圆O的直径,点C为半圆上一点,过点C作半圆的切线CD,过点B作BD CD⊥于点D. 求证:2BC BA BD=⋅.B.选修4—2:矩阵与变换已知矩阵=a bMc d⎡⎤⎢⎥⎣⎦,10=12N⎡⎤⎢⎥⎢⎥⎣⎦,且()11402MN-⎡⎤⎢⎥=⎢⎥⎣⎦,求矩阵M.C.选修4—4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为2{2x ty t==--(t为参数).在极坐标系中(与直角坐标系xOy取相同的长度单位,且以原点O为极点,极轴与x轴的非负半轴重合),圆C的方程为42cos4πρθ⎛⎫=+⎪⎝⎭,求直线l被圆C截得的弦长.D.选修4—5:不等式选讲已知正实数x y z、、,满足3x y z xyz++=,求xy yz xz++的最小值.注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共2页,均为非选择题(第21~23题)。

2020年江苏省高考数学压轴卷(解析版)

2020年江苏省高考压轴卷一、 填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______2.已知复数(1)(2),z i i =+-则|z |= .3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S 为____.5.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.7.已知点P 在抛物线28y x =上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则PA PF +的最小值是______.8.已知,αβ都是锐角,45sin ,cos()513ααβ=+=,则sin β=_____ 9.在体积为9的斜三棱柱ABC—A 1B 1C 1中,S 是C 1C 上的一点,S—ABC 的体积为2,则三棱锥S—A 1B 1C 1的体积为___.10.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =____________.11.三棱锥P ABC -中,已知PA ⊥平面ABC ,ABC 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC,则PA 的长为_____. 12.如图,在四边形ABCD 中,1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点,P Q ,则·()PQ AB DC -的值为_________.13.已知函数()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()()()1F x f f x m =++有两个零点12,x x ,则12x x 的取值范围______. 14.在ABC 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则22Sa bc+的最大值为______.二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2A π≠,sin26cos sin b A A B =.(1)求a 的值; (2)若3A π=,求ABC ∆周长的取值范围.16.如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE;(2)求证:平面1A DE 平面11ACC A .17.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=,EA =60AED ∠=.(1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.18.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,点P是椭圆C 上的一个动点,且12PF F ∆. (1)求椭圆C 的方程;(2)设斜率不为零的直线2PF 与椭圆C 的另一个交点为Q ,且PQ 的垂直平分线交y 轴于点1(0,)8T ,求直线PQ 的斜率.19.已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =.(1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列; (3)若2q,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.20.已知()22ln 12x f x x x a-=--+,0a >.(1)当2a =时,求函数()f x 图象在1x =处的切线方程;(2)若对任意[)1,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围;(3)若()f x 存在极大值和极小值,且极大值小于极小值,求a 的取值范围.——★ 参 考 答 案 ★——1.『答案』{|12}x x <<『解析』因为集合{|02}A x x =<<,{|1}B x x =>,所以{|12}AB x x =<<.故『答案』为:{|12}x x <<2.『解析』12z i i =+-==3.『答案』8『解析』设样本容量为N ,则306,14,70N N ⨯== 高二所抽人数为4014870⨯=. 故『答案』为:8 4.『答案』205『解析』模拟程序语言,运行过程,可得1I =, 满足条件100I <,执行循环体3,9I S ==; 满足条件100I <,执行循环体5,13I S ==;满足条件100I <,执行循环体99,201I S ==;满足条件100I <,执行循环体101,21013205I S ==⨯+=, 此时,不满足条件100I <,退出循环,输出S 的值为205, 故『答案』为205.5.『答案』y x = 『解析』由已知可知离心率32c e a ==,2222294c a b a a +==,即2254b a =. ∵双曲线22221x y a b-=的焦点在x 轴上∴该双曲线的渐近线方程为b y x a =±,即y x =.故『答案』为:y x =. 6.『答案』14『解析』由题意,三名学生各自随机选择两个食堂中的一个用餐的情况共有2228⨯⨯=(种),其中他们在同一个食堂用餐的情况有2种,根据古典概型概率的计算公式得,所求概率为2184=. 7.『答案』7『解析』PA PF +55272A L Pd -≥=+=+= 8.『答案』1665『解析』∵,αβ都是锐角,∴(0,)αβπ+∈, 又45sin ,cos()513ααβ=+=, ∴3cos 5α=,12sin()13αβ+=, ∴sin sin[()]sin()cos cos()sin βαβααβααβα=+-=+-+123541613513565=⨯-⨯=. 故『答案』为1665. 9.『答案』1『解析』设三棱柱111ABC A B C -的底面积为'S ,高为h , 则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=,所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故『答案』为1. 10.『答案』132『解析』由a 912=a 12+6,得2a 9﹣a 12=12, 即2a 1+16d ﹣a 1﹣11d =12,∴a 1+5d =12,a 6=12. 则S 11=11a 6=11×12=132. 故『答案』为:13211.『答案』2『解析』设F 是BC 的中点,连接sin cos 210k k ρθρθ-+-=,PA ⊥平面ABC ,PA BC ∴⊥,ABC ∆为正三角形,BC AF ∴⊥,BC ∴⊥平面PAF ,在平面PAF 内作AH PF ⊥, 则BC AH ⊥,AH ∴⊥平面PBC ,连接EH ,则AEH ∠是AE 与平面PBC 所成的角, 设PA m =,在直角三角形PAF 中,AH PF PA AF ⋅=⋅,求得PA AF AH PF ⋅==,12AE PC == AE ∵平面PBC,sin AH AEH AE ∴∠===,解得2m =或m =,即PA 的长为2『答案』为2. 12.『答案』0『解析』如图,连AC ,取AC 的中点E ,连ME ,NE ,则,ME NE 分别为,ADC CAB ∆∆的中位线,所以11,22EN AB ME DC ==, 所以1()2MN ME EN DC AB =+=+.由PQ 与MN 共线, 所以()PQ MN R λλ=∈,故()()()()2PQ AB DC MN AB DC AB DC AB DC λλ⋅-=⋅-=+⋅-22()02AB DC λ=-=.『答案』013.『答案』(-∞『解析』当1x ≥时,()ln 0f x x =≥, ()11f x ∴+≥, [()1]ln(()1)f f x f x ∴+=+,当131()1()1[()1]ln(()1)222x x f x f x f f x f x <=->+>+=+,,,, 综上可知:()()()1ln(()1)0F x f f x m f x m =++=++=,则()1mf x e-+=,()1mf x e-=-有两个根1x ,2x ,(不妨设)12x x <,当1x ≥时,2ln 1mx e -=-,当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,2t x e =,112x t -=,122x t =-,12(22)t x x e t ∴=-,12t >, 设()(22)tg t e t =-,12t >, 所以()2t g t te '=-, 1,()02t g t '⎛⎫∈+∞< ⎪⎝⎭,,函数()g t 单调递减,1()2g t g ⎛⎫∴<=⎪⎝⎭()g x ∴的值域为(-∞, 12x x ∴取值范围为(-∞,故『答案』为:(-∞.14.『答案』『解析』因为22Sa bc +2211222222bcsinAsinA b c b c bccosA bc cosAc b==⨯+-+++- 142sinA cosA ≤-⨯-(当且仅当b c =时取得等号)令,sinA y cosA x ==, 故22S a bc +142y x ≤-⨯-,因为221x y +=,且0y >, 故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-,表示圆弧上一点到点()2,0A 点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =︒时,取得最小值故可得[2y z x =∈-,又22S a bc +142y x ≤-⨯-,故可得22S a bc +14≤-⨯=. 当且仅当60,A b c =︒=,也即三角形为等边三角形时,取得最大值.故『答案』为:12. 15.『答案』(1)3;(2)(]6,9. 『解析』(1)由sin26cos sin b A A B =及二倍角公式得sin 3sin b A B =, 又sin sin a bA B=即sin sin b A a B =,所以3a =;(2)由正弦定理得sin sin a B b B A ==,sin sin a Cc C A==ABC ∆周长:233sin()3a b c B C B B π++=++=++-33sin 36sin 26B B B π⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎭, 又因为2(0,)3B π∈,所以1sin (,1]2B ∈. 因此ABC ∆周长的取值范围是(]6,9.16.『答案』(Ⅰ)详见『解析』(Ⅱ)详见『解析』『解析』证明:(1)因为D ,E 分别是AB ,AC 的中点,所以//DE BC , ...........2分 又因为在三棱柱111ABC A B C -中,11//B C BC,所以11//B C DE. ...............4分 又11B C ⊄平面1A DE,DE ⊂平面1A DE,所以11B C ∥平面1A DE. ...............6分(2)在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,又DE ⊂底面ABC ,所以1CC DE⊥. .............8分又BC AC ⊥,//DE BC ,所以DE AC ⊥, ..........10分又1,CC AC ⊂平面11ACC A ,且1CC AC C=,所以DE ⊥平面11ACC A . ...............12分又DE ⊂平面1A DE,所以平面1A DE ⊥平面11ACC A . ............14分17.『答案』(1(2)7百米. 『解析』(1)由题知1,120,BE ABC EA =∠==在ABE 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 41222ABESAB BE ABE =⋅⋅∠=⨯⨯⨯=.(2)记AEB α∠=,在ABE 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin αα===, 当CHDE ⊥时,水管CH 最短,在Rt ECH中,2π2π2πsin2sin2sin cos2cos sin333CH CE HECααα⎛⎫=∠=-=-⎪⎝⎭= .18.『答案』(1)22143x y+=(2)12或32『解析』(1)因为椭圆离心率为12,当P为C的短轴顶点时,12PF F△.所以22212122caa b cc b⎧=⎪⎪=+⎨⎪⎪⨯⨯=⎩,所以21abc=⎧⎪=⎨⎪=⎩C的方程为:22143x y+=.(2)设直线PQ的方程为()1y k x=-,当0k≠时,()1y k x=-代入22143x y+=,得:()22223484120k x k x k+-+-=.设()()1122,,,P x y Q x y,线段PQ的中点为()00,N x y,212024234x x kxk+==+,()1200231234y y ky k xk+-==-=+即22243,3434k kNk k⎛⎫-⎪++⎝⎭因为TN PQ⊥,则1TN PQk k⋅=-,所以222314381443kk kkk--+⋅=-+,化简得24830k k-+=,解得12k=或32k,即直线PQ的斜率为12或32.19.『答案』(1)23a=(2)见『解析』(3)存在8,340m k==满足题意。

2020年江苏省高考押题卷数学试题

2020年江苏省高考押题卷数 学I 2020.6一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1. 已知集合M = {-1,0,1,2 },集合2{|20}N x x x =+-=,则集合M ∩N = ▲ .2. 已知复数22i 1iz =++(i 为虚数单位),则z 的共轭复数z =▲ .3. 为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50 100),中的频数为24,则n 的值为 ▲ . 4. 如图,执行算法流程图,则输出的b 的值为 ▲ .5. 已知A 、B 、C 三人在三天节日中值班,每人值班一天,那么A 排在C 后一天值班的概率为 ▲ .6. 底面边长和高都为2的正四棱锥的表面积为 ▲ .7. 在平面直角坐标系xOy 中,已知双曲线经过点(36)-,,且它的两条渐近线方程是3y x =±,则该双曲线标准方程为 ▲ . 8.已知25sin cos αα+=,则sin2cos4αα+的值为 ▲ . 注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页包含填空题(第1~14题)、解答题(第15~20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠(第4题)9. 设S n 为等差数列{a n }的前n 项和,若3521a a -=,10100S =,则20S 的值为 ▲ . 10. 埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其它分数都要写成若干个单位分数和的形式.例如2115315=+可以这样理解:假定有两个面包,要平均分给5个人,如果每人 12,不够;每人13,余13,再将这13分成5份,每人得115,这样每人分得11315+.形如2n (n = 5,7,9,11,…)的分数的分解:2115315=+,2117428=+,2119545=+,按此规律,2n= ▲ (n = 5,7,9,11,…) . 11. 在平面直角坐标系xOy 中,已知圆22:(2)4C x y -+=,点P 是圆C 外的一个动点,直线P A ,PB 分别切圆C 于A ,B 两点.若直线AB 过定点(1,1),则线段PO 长的最小值为 ▲ . 12. 已知正实数x ,y 满足21()1,x x y y -=则1x y+的最小值为 ▲ . 13.如图,在平行四边形ABCD 中,AB =2AD ,E , F 分别为AD ,DC 的中点,AF 与BE 交于点O .若125OF OB AD AB u u u r u u u r u u u r u u u r⋅=⋅,则∠DAB 的余弦值为 ▲ . 14. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且431tan tan A B +=,则3c b的最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知向量m =(b ,a - 2c ), n =(cos A - 2cos C ,cos B ),且m ⊥n . (1)求sin sin C A的值;(2)若a =2,35=m ,求△ABC 的面积.AB CD FEO16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,12AC AA =,AC BC ⊥,D ,E 分别为A 1C 1,AB 的中点.求证:(1)AD ⊥平面BCD ;(2)A 1E ∥平面BCD .17.(本小题满分14分)如图,某大型厂区有三个值班室A ,B ,C .值班室A 在值班室B 的正北方向3千米处,值班室C 在值班室B 的正东方向4千米处.(1)保安甲沿CA 从值班室C 出发行至点P 处,此时PC =2,求PB 的距离;(2)保安甲沿CA 从值班室C 出发前往值班室A ,保安乙沿AB 从值班室A 出发前往值班室B ,甲乙同时出发,甲的速度为5千米/小时,乙的速度为3千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)y x a b a b+=>>过点()61,,离心率为2.A ,B 是椭圆上两点,且直线OA 与OB 的斜率之积为12. (1)求椭圆C 的方程; (2)求直线AB 的斜率; (3)设直线AB 交圆O :222x y a +=于C ,D 两点,且6AB CD =,求△COD 的面积.(第17题)19.(本小题满分16分)已知数列*{}()n a n ∈N 的前n 项和为S n ,()2n n nS a λ=+(λ为常数)对于任意的*n ∈N 恒成立.(1)若11a =,求λ的值; (2)证明:数列{}n a 是等差数列;(3)若22a =,关于m 的不等式|2|1m S m m -<+有且仅有两个不同的整数解,求λ的取值范围.20.(本小题满分16分)已知函数ln ()(1xf x a ax =∈+R ,且a 为常数). (1)若函数y =f (x )的图象在x =e 处的切线的斜率为21e(1e)-(e 为自然对数的底数),求a的值;(2)若函数y = f (x )在区间(1,2)上单调递增,求a 的取值范围; (3)已知x ,y ∈(1,2), 且x +y =3,求证:(23)ln (23)ln 11x x y yx y --+--≤0.2020年江苏省高考押题卷数 学II(附加题)21.【选做题】本题包括A ,B ,C 三小题,每小题10分. 请选定其中两.....小.题.,并在相应....的.答题区域....内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修4—2:矩阵与变换](本小题满分10分)曲线221x y +=在矩阵0(0,0)0a A a b b ⎡⎤=>>⎢⎥⎣⎦对应的变换下得到曲线221.9x y += (1)求矩阵A ;(2)求矩阵A 的特征向量.B. [选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩,(α为参数).以原点O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为(sin cos )2ρθθ+=,直线l 与曲线C 相交于A ,B 两点,求线段AB 的值.C . [选修4-5:不等式选讲] (本小题满分10分)已知a ,b ,c 为正实数,满足a +b +c =3,求149a b c++的最小值.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)五个自然数1、2、3、4、5按照一定的顺序排成一列. (1)求2和4不相邻的概率;(2)定义:若两个数的和为6且相邻..,称这两个数为一组“友好数”.随机变量X 表示上述五个自然数组成的一个排列中“友好数”的组数,求X 的概率分布和数学期望E (X ).23.(本小题满分10分)已知*2,,n n N ≥∈数列T 12:,,,n a a a L 中的每一项均在集合M ={1,2,…,n }中,且任意两项不相等,又对于任意的整数i ,j (1≤i <j ≤n ),均有.i j i a j a +≤+记所有满足条件的数列T 的个数为b n .例如n =2时,满足条件的数列T 为1,2或2,1,所以b 2=2.(1)求b 3; (2)求b n .。

2020年江苏省高考数学压轴试卷(6月份) (含答案解析)

2020年江苏省高考数学压轴试卷(6月份)一、填空题(本大题共14小题,共70.0分)1. 已知集合A = {0,1,2},B = {x | −1 < x < 1},则A ∩B = ____.2. 已知复数z =(3−4i)⋅i ,则|z|= ______ .3. 某校选修乒乓球课程的学生中,高一年级有40名,高二年级有50名,现用分层抽样的方法在这90名学生中抽取一个样本,已知在高一年级的学生中抽取了8名,则在高二年级的学生中应抽取的人数为______ .4. 执行如图所示的伪代码,则输出的结果为 ________ .5. 双曲线x 2a 2−y 2b 2=1(a >0,b >0)的离心率为√3,则其渐近线方程为__________ 6. 某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为 .7. 已知点P 在抛物线x 2=4y 上运动,F 为抛物线的焦点,点A 的坐标为(2,3),求|PA|+|PF|的最小值______.8. α,β都是锐角,且sinα=513,cos (α+β)=−45,则sinβ=________.9. 如图,在棱长为2的正方体ABCD −A 1B 1C 1D 1中,E 为对角线B 1D 上的一点,M ,N 为对角线AC 上的两个动点,且线段MN 的长度为1.(1)当N 为对角线AC 的中点且DE =√2时,则三棱锥E −DMN 的体积是______ ; (2)当三棱锥E −DMN 的体积为13时,则DE = ______ .10. 在等差数列{a n }中,a 4=18−a 5,则数列{a n }的前8项的和S 8= ______ .11. 如下图,在三棱锥P—ABC 中,已知PA ⊥平面ABC ,△ABC 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC 所成角的正弦值为√427,则PA 的长为_________.12. 如图,在四边形ABCD 中,AB =CD =1,点M,N 分别是边AD,BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点P,Q ,则PQ ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ −DC ⃗⃗⃗⃗⃗ )的值为_______.13. 若函数f(x)=(x 2−32x)e x −m 有三个零点,则实数m 的取值范围是_________________.14. 在△ABC 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则S a 2+2bc 的最大值为______二、解答题(本大题共11小题,共142.0分)15. 在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,且sinA =2sinB ,(1)若C =3π4,△ABC 的面积为9√24,求a 的值; (2)求sin(C−A)sinB−8sin 2C 2的值.16.如图,在直三棱柱ABC−A1B1C1中,AB=AC,点D是BC的中点.(1)求证:A1B//平面ADC1;(2)如果点E是B1C1的中点,求证:平面A1BE⊥平面BCC1B1.17.如图所示,为美化环境,拟在四边形ABCD空地上修建两条道路EA和ED,将四边形分成三个区域,种植不同品种的花草,其中点E在边BC的三等分处(靠近B点),BC=3百米,百米,.(1)求△ABE区域的面积;(2)为便于花草种植,现拟过C点铺设一条水管CH至道路ED上,求当水管CH最短时的长.18.已知椭圆C:x2a2+y2b2=1(a>b>0)经过点(2,√2),且离心率为√22.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过椭圆C左焦点的直线交椭圆于M、N两点,线段MN的垂直平分线交y轴于点P(0,m),求m的取值范围.19.已知f(x)=−√4+1x2,数列{a n}的前n项和为S n,点P n(a n,−1an+1)在曲线y=f(x)上(n∈N∗),且a1=1,a n>0.(1)求数列{a n}的通项公式;(2)数列{b n}的前n项和为T n,且满足T n+1a n2=T na n+12+16n2−8n−3,b1=1,求数列{b n}的通项公式;(3)求证:S n>12√4n+1−1,n∈N∗.20.函数f(x)=a(x2−1)−lnx(a∈R).(1)若y=f(x)在x=2处取得极小值,求实数a的值;(2)若f(x)≥0在[1,+∞)上恒成立,求实数a的取值范围.21.已知a,b,c,d∈R,矩阵A=[a−20b ]的逆矩阵A−1=[1cd1].若曲线C在矩阵A对应的变换作用下得到曲线y=2x+1,求曲线C的方程.22.在直角坐标系xOy中,已知曲线C的参数方程为{x=√33cosθy=sinθ(θ为参数).(1)以原点O为极点,x轴正半轴为极轴建立极坐标系,求曲线C的极坐标方程;(2)设是曲线C上两动点,求|AB|的取值范围.23.已知x,y,z均为实数.(1)求证:1+2x4⩾2x3+x2;(2)若x+2y+3z=6,求x2+y2+z2的最小值.24.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为0.7,从中任意取出3件进行检验,求至少有2件是合格品的概率;(2)若厂家发给商家20件产品,其中有4不合格,按合同规定商家从这20件产品中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.25.数列{a n}满足S n=2n−a n(n∈N+).(1)计算a1,a2,a3,a4。

江苏省2020届高三下学期高考压轴卷数学试题(wd无答案)

江苏省2020届高三下学期高考压轴卷数学试题一、填空题(★) 1. 已知集合,,则______(★★) 2. 已知复数则|z|=.(★) 3. 某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.(★★★) 4. 根据如图所示的伪代码,可知输出的结果为 ____ .(★★) 5. 在平面直角坐标亲中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为______.(★) 6. 某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.(★★★) 7. 已知点在抛物线上运动,为抛物线的焦点,点的坐标为,则的最小值是______.(★★) 8. 已知,都是锐角,,,则 ___________ .(★★★) 9. 在体积为9的斜三棱柱ABC—A 1B 1C 1中,S是C 1C上的一点,S—ABC的体积为2,则三棱锥S—A 1B 1C 1的体积为 ___ .(★★★) 10. 在等差数列中,,则数列的前11项和 ____________ . (★★★★) 11. 三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.(★★★★) 12. 如图,在四边形中,,点分别是边的中点,延长和交的延长线于不同的两点,则的值为_________.(★★★★) 13. 已知函数,若有两个零点,则的取值范围______.(★★★★★) 14. 在中,记角 A, B, C所对的边分别是 a, b, c,面积为 S,则的最大值为______二、解答题(★★★★) 15. 在中,角所对的边分别为,已知,.(1)求的值;(2)若,求周长的取值范围.(★★★) 16. 如图,在直三棱柱中,,, 分别是, 的中点.(1)求证:∥平面;(2)求证:平面平面.(★★★) 17. 如图所示,为美化环境,拟在四边形空地上修建两条道路和,将四边形分成三个区域,种植不同品种的花草,其中点在边的三等分点处(靠近点),百米,,,百米,.(1)求区域的面积;(2)为便于花草种植,现拟过点铺设一条水管至道路上,求水管最短时的长.(★★★) 18. 已知椭圆:的左、右焦点分别为,,离心率为,点是椭圆上的一个动点,且面积的最大值为.(1)求椭圆的方程;(2)设斜率不为零的直线与椭圆的另一个交点为,且的垂直平分线交轴于点,求直线的斜率.(★★★) 19. 已知数列的前项和记为,且,数列是公比为的等比数列,它的前项和记为.若,且存在不小于3的正整数,,使得. (1)若,,求的值;(2)求证:数列是等差数列;(3)若,是否存在整数,,使得,若存在,求出,的值;若不存在,请说明理由.(★★★★) 20. 已知,.(1)当时,求函数图象在处的切线方程;(2)若对任意,不等式恒成立,求的取值范围;(3)若存在极大值和极小值,且极大值小于极小值,求的取值范围.(★★) 21. 求椭圆在矩阵对应的变换作用下所得曲线的方程.(★★★) 22. 在平面直角坐标系 xOy中,曲线 C的参数方程为,(θ为参数),以原点为极点, x轴非负半轴为极轴建立极坐标系.(1)求曲线 C的极坐标方程;(2)在平面直角坐标系 xOy中, A(﹣2,0), B(0,﹣2), M是曲线 C上任意一点,求△ ABM面积的最小值.(★★★) 23. 已知,,均为正数,且,求证:.(★★★) 24. 厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为从中任意取出 3件进行检验,求至少有件是合格品的概率;(2)若厂家发给商家件产品,其中有不合格,按合同规定商家从这件产品中任取件,都进行检验,只有件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.(★★★★) 25. 已知数列满足,其中为常数,.(1)求的值(2)猜想数列的通项公式,并证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启封前2020江苏省高考压轴卷数学文科一、 填空题:本大题共14小题,每小题5分,共70分.1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =I ______ 2.已知复数(1)(2),z i i =+-则|z |= .3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S 为____.5.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.7.已知点P 在抛物线28y x =上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则PA PF +的最小值是______.8.已知,αβ都是锐角,45sin ,cos()513ααβ=+=,则sin β=_____ 9.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三 棱锥S —A 1B 1C 1的体积为___.10.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =____________. 11.三棱锥P ABC -中,已知PA ⊥平面ABC ,ABC n 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC,则PA 的长为_____. 12.如图,在四边形ABCD 中,1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM的延长线于不同..的两点,P Q ,则·()PQ AB DC -u u u v u u u v u u u v 的值为_________.13.已知函数()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()()()1F x f f x m =++有两个零点12,x x ,则12x x 的取值范围______.14.在ABC V 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则22Sa bc+的最大值为______.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤. 15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2A π≠,sin 26cos sin b A A B =.(1)求a 的值; (2)若3A π=,求ABC ∆周长的取值范围.16.如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE;(2)求证:平面1A DE ⊥平面11ACC A .17.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=o ,EA =60AED ∠=o .(1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.18.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,点P 是椭圆C 上的一个动点,且12PF F ∆(1)求椭圆C 的方程;(2)设斜率不为零的直线2PF 与椭圆C 的另一个交点为Q ,且PQ 的垂直平分线交y 轴于点1(0,)8T ,求直线PQ 的斜率.19.已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =. (1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列;(3)若2q =,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.20.已知()22ln 12x f x x x a-=--+,0a >.(1)当2a =时,求函数()f x 图象在1x =处的切线方程;(2)若对任意[)1,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围; (3)若()f x 存在极大值和极小值,且极大值小于极小值,求a 的取值范围.参考答案1.【 答案】{|12}x x <<2.【 3.【 答案】8 4.【 答案】2055.【 答案】2y x =±6.【 答案】14 7.【 答案】7 8.【 答案】16659.【 答案】1 10.【 答案】13211.【 答案】212.【 答案】013.【 答案】(-∞14.【 15.【 答案】(1)3;(2)(]6,9. 16.【 解析】证明:(1)因为D ,E 分别是AB ,AC 的中点,所以//DE BC , ...........2分 又因为在三棱柱111ABC A B C -中,11//B C BC,所以11//B C DE. ...............4分 又11B C ⊄平面1A DE,DE ⊂平面1A DE,所以11B C ∥平面1A DE. ...............6分(2)在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,又DE ⊂底面ABC ,所以1CC DE⊥. .............8分又BC AC ⊥,//DE BC ,所以DE AC ⊥, ..........10分 又1,CC AC ⊂平面11ACC A ,且1CC AC C=I ,所以DE ⊥平面11ACC A . ...............12分又DE ⊂平面1A DE,所以平面1A DE ⊥平面11ACC A . ............14分17.【 答案】(1(2)7百米. 【 解析】(1)由题知1,120,BE ABC EA =∠==o在ABE V 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 4122ABE S AB BE ABE V =⋅⋅∠=⨯⨯=. (2)记AEB α∠=,在ABE V 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin 7αα===, 当CH DE ⊥时,水管CH 最短,在Rt ECH V 中,2π2π2πsin 2sin 2sin cos 2cos sin 333CH CE HEC ααα⎛⎫=∠=-=-⎪⎝⎭百米.18.【 答案】(1)22143x y +=(2)12或32【 解析】 (1)因为椭圆离心率为12,当P 为C 的短轴顶点时,12PF F △所以22212122c a a b c c b ⎧=⎪⎪=+⎨⎪⎪⨯⨯=⎩,所以21a b c =⎧⎪=⎨⎪=⎩C 的方程为:22143x y +=.(2)设直线PQ 的方程为()1y k x =-,当0k ≠时,()1y k x =-代入22143x y +=,得:()22223484120k x k x k +-+-=.设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,N x y ,212024234x x k x k +==+,()1200231234y y k y k x k +-==-=+ 即22243,3434k k N k k ⎛⎫- ⎪++⎝⎭因为TN PQ ⊥,则1TN PQk k ⋅=-,所以222314381443k k k k k --+⋅=-+,化简得24830k k -+=,解得12k =或32k =,即直线PQ 的斜率为12或32. 19.【 答案】(1)23a =(2)见解析(3)存在8,340m k ==满足题意。

【 解析】(1)当3n =时,()13312332a a A a a a +=++=, 因为131,5a a ==,所以23a =. (2)由()12n n n a a A +=,得()111(1)2n n n a a A ++++=, 两式相减,得111(1)2n nn a n a na a ++++-=,即11(1)0n n n a na a +--+=,所以211(1)0n n na n a a ++-++=.两式相减,得122n n n a a a ++=+,所以数列{}n a 为等差数列. (3)依题意:112m k m a b a -==⋅,由86k m A B =得:118621k ma a a qa k q+-⨯=⨯-, 即1111122128686,22212486m m m a a a a k k-+⋅-⨯⨯=⨯=--⨯-,所以151634421m k --=+.因为92512=,且3m …,所以219m -剟, 又因为51641294343=⨯=⨯⨯,且121m -+为奇数, 所以121129m -+=时,151621m -+是整数,此时17m -=, 所以8,340m k ==.20.【 答案】(1)210x y --=;(2)[)1,+∞;(3)10,2⎛⎫ ⎪⎝⎭.【 解析】(1)当2a =时,()22ln 3x f x x x -=-+,()()218'3f x x x =-+,则()1'12f =. 又因为()10f =,所以函数()f x 图象在1x =处的切线方程为()112y x =-,即210x y --=. (2)因为()22ln 12x f x x x a-=--+所以()()214'12a f x x x a =-=-+ ()222244112x x a a x x a -+-+=-+ ()()22214412x a a x x a -+--+, 且()10f =.因为0a >,所以121a -<. ①当2440a a -≥时,即1a ≥,因为()'0f x >在区间()1,+∞上恒成立,所以()f x 在()1,+∞上单调递增. 当[)1,x ∈+∞时,()()10f x f ≥=, 所以1a ≥满足条件.②当2440a a -<时,即01a <<时,由()'0f x =,得()110,1x =-,()211,x =++∞ 当()21,x x ∈时,()'0f x <,则()f x 在()21,x 上单调递减,所以()21,x x ∈时,()()10f x f <=,这与[)1,x ∈+∞时,()0f x ≥恒成立矛盾. 所以01a <<不满足条件. 综上,a 的取值范围为[)1,+∞. (3)①当1a ≥时,因为()'0f x ≥在区间()0,+∞上恒成立,所以()f x 在()0,+∞上单调递增, 所以()f x 不存在极值,所以1a ≥不满足条件. ②当112a <<时,120a -<,所以函数()f x 的定义域为()0,+∞, 由()'0f x =,得()110,1x =-,()211,x =++∞ 列表如下:由于()f x 在()12,x x 是单调减函数,此时极大值大于极小值,不合题意,所以112a <<不满足条件. ③当12a =时,由()'0f x =,得2x =.列表如下:此时()f x 仅存在极小值,不合题意,所以12a =不满足条件. ④当102a <<时,函数()f x 的定义域为()()0,1212,a a -⋃-+∞,且10112x a <=-<-,2112x a =+>-. 列表如下:所以()f x 存在极大值()1f x 和极小值()2f x , 此时()()12f x f x -= 1212122222ln ln 1212x x x x x a x a----+-+-+- 11 - ()()()1212124ln 1212a x x x x x a x a -=--+-+ 因为12012x a x <<-<, 所以12ln 0x x <,120x x -<,1120x a -+<,2120x a -+>, 所以()()120f x f x -<,即()()12f x f x <, 所以102a <<满足条件.综上,所以a 的取值范围为10,2⎛⎫⎪⎝⎭.。

相关文档
最新文档