Verilog_HDL模型门级_RTL级_算法级_系统级
中文版VerilogHDL简明教程

Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。
被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。
数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。
Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。
所有这些都使用同一种建模语言。
此外,Verilog HDL 语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。
Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。
因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。
语言从C编程语言中继承了多种操作符和结构。
Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。
但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。
当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。
历史Verilog HDL语言最初是于1983年由Gateway Design Automation公司为其模拟器产品开发的硬件建模语言。
那时它只是一种专用语言。
由于他们的模拟、仿真器产品的广泛使用,Verilog HDL 作为一种便于使用且实用的语言逐渐为众多设计者所接受。
在一次努力增加语言普及性的活动中,Verilog HDL语言于1990年被推向公众领域。
Open Verilog International (OVI)是促进Verilog发展的国际性组织。
1992年,OVI决定致力于推广Verilog OVI标准成为IEEE标准。
这一努力最后获得成功,Verilog 语言于1995年成为IEEE标准,称为IEEE Std 1364-1995。
Verilog描述方法与层次

Verilog描述⽅法与层次Verilog描述⽅法与层次Verilog语⾔有多种描述⽅法,这些⽅法也可以在多个层次上来描述硬件。
描述⽅式在上⼀篇当中已经引⼊过数据流描述、⾏为描述、结构化描述这三种描述的⽅式的概念,本篇将继续深⼊说明这三种描述⽅式。
数据流描述1.数据流:组合逻辑电路的信号传输其实就类似于数据的流动,数据从中经过但是不会存储,⼀旦输⼊改变,输出随之在⼀定的延时(Tpd)之后发⽣改变。
连续赋值语句连续赋值语句具有以下的特点:1.连续驱动:输⼊的改变将导致该语句重新计算2.只有线⽹型变量可以⽤assign赋值:仿真器中不会储存assign赋值的变量,寄存器有存储要求显然不能⽤assign赋值,只有线⽹型可以。
另外,assign语句允许多驱动即⼀个变量可以多个输⼊(实际上就是实现线与和线或),建议复习⼀下数字电路中线与和线或的实现。
3.适⽤于组合逻辑建模:若要模拟延迟可以通过 # 来加延迟4.并⾏性:assign语句同其他语句块是并发的。
以⼀个异或门为例:module FullAdder(input x,input y,input c_in,output c_out,output sum);assign sum = x^y^c_in;assign c_out = (x&y) || (x&c_in) || (y&c_in)//以上两条语句都是并发执⾏且连续赋值的。
endmodule延时任何⼀个元器件都必然存在延时,⽽在数据流描述⽅式中,我们也可以选择对其进⾏建模。
延时具体也可以分为:上升延时即输出变为1时的延时,下降延时即输出变为0的延时,关闭延时即输出变为⾼阻态的延时,以及输出变为X 即中间态的延时(通常取前⾯三种中最⼩的)。
关于延时的建模也有多种⽅法,以下是⼀个例⼦:assign #1 out = in1^in2;//`timescale 1ns/1ns输⼊到输出须1nsassign #(1,2) out1 = in1^in2;//上升延时1ns,下降延时2ns,变x和关闭取最⼩为1nsassign #(1,2,3) out2 = in1^in2;//上升1ns,下降2ns,关闭3ns,变X1nsassign #(4:5:6,3:4:5)out3 = in1^in2;//(min:typ:max)描述的时延时最⼩典型最⼤三种情况,同样第⼀个是上升,第⼆个是下降注意:连续赋值中的延时是惯性延时,即出现⼩于延时的信号(⽑刺信号)会被过虑掉。
verilog语法

第三章 Verilog HDL的基本语法前言Verilog HDL是一种用于数字逻辑电路设计的语言。
用Verilog HDL描述的电路设计就是该电路的Verilog HDL模型。
Verilog HDL既是一种行为描述的语言也是一种结构描述的语言。
这也就是说,既可以用电路的功能描述也可以用元器件和它们之间的连接来建立所设计电路的Verilog HDL模型。
Verilog模型可以是实际电路的不同级别的抽象。
这些抽象的级别和它们对应的模型类型共有以下五种:∙系统级(system):用高级语言结构实现设计模块的外部性能的模型。
∙算法级(algorithm):用高级语言结构实现设计算法的模型。
∙RTL级(Register Transfer Level):描述数据在寄存器之间流动和如何处理这些数据的模型。
∙门级(gate-level):描述逻辑门以及逻辑门之间的连接的模型。
∙开关级(switch-level):描述器件中三极管和储存节点以及它们之间连接的模型。
一个复杂电路系统的完整Verilog HDL模型是由若干个Verilog HDL模块构成的,每一个模块又可以由若干个子模块构成。
其中有些模块需要综合成具体电路,而有些模块只是与用户所设计的模块交互的现存电路或激励信号源。
利用Verilog HDL语言结构所提供的这种功能就可以构造一个模块间的清晰层次结构来描述极其复杂的大型设计,并对所作设计的逻辑电路进行严格的验证。
Verilog HDL行为描述语言作为一种结构化和过程性的语言,其语法结构非常适合于算法级和RTL级的模型设计。
这种行为描述语言具有以下功能:∙可描述顺序执行或并行执行的程序结构。
∙用延迟表达式或事件表达式来明确地控制过程的启动时间。
∙通过命名的事件来触发其它过程里的激活行为或停止行为。
∙提供了条件、if-else、case、循环程序结构。
∙提供了可带参数且非零延续时间的任务(task)程序结构。
VerilogHDL复习题与答案

VerilogHDL硬件描述语言复习一、1. Verilog HDL 是在哪一年首次被I E E E标准化的答:Verilog HDL是在1995年首次被IEEE标准化的..2. Verilog HDL支持哪三种基本描述方式答:Verilog HDL可采用三种不同方式或混合方式对设计建模..这些方式包括:行为描述方式—使用过程化结构建模;数据流方式—使用连续赋值语句方式建模;结构化方式—使用门和模块实例语句描述建模3. Verilog HDL 是由哪个公司最先开发的答:Verilog HDL是由Gateway Design Automation公司最先开发的4. Verilog HDL中的两类主要数据类型什么答:线网数据类型和寄存器数据类型..线网类型表示构件间的物理连线; 而寄存器类型表示抽象的数据存储元件..5. U D P代表什么答:UDP代表用户定义原语6. 写出两个开关级基本门的名称..答:pmos nmos7.写出两个基本逻辑门的名称..答:and or8.在数据流描述方式中使用什么语句描述一个设计答:设计的数据流行为使用连续赋值语句进行描述9. 采用结构描述方式描述1位全加器..答:module full_adda;b;cin;s;co;input a;b;cin;output s;co;wire S1;T1;T2;T3;xorX1S1;a;b;X2s;S1;cin;andA1T3;a;b;A2T2;b;cin;A3T1;a;cin;orO1co;T1;T2;T3;endmodule10. i n i t i a l语句与always 语句的关键区别是什么答: 1 initial语句:此语句只执行一次..2 always语句:此语句总是循环执行; 或者说此语句重复执行..11.采用数据流方式描述2 - 4译码器..答:'timescale 1ns/nsmodule Decoder2×4A;B;EN;Z;input A;B;EN;output 0:3Z;wire abar;Bbar;assign #1 Abar=~A;assign #1 Bbar=~B;assign #2 Z0=~Abar&Bbar&EN;assign #2 Z1=~Abar&B&EN;assign #2 Z2=~A&Bbar&EN;assign #2 Z3=~A&B&EN;endmodule1 2. 找出下面连续赋值语句的错误..assign Reset=#2 Sel^WriteBus;答:不符合连续赋值语句的语法;应该为:assign #2 Reset = ^ WriteBus;二、1. 下列标识符哪些合法;哪些非法C O u n T; 1_2 M a n y; \**1; R e a l ; \wait; Initial答:COunT合法;1_2 Many非法;\**1;Real 非法;\wait合法;Initial合法2. 在Verilog HDL中是否有布尔类型答:没有3. 如果线网类型变量说明后未赋值;其缺省值为多少答:z4. Verilog HDL 允许没有显式说明的线网类型..如果是这样;怎样决定线网类型答:在Verilog HDL 中;有可能不必声明某种线网类型..在这样的情况下;缺省线网类型为1位线网..5.下面的说明错在哪里i n t e g e r 0:3 R i p p l e;答:应该是integer Ripple 0:36. Verilog HDL有哪几大类数据类型答:verilog hdl 有两大类数据类型:线网类型和寄存器类型..7.Verilog HDL有哪几种寄存器类型答:有五种不同的寄存器类型:reg、integer、time、real、realtime..三、1. 假定长度为6 4个字的存储器; 每个字8位;编写Verilog 代码;按逆序交换存储器的内容..即将第0个字与第6 3个字交换;第1个字与第6 2个字交换;依此类推..答:reg 7:0 mem 63:0;integer i = 0;reg 7:0 temp;whilei < 32begintemp = memi;memi = mem63 - i;mem63 - i = temp;i = i + 1;end2. 假定3 2位总线A d d re s s _ B u s; 编写一个表达式;计算从第11位到第2 0位的归约与非.. 答:~& addressBus20:113. 假定一条总线C o n t ro l _ B u s 1 5 : 0 ;编写赋值语句将总线分为两条总线:A b u s 0 : 9 和B b u s 6 : 1 ..答:Abus = ControlBus9:0;Bbus = ControlBus15:10;4. 编写一个表达式;执行算术移位;将Qparity 中包含的8位有符号数算术移位..答:{Qparity7-i:0; Qparity7:8-i}//左移;i表示移的位数{Qparityi-1:0; Qparity7: i}//右移;i表示移的位数5.使用条件操作符; 编写赋值语句选择N e x t S t a t e的值..如果C u rre n t S t a t e的值为R E S E T; 那么N e x t S t a t e的值为G O;如果C u rre n t S t a t e的值为G O;则N e x t S t a t e 的值为B U S Y;如果C u rre n t S t a t e的值为B U S Y;则N e x t S t a t e的值为R E S E T..答:NextState = CurrentState == RESET Go : CurrentState == Go BUSY : RESET6. 如何从标量变量A;B;C和D中产生总线B u s Q0:3 如何从两条总线B u s A 0 : 3 和B u s Y 2 0 : 1 5 形成新的总线B u s R 1 0 : 1答:BusQ3:0 = {D; C; B; A}BusR10:1 = {BusY20:15; BusA3:0}四、1、Verilig HDL提供的内置基本门分为哪几类1 多输入门、2 多输出门、3 三态门2、多输入门与多输出门的区别在哪里答:多输入门:and nand nor or xor xnor 这些逻辑门只有单个输出; 1个或多个输入第一个端口是输出;其它端口是输入..多输出门有:buf; not 这些门都只有单个输入;一个或多个输出最后的端口是输入端口;其余的所有端口为输出端口..3、Verilog HDL内置的mos开关门有哪些答:cmos; nmos; pmos; rcmos; rnmos; rpmos4、门时延值的组成有哪几个值答:1 上升时延2 下降时延3 关断时延5. Verilig HDL提供的内置基本门分为哪几类答:1 多输入门2 多输出门 3 三态门4 上拉、下拉电阻5 MOS开关6 双向开关6.假定一条总线Control_Bus7:0;编写赋值语句将总线分为两条总线:Abus 0:2和Bbus 4 : 1 ..答:Abus=ControlBus2:0;Bbus=ControlBus15:12;7. 编写一个表达式;执行算术移位;将Qparity 中包含的8位有符号数算术左移3位..答:{Qparity4:0; Qparity7:5}8.要求采用数据流方式设计一个半加器;写出完整的Verilig HDL设计模块..答:module half_addSum; Cout;A; B;input A; B;output Sum; Cout;assign Sum=A^B;assign Cout=A&B;endmodule五、1、操作符有按操作数个数分为3 种类型;其中三目操作符有 2 个操作符和 3 个操作数..2、关键字全是小写;标识符的首字符必须是字母或下划线..3、数字A=5’b011 的表示z ..设B=5’b101x1;C=5’b01x11;则操作运算F=B+C的结果F= 5'bxxxxx ..4、VerilogHDL中保存字符串“Hello”需要 5 位..5、声明reg 7:0data4:0表示5 个8 位的存储单元..6、module testq;clk;crt;output q;reg q;Input clk;crt;always @posedge clkbeginifcrt==1q=~q;endendmodule7、数据流建模的主要语法结构是assign LHS_target = RHS_expression; 语句;采用assign 关键字开始..8、线网赋值延迟可以通过普通赋值延迟; 隐式连续赋值延迟和线网声明延迟三种方法来实现..9、模型引用时;要指定实例名;但硬件和用户定义原语例外..10、语句assign #2:3:4;5:6:7portout;clk;in中的典型关断延迟是 4 ;最大关断延时是7 ..11、VerilogHDL语言可以从四个不同的抽象层次描述电路;这四层是开关级、门级、寄存器传送级、算法级12、结构化建模的主要语句是内置门原语和用户定义原语..六、1.门级建模的类型有:Aor和AND BOR和andCand和or DA、B、C都正确 C2.VerilogHDL使用的是逻辑是:A二值逻辑B四值逻辑C三值逻辑D八种强度 B3.不属于寄存器类型的是:Ainteger BregCwand Dtime C4.VerilogHDL语言中;标识符的作用范围是:A本模块B外部模块C所有模块D全局模块 A5.具有多个输出端口的门是:Aand BorCnor Dnot D七、1、语句内部时延与语句前时延效果是否一样答:不一样2、当时延表达式为负数时;时延值是如何处理得到答:取绝对值3、VeriligHDL有几种循环语句分别采用关键字是什么答:总共有四种循环语句;分别采用forever、repeat、while、for..八、1.VerilogHDL语言和C语言的结构化语句有何不同答:1.Verilog HDL是在C语言的基础上发展起来的;保留了C语言的结构特点..2.C语言由函数组成;Verilog由模块module组成3.C语言通过函数名及其端口变量实现调用;Verilog也通过模块名和端口变量实现调用4.C语言有主函数main;Verilog的个module均等价;但必有一个顶层模块;包含芯片系统与外界的所有I/O信号5.C语言是顺序执行;而Verilog的所有module均并发执行6.C 语言与Verilog语法相似..2、VerilogHDL语言的操作符类型有哪些其数据流建模采用什么来描述设计吗答:算术、逻辑、关系、等价、按位、缩减、移位、拼接、条件数据流建模采用算术与逻辑来描述设计3、VerilogHDL语言的优点是什么答:Verilog HDL语言的优势:由于它在其门级描述的底层;也就是晶体管开关的描述方面比VHDL等各种其它的HDL语言有更强的功能..所以在复杂数字逻辑电路和系统的设计仿真时更有优势;描述的设计思想、电路结构和逻辑关系清晰明了;并且设计语言简练、易学易用;其模块化分层结构在大规模设计时更能体现出优势..因此可以看出;Verilog HDL语言在EDA设计中相对与其他的各种硬件描述语言更有优势..4、下列例子中;b;c;d的最终值分别是什么initialbeginb=1’b1;c=1’b0;#10 b=1’b0;endinitialbegind=#25{b|c};end答:b=1'b0、c=1'b0、d=1'b05.一位全减器模块wsub具有三个一位输入:x;y和z前面的借位;两个一位的输出D差和B借位..计算D和B的逻辑等式如下所示:..D..yx=++..+..xyzzzxyyzx..+=B.+yzyzxx写出VerilogHDL数据流描述的该全减器wsub..答: module wsubD;B;x;y;xinput x;y;z;output D;B;assign D=~x*~y*~z+~x*y*~z+x*~y*~Z+x*y*z;assign B=~x*y+~x*z+y*z;endmodule。
第3讲 Verilog HDL常用建模方法汇总

specify块 也可以给使用开关设计的模块指定路径延迟(引脚到引
脚的延迟)以及时序检查。用specify块可以描述路径延 迟。在第10章中详细讨论了路径延迟说明,它在开关级 模型中也完全适用。
描述方式:
因为开关是用Verilog原语定义的,类似 于逻辑门,实例名称是可选项,所以调用 (实例引用)开关时可以不给出实例名称。
信号out的值由信号data和control的值确定。 out的逻 辑值如表11.1所示。 信号data和control的不同组合导致 这两个开关输出1,0或者z或x,逻辑值(如果不能确定 输出为1或0,就有可能输出z值或x值)。符号L代表0或 z,H代表1或z。
因此,NMOS开关在control信号是1时导通。如果 control信号是0,则输出为高阻态值。与此类似,如 果control信号是0,则PMOS开关导通。 具体的输入 输出参见下表:
CMOS开关用关键字cmos声明。CMOS开关的符号如下图所 示。
CMOS开关实例的引用: CMOS门本质上是两个开关(NMOS和PMOS)的组合体可
f=ab …
主讲 陈付
安徽师范大学 2015
第3讲 Verilog HDL常用建模方法
电路(开关级)级建模
门级(逻辑级)建模
数据流建模
行为级(RTL级)建模
Verilog模型可以是实际电路不同级别的抽象。这些抽象的级别和它们对应的模型 类型共有以下五种: (1)系统级(system) (2)算法级(algorithmic) (3)RTL级(Register Transfer Level): (4)门级(gate-level): (5)开关级(switch-level)
复杂数字逻辑的VerilogHDL设计方法HDLV

模块C
模 块A1
模 块A2
模 块A3
模 块B1
模 块B2
模 块C1
模 块C2
电路图 设计文件
电路功能 仿真
有问题
没问题
HDL 设计文件
HDL 功能仿真
没问题 HDL 综合
有问题
确定实现电路 的具体库名
与实现逻辑的物 理器件有关的工艺 技术文件
优 化 、布 局 布 线
布线后门级仿真 没问题
电路制造工艺文件 或 FPGA 码 流 文 件
- 软件只能提高系统的灵活性能 - 军用系统的实时、高可靠、低功耗要求 - 系统的功能专一,但对其各种性能要求极高 - 降低系统的设计和制造成本
怎样设计如此复杂的系统?
• 传统的设计方法: - 查用器件手册;
- 选用合适的微处理器和电路芯片; - 设计面包板和线路板; - 调试; - 定型; - 设计复杂的系统(几十万门以上)极其困难。
程就是。
• 常用的编程语言:C、Pascal、Fortran、Basic
或汇编语言。
计算机体系结构和硬线逻辑 的基本概念
• 计算机体统结构:是一门讨论和研究通
用的计算机中央处理器如何提高运算速度 性能的学问。
• 硬线逻辑: 由与门、或门、非门、触发
器、多路器等基本逻辑部件造成的逻辑系 统。
数字信号处理系统的分类
实时数字信号 处理系统实现中存在的技术难点
和解决办法
电路实现的两个方向: • FPGA • 专用集成电路
实时数字信号 处理系统实现中存在的技术难点
和解决办法
用于信号处理的 FPGA 和专用集成 电路(ASIC)设计的方法: Verilog HDL建模、仿真、综合和全
Verilog-HDL中的基本语法
一个完整的源程序都应当加上需要的注释, 以加强程序的可读性。
2.2 Verilog HDL的语法
2.2.1 空白符和注释
Verilog HDL的空白符包括空格、tab符号、换行 和换页。
空白符如果不是出现在字符串中,编译源程序 时将被忽略。
8. 条件操作符(Conditional operators)
条件操作符为:?:
条件操作符的操作数有3个,其使用格式为
操作数 = 条件 ? 表达式1:表达式2;
即当条件为真(条件结果值为1)时,操作数 = 表达式1;为假(条件结果值为0)时,操作数 = 表达 式2。
9. 位并接操作符(Concatenation operators) 并接操作符为:{} 并接操作符的使用格式: {操作数1的某些位,操作数2的某些位,…,操作数n 的某些位};
位运算操作符包括:~(按位取反)、&(按位与)、 |(按位或)、^(按位异或)、^~或~^(按位同或)。
在进行位运算时,当两个操作数的位宽不同时, 计算机会自动将两个操作数按右端对齐,位数少的操 作数会在高位用0补齐。
4. 关系操作符(Pelational operators)
关系操作符有:
<(小于)、<=(小于等于)、>(大于)、>=(大 于等于)。
② 每个模块首先要进行端口定义,并说明输入 (input)、输出(output)或双向(inouts),然 后对模块的功能进行逻辑描述。
③ Verilog HDL程序的书写格式自由,一行可以一 条或多条语句,一条语句也可以分为多行写。
④ 除了endmodule语句外,每条语句后必须要有 分号“;”。
《verilog_数字系统设计课程》(第二版)思考题答案
绪论1.什么是信号处理电路?它通常由哪两大部分组成?信号处理电路是进行一些复杂的数字运算和数据处理,并且又有实时响应要求的电路。
它通常有高速数据通道接口和高速算法电路两大部分组成。
2.为什么要设计专用的信号处理电路?因为有的数字信号处理对时间的要求非常苛刻,以至于用高速的通用处理器也无法在规定的时间内完成必要的运算。
通用微处理器芯片是为一般目的而设计的,运算的步骤必须通过程序编译后生成的机器码指令加载到存储器中,然后在微处理器芯片控制下,按时钟的节拍,逐条取出指令分析指令和执行指令,直到程序的结束。
微处理器芯片中的内部总线和运算部件也是为通用目的而设计,即使是专为信号处理而设计的通用微处理器,因为它的通用性也不可能为某一特殊的算法来设计一系列的专用的运算电路而且其内部总线的宽度也不能随便的改变,只有通过改变程序,才能实现这个特殊的算法,因而其算法速度也受到限制所以要设计专用的信号处理电路。
3.什么是实时处理系统?实时处理系统是具有实时响应的处理系统。
4.为什么要用硬件描述语言来设计复杂的算法逻辑电路?因为现代复杂数字逻辑系统的设计都是借助于EDA工具完成的,无论电路系统的仿真和综合都需要掌握硬件描述语言。
5.能不能完全用C语言来代替硬件描述语言进行算法逻辑电路的设计?不能,因为基础算法的描述和验证通常用C语言来做。
如果要设计一个专用的电路来进行这种对速度有要求的实时数据处理,除了以上C语言外,还须编写硬件描述语言程序进行仿真以便从电路结构上保证算法能在规定的时间内完成,并能通过与前端和后端的设备接口正确无误地交换数据。
6.为什么在算法逻辑电路的设计中需要用C语言和硬件描述语言配合使用来提高设计效率?首先C语言很灵活,查错功能强,还可以通过PLI编写自己的系统任务,并直接与硬件仿真器结合使用。
C语言是目前世界上应用最为广泛的一种编程语言,因而C程序的设计环境比Verilog HDL更完整,此外,C语言有可靠地编译环境,语法完备,缺陷缺少,应用于许多的领域。
VerilogHDL建模概述
VerilogHDL建模概述Verilog HDL 建模概述在数字电路设计中,数字电路可简单归纳为两种要素:线和器件。
线是器件管脚之间的物理连线;器件也可简单归纳为组合逻辑器件(如与或⾮门等)和时序逻辑器件(如寄存器、锁存器、RAM等)。
⼀个数字系统(硬件)就是多个器件通过⼀定的连线关系组合在⼀块的。
因此,Verilog HDL的建模实际上就是如何使⽤HDL语⾔对数字电路的两种基本要素的特性及相互之间的关系进⾏描述的过程。
下⾯通过⼀些实例,以便对Verilog HDL 的设计建模有个⼤概的印象。
1 模块模块(module)是Verilog 的基本描述单位,⽤于描述某个设计的功能或结构及与其他模块通信的外部端⼝。
模块在概念上可等同⼀个器件就如我们调⽤通⽤器件(与门、三态门等)或通⽤宏单元(计数器、ALU、CPU)等,因此,⼀个模块可在另⼀个模块中调⽤。
⼀个电路设计可由多个模块组合⽽成,因此⼀个模块的设计只是⼀个系统设计中的某个层次设计,模块设计可采⽤多种建模⽅式。
1.1 简单事例下⾯先介绍⼏个简单的Verilog HDL程序。
例[1] 加法器module addr (a, b, cin, count, sum);input [2:0] a;input [2:0] b;input cin;output count;output [2:0] sum;assign {count,sum} = a +b + cin;endmodule该例描述⼀个3位加法器,从例⼦可看出整个模块是以module 开始,endmodule 结束。
例[2] ⽐较器module compare (equal,a,b);input [1:0] a,b; // declare the input signal ;output equare ; // declare the output signal;assign equare = (a == b) ? 1:0 ;/ * if a = b , output 1, otherwise 0;*/endmodule该例描述⼀个⽐较器,从上可看到,/* .... */ 和// ... 表⽰注释部分。
verilog hdl不同级别的描述
verilog hdl不同级别的描述
Verilog HDL是一种硬件描述语言,用于描述数字电路和系统的行为、结构和实现。
它支持从算法级到门级的不同级别的描述,以满足不同规模设计的需要。
以下是Verilog HDL不同级别的描述:
算法级描述:算法级描述是最高级别的描述,主要关注算法和数据流的行为。
在算法级描述中,设计者使用过程块(如always、initial等)和连续赋值语句(如assign)来描述信号的行为和变化。
这种描述方法主要用于设计和描述复杂的控制逻辑和算法。
寄存器传输级(RTL)描述:RTL描述是一种中间级别的描述,介于算法级和门级之间。
它关注于寄存器传输的控制逻辑,包括数据路径和控制逻辑。
在RTL描述中,设计者使用连续赋值语句来描述信号的行为,并使用组合逻辑和触发器来定义寄存器、移位器等基本元件的行为。
这种描述方法主要用于设计和描述具有大量寄存器和控制逻辑的数字系统。
门级描述:门级描述是最低级别的描述,主要关注电路元件和连线。
在门级描述中,设计者使用Verilog HDL的内置元件(如AND、OR、NOT等)来描述电路的基本元件和连线。
这种描述方法主要用于设计和描述简单的组合逻辑电路和时序逻辑电路。
除了以上三种级别的描述外,Verilog HDL还支持混合级别的描述,即将不同级别的描述混合在一起使用。
例如,可以在算法级描述中定义一个模块的接口,然后在RTL 或门级描述中实现该模块的具体逻辑。
这种混合级别的描述方法可以使设计更加灵活和
模块化,并方便实现模块重用和层次化设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
clk,clrb;
input[3:0]
d;
output[3:0] q;
flop f1(d[0],clk,clrb,q[0],), f2(d[1],clk,clrb,q[1],), f3(d[2],clk,clrb,q[2],), f4(d[3],clk,clrb,q[3],);
endmodule
9
9.2 Verilog HDL的行为描述建模
3
9.1 门级结构
一个逻辑网络是由许多逻辑门和开关所组成,因此用逻辑门的 模型来描述逻辑网络是最直观的。 Verilog HDL提供了一些门类型的关键字,可以用于门级结构建 模。
4
9.1.1 与非门、或门和反向器及其说明语法 Verilog HDL中有关门类型的关键字共有26个之多。我们只介绍 8个。
2
对于数字系统的逻辑设计工程师而言,熟练地掌握门级、 RTL级、算法级、系统级是非常重要的。而对于电路基本部 件(如门、缓冲器、驱动器等)库的设计者而言,则需要掌 握用户自定义源语元件(UDP)和开关级的描述。
一个复杂电路的完整Verilog HDL模型是由若干个Verilog HDL模块构成的,每一个模块又可以由若干个子模块构成。 这些模块可以分别用不同抽象级别的Verilog HDL描述,在 一个模块中也可以有多种级别的描述。利用Verilog HDL语 言结构所提供的这种功能就可以构造一个模块间的清晰层次 结构来描述极其复杂的大型设计。
`define stim #100 data=4'b //宏定义 stim,可使源程序简洁 event end_first_pass; //定义事件end_first_pass
hardreg reg_4bit (.d(data), .clk(clock), .clrb(clearb), .q(qout));
`stim 0111;
`stim 1000;
`stim 1001;
13
`stim 1010; `stim 1011; `stim 1100; `stim 1101;
可以分为以下5种
(1) 系统级(system)
//行为级
(2) 算法级(algorithmic)
//行为级
(3) RTL级(RegisterTransferLevel): //行为级
(4) 门级(gate-level):
//结构级
(5) 开关级(switch-level)
系统级、算法级和RTL级是属于行为级的,门级是属于结构级的。
12
initial
begin
#55;
repeat(4)
//重复四次产生下面的data变化
begin
data=4'b0000;
`stim 0001;
`stim 0010;
`define stim #100 data=4'b
`stim 0011;
`stim 0100;
`stim 09章 Verilog HDL模型的不同抽 象级别
1
概述
Verilog模型可以是实际电路不同级别的抽象。所谓不同的抽象
级别,实际上是指同一个物理电路,可以在不同的层次上用
Verilog语言来描述它,如果只从行为和功能的角度来描述某一
电路模块,就称为行为模块;如果从电路结构的角度来描述该电
路模块,就称为结构模块。抽象的级别和它们对应的模块类型常
module hardreg(d,clk,clrb,q);
input
clk,clrb;
input[3:0] d;
output[3:0] q;
reg [3:0] q;
always @ (negedge clk or posedge clrb)
begin
if (clrb)
q <= 0;
else
q <= d;
6
module input output
flop(data,clock,clear,q,qb); data,clock,clear; q,qb;
nand #10
nand #9 not #10 endmodule
nd1(a,data,clock,clear), nd2(b,ndata,clock), nd4(d,c,b,clear), nd5(e,c,nclock), nd6(f,d,nclock), nd8(qb,q,f,clear); nd3(c,a,d), nd7(q,e,qb); iv1(ndata,data), iv2(nclock,clock);
7
9.1.3 .由已经设计成的模块来构成更高一层的模块
q3
q2
q1
q0
d
q
f4
clk
clr
clrb
d
q
f3
clk
clr
d
q
f2
clk
clr
d
q
f1
clk
clr
clk
d3
d2
d1
d0
四位寄存器电路结构图
8
`include "flop.v"
module
hardreg(d,clk,clrb,q);
input
end
endmodule
10
9.2.1 仅用于产生仿真测试信号的Verilog HDL行为描述建模
`include "flop.v" `include "hardreg.v" module hardreg_top; reg clock, clearb;
//为产生测试用的时钟和清零信号需要寄存器 reg[3:0] data ; //为产生测试用数据需要用寄存器 wire[3:0] qout;//为观察输出信号需要从模块实例端口中引出线
11
initial begin clock = 0; clearb = 1; end
always #50 clock = ~clock;
always @(end_first_pass) clearb = ~clearb;
always @(negedge clock) $strobe("at time %0d clearb= %b data= %d qout= %d", $time, clearb, data, qout);
and 与门 nand 与非门 nor 或非门 or 或门 xor 异或门 xnor 异或非门 buf 缓冲器 not 非门
门声明语句的格式如下:
<门的类型>[<驱动能力><延时>]<门实例1>[,<门实例2>,…<
门实例n>];
5
9.1.2用门级结构描述D触发器 例9.1用基本逻辑单元组成D型主从触发器