3.1.3空间向量的数量积

合集下载

3.1.3空间向量的数量积运算课件人教新课标5

3.1.3空间向量的数量积运算课件人教新课标5
又|1 |= 2,| |= 2,
1 ·
所以 cos<1 , >=
|1 |||
=
1
2× 2
1
2
= .
因为<1 , >∈[0°,180°],
所以<1 , >=60°,所以向量1 与 的夹角为 60°.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
且|cos<a,b>|≤1,所以 D 正确.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
2.如图,在长方体 ABCD-A1B1C1D1 中,AB=AA1=2,AD=4,E 为侧面
AB1 的中心,F 为 A1D1 的中点.
2.有关数量积的运算应注意的问题:
(1)与数乘运算区分开,数乘运算的结果仍是向量,数量积的结果为
数量;
(2)书写规范:不能写成 a×b,也不能写成 ab.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
=|c|2-|a|2=0.
3.1.3
问题导学
空间向量的数量积运算
当堂检测
(3) ·1 =
1
1
(-) +
2
2
1
+
2
1
2
1
1
=- |a|2+ |b|2=2.
2

3.1.3空间向量的数量积运算 课件

3.1.3空间向量的数量积运算 课件

=12+1×1×cos 60° -2×1×1×cos 60° +1×1×cos 60° +12-2×1×1×cos 60° =1. → → → (3)|OA+OB+OC|= → → → OA+OB+OC2
= 12+12+12+2×1×1×cos 60° ×3= 6.
研一研· 问题探究、课堂更高效
研一研· 问题探究、课堂更高效
3.1.3 例 1 已知长方体 ABCD—A1B1C1D1 中,AB=AA1= 2,AD
= 4, E 为侧面 AB1 的中心, F 为 A1D1 的中点.试计算: → → → → → → (1)BC· ED1;(2)BF· AB1; (3)EF· FC1. → → → 解 如图,设AB=a,AD=b,AA1=c,
跟踪训练 2
如图所示,已知平行六面体
ABCD— A1B1C1D1 的底面 ABCD 是菱形, 且∠ C1CB=∠ C1CD=∠ BCD= 60° .求证: CC1⊥ BD. → → → 证明 设CB=a,CD=b,CC1=c,则|a|=|b|.
→ → → → → ∵BD=CD-CB=b-a, ∴BD· CC1=(b-a)· c=b· c-a· c =|b||c|cos 60° -|a||c|cos 60° =0, → → ∴C1C⊥BD,即 C1C⊥BD.
研一研· 问题探究、课堂更高效
小结
3.1.3 求向量的模,可以转化为求向量的数量积,求两点
间的距离或某条线段的长度,可以转化为求对应向量的模, 其中的关键是将线段长度用向量的模表示出来.
跟踪训练 3 如图所示,已知线段 AB 在平面 α 内,线段 AC⊥α,线段 BD⊥AB,线段 DD′⊥α 于 D′, 如果∠ DBD′=30° ,AB = a, AC= BD=b,求 CD 的长. → → 解 易知 AC⊥AB.,<CA,BD>=60° , → → → → → → ∵|CD|2=CD· CD=(CA+AB+BD)2 →2 →2 → 2 → → → → → → =|CA| +|AB| +|BD| +2(CA· AB+CA· BD+AB· BD)=

3.1.3空间向量的数量积

3.1.3空间向量的数量积

由a b a c能得到b c吗?如果不能,请举出 反例? k k a b k ,能不能写成a (或b ) ?向量有除法吗? b a
向量的数量积满足结合 律吗?即( a b) c a (b c)吗?
2 1.已知 a 2 2 , b , a b 2 2 则a , b所夹的角为________ .
例1、已知:PO, PA分别是平面的垂线,斜线, OA是PA 在内的射影,a , 且a OA 求证: a PA
P
三垂线定理
a

O
A
例2:已知m,n是平面内的两条相交直线, 如果l⊥m,l⊥n,求证:l⊥
l
l
g
m
n
g
m
n
例3 如图,已知线段 AB 在平面 内,线段 AC
| AC | 85
A'
B'
D
C
A
B
BD AB ,线段 AC 1.已知线段 AB 、BD在平面 内,
,如果 AB a , BD b , AC c ,求 C 、D 之间的距离.
C
解:∵
| CD |2 (CA AB BD)2
D a b B
c

| CA |2 | AB |2 | BD |2 a 2 b2 c 2
AB MA AB AD AB DN 1 2 1 2 1 2 a a a 0 2 4 4
M
D B N C
MN AB
同理,MN CD
3.已知空间四边形 OABC , OB OC , AOB AOC
OA BC。 ,求证:
O
证明:∵

高中数学A版3.1.3空间向量的数量积运算优秀课件

高中数学A版3.1.3空间向量的数量积运算优秀课件
(1)证明两直线垂直; (2)求两点之间的距离或线段长度; (3)证明线面垂直; (4)求两直线所成角的余弦值等等.
高考链接
1.(2006年四川卷)如图,已知正六边
形P1P2P3P4P5P6 ,下列向量的数量积中最
大的是___A___. A. P1P2 ·P1P3
B. P1P2·P1P4
C. P1P2·P1P5 D. P1P2·P1P6
方法三:数形结合法,发现形的特殊性.
(2)已知 a 2 2 , b 2 , a b 2
2
则a,b所成的夹角为__1_3_5___.
分析:根据两向量夹角公式
a·b = a b cosa ,b (0 a,b π)
可得到所求结果.
2.选择
设a,b,c是任意的非零空间向量,且
a b = a b cosθ
向量的夹角: 0 θO a
A
B
2.平面向量的数量积的主要性质
设a,b是两个非零向量
(1)a⊥b a×b=0数量积为零是判
定两非零向量垂直的充要条件;
(2)当a与b同向时, a·b=|a|·|b|;当a与b 反向时, a·b=-|a|·|b|;特别地,a a = a 2 或 a = a a 用于计算向量的模;
2
2
AB' = AB + AA' = 2FG
FG / /AB'
由①知 EG∥AC
∴平面EFG//平面AB’C.
习题答案
1. B
2. 解:因为 AC = AB + AD + AA,
所以 | AC |2= ( AB + AD + AA )2
=| AB |2 + | AD |2 + | AA |2 + 2( AB·AD + AB·AA+ AD·AA )

3.1.3 空间向量的数量积运算

3.1.3 空间向量的数量积运算

数乘向量与向量数量积的结合律
交换律
λ( a · b) (λa)· b=______
b· a a· b=____
a· b+a· c a· (b+c)=________
分配律
知识点2:空间向量数量积的性质 a· b=0 ①若a,b是非零向量,则a⊥b⇔______ |a|· |b| ;若反向,则a· -|a|· |b| . ②若 a 与 b 同向,则 a · b = b = 两个向量 2 | a | 特别地,a· a= 或|a|= a· a 数量积的 a· b 性质 |a||b| ③若θ为a,b的夹角,则cos θ=_____
(1)空间向量的夹角
→ → ①定义:已知两个非零向量 a,b,在空间任取一点 O,作OA=a,OB= b,则 ∠AOB 叫做向量 a,b 的夹角,记作〈a,b〉. π ②范围:〈a,b〉∈ [0,π] .特别地:当〈a,b〉= 2 时,a⊥b.
知识点1:空间向量数量积的概念 (2)定义:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积, 记作a· b. (3)数量积的运算律
=12+22+12+2×(1×2×cos 120°+0+2×1×cos 120°)=2,
→ ∴|EF|= 2,∴EF 的长为 2.
1
2
3
4
5
课堂小结
空间向量数量积的性质可以看成定义的引申和拓展,空间向量数量积与向
量的模和夹角有关,更多的是以它为工具,解决立体几何中与夹角和距离
相关的问题:
①求空间两点间的距离或线段的长度的问题可以转化为求相应向量的模的
问题;
②求空间两条直线所成的角的问题可以转化为求两条直线对应向量的夹角
的问题,但要注意空间两条直线所成的角与对应向量的夹角的取值范围;

§3.1.3空间向量的数量积运算教学设计

§3.1.3空间向量的数量积运算教学设计

§3.1.3 空间向量的数量积运算一.教学目标1.知识与技能(幻灯片2)(1)通过类比平面向量数量积的运算,掌握空间向量数量积的概念、性质和运算律; (2)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体 几何问题转化为向量问题;(3)通过向量的运算,研究空间中点、线、面之间的位置关系以及它们之间的距离和夹角等问题。

2.过程与方法引导学生注重知识间的联系,不断地与平面向量和立体几何知识进行类比,做到温故而知新,并且经历向量及其运算由平面到空间的推广过程,使学生的思维过程螺旋上升。

3.情感态度与价值观通过本节课的学习,使学生对于以往的知识有一个全新的认识,培养学生积极探索数学的本质,提高学生的数学素养。

二.教学重点空间向量数量积的概念以及实际应用。

三.教学难点建立空间向量与空间图形的内在联系; 四.教学过程 教学环节教学过程设计意图新 课 引入同学们,你们还记得平面向量数量积的定义吗?你能类比平面向量所成夹角说一说什么是空间中两条向量夹角及范围吗?注重了与旧知识的联系,使学生对知识的理解更为透彻。

学生容易对向量夹角和两直线夹角产生混淆,这里要对范围进行明确。

(幻灯片4) 讲 授 新 课零向量与任何向量的数量积为0。

性质1:这个性质是证明两向量垂直的依据;性质2: 这个性质是求向量模的依据。

思考:类比平面向量,你能说出空间向量数量积的几何意义吗?(幻灯片9)空间向量数量积和平面向量数量积相似,在教学中可采用类比的方法,并且还要向学生再次强调数量积的结果为常数,而不是向量。

空间向量数量积的几何意义同平面向量数量积是一样的。

只要让同学们理解空间中任意两个向量都是共面向量,此时就可以把空间向量的数量积转化为平面向量上来了。

(幻灯片5--8)(幻灯片10)=空间向量数量积的概念:已知两个非零向量a,,则a cos a,叫做a,的数量积.记作,即a cos a,.b b b b a b a b b b 22cos ,a a a a a a a a === cos 的几何意义:数量积等于的长度与在方向上的投影的乘积。

3.1.3 空间向量的数量积运算(一)

3.1.3 空间向量的数量积运算(一)

a、 b a b cos a , b 叫做 a 、 b 的数量积,记作 a b 即 a的数量积 已 知 空 间 两 个 非 零 向 量
, 则 .
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零.
课堂练习
1. 已 知 a 2 2 , b 2 2 ,a b

2
,
则a 与b
135 的夹角大小为_____.
0, b 0
2.判断真假: 1)若 a b 0 , 则 a
2) (a b ) c a (b c ) 2 2 2 3) p q ( p q) 2 2 4) p q p q p q
(4)空间向量的数量积满足的运算律
⑴、⑵是显然成立的 思考:你能证明分配律成立吗?
另外 a b a 及a b 0 ¿ c ¿ b c a 0或 b 0
练习运算
数量积不满足结合律即 (a b ) c a ( b c ) 注意:
A'
B'
D C
4 3 5 2 ( 0 1 0 7 .5 )
2 2 2
A B
85 | A C |
85
空间向量的数量积运算(一)
引 入 数量积运 算定义 课堂练习
思考1数量 积的性质
思考2数量 积的运算律
空间向量的数量积运算(一)
F

S
W= |F| |s| cos
根据功的计算,我们定义了平面两向量的 数量积运算.一旦定义出来,我们发现这种运 算非常有用,它能解决有关长度和角度问题.

课时作业27:3.1.3 空间向量的数量积运算

课时作业27:3.1.3 空间向量的数量积运算

3.1.3 空间向量的数量积运算A 组 基础巩固练一、选择题1.正方体ABCD ­A ′B ′C ′D ′中,向量AB →′与BC →′的夹角是( ) A .30° B .45° C .60°D .90°2.若向量m 垂直于向量a 和b ,向量n =λa +μb (λ,μ∈R 且λ,μ≠0),则( ) A .m ∥n B .m ⊥nC .m 不平行于n ,m 也不垂直于nD .以上三种情况都有可能3.如图所示,在平行六面体ABCD ­A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .434.已知空间四边形ABCD 中,∠ACD =∠BDC =90°,且AB =2,CD =1,则AB 与CD 所成的角是( ) A .30° B .45° C .60°D .90°5.如图,已知平行四边形ABCD 中,AD =4,CD =3,∠D =60°,P A ⊥平面ABCD ,且P A =6,则PC =( )A .3B .7C .4D .6二、填空题6.已知|a |=13,|b |=19,|a +b |=24,则|a -b |=________.7.如图,已知正三棱柱ABC ­A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.8.如图所示,在一个直二面角α­AB ­β的棱上有A ,B 两点,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.三、解答题9.已知正四面体OABC 的棱长为1.求:(1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →); (3)|OA →+OB →+OC →|.10.如图,在正方体ABCD ­A 1B 1C 1D 1中,P 是DD 1的中点,O 是底面ABCD 的中心.求证:B 1O ⊥平面P AC .B 组 素养提升练1.已知边长为1的正方体ABCD ­A 1B 1C 1D 1的上底面A 1B 1C 1D 1的中心为O 1,则AO 1→·AC →的值为( ) A .-1 B .0 C .1D .22.已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( ) A .30° B .60° C .90°D .45°3.如图所示,已知正三棱锥A ­BCD 的侧棱长和底面边长都是a ,点E ,F 分别是AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶2,则EF →·BC →=________.4.已知在正四面体D ­ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________. 5.如图,正四面体V ­ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直; (2)求〈DM →,AO →〉.参考答案A 组 基础巩固练一、选择题1.【答案】C【解析】BC ′∥AD ′,△AD ′B ′为正三角形, ∴∠D ′AB ′=60°, ∴〈AB ′→,BC ′→〉=60°. 2.【答案】B【解析】由题意知,m ·a =0,m ·b =0,则m ·n =m ·(λa +μb )=λm ·a +μ m ·b =0. 因此m ⊥n . 3.【答案】B【解析】∵AC ′→=AB →+BC →+CC ′→, ∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23. 4.【答案】C【解析】根据已知∠ACD =∠BDC =90°,得AC →·CD →=DB →·CD →=0,∴AB →·CD →=(AC →+CD →+DB →)·CD →=AC →·CD →+|CD →|2+DB →·CD →=|CD →|2=1, ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=12,∴AB 与CD 所成的角为60°.5.【答案】B【解析】|PC →|2=PC →·PC →=(P A →+AD →+DC →)2=|P A →|2+|AD →|2+|CD →|2+2P A →·AD →+2AD →·DC →+2P A →·DC →=62+42+32+2|AD →||DC →|cos 120°=49. 所以|PC →|=7. 二、填空题 6.【答案】22【解析】∵|a +b |2=a 2+2a ·b +b 2=132+2a ·b +192=242,∴2a ·b =46,|a -b |2=a 2-2a ·b +b 2=132-46+192=484,故|a -b |=22. 7.【答案】90°【解析】不妨设棱长为2,则AB →1=BB 1→-BA →,BM →=BC →+12BB 1→,cos 〈AB 1→,BM →〉=(BB 1→-BA →)·⎝⎛⎭⎫BC →+12BB 1→22×5=0-2+2-022×5=0,故填90°.8.【答案】229【解析】∵CD →=CA →+AB →+BD →=AB →-AC →+BD →,∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2-2AB →·AC →+BD →2+2AB →·BD →-2AC →·BD → =16+36+64=116, ∴|CD →|=229. 三、解答题9.解:(1)OA →·OB →=|OA →|·|OB →|·cos ∠AOB =1×1×cos 60°=12.(2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →) =(OA →+OB →)·(OA →+OB →-2OC →)=12+1×1×cos 60°-2×1×1×cos 60°+1×1×cos 60°+12-2×1×1×cos 60°=1. (3)|OA →+OB →+OC →| =(OA →+OB →+OC →)2=12+12+12+(2×1×1×cos 60°)×3 =6.10.证明:取AB →=a ,AD →=b ,AA 1→=c ,且|a |=|b |=|c |=1. 则有AC →=AB →+AD →=a +b , OB 1→=OB →+BB 1→=12DB →+BB 1→=12(AB →-AD →)+BB 1→ =12a -12b +c , ∴AC →·OB 1→=(a +b )·⎝⎛⎭⎫12a -12b +c=12|a |2+12a ·b -12a ·b -12|b |2+a ·c +b ·c =12-12=0. ∴AC →⊥OB 1→,即AC ⊥OB 1.∵AP →=AD →+12DD 1→=b +12c ,∴OB 1→·AP →=⎝⎛⎭⎫12a -12b +c ·⎝⎛⎭⎫b +12c =12a ·b -12|b |2+c ·b +14a ·c -14b ·c +12|c |2=-12+12=0, ∴OB 1→⊥AP →,即OB 1⊥AP . 又∵AC ∩AP =A , ∴OB 1⊥平面APC .B 组 素养提升练1.【答案】C【解析】AO 1→=AA 1→+A 1O 1→=AA 1→+12(A 1B 1→+A 1D 1→)=AA 1→+12(AB →+AD →),而AC →=AB →+AD →,则AO 1→·AC →=12(AB →2+AD →2)=1,故选C .2.【答案】B【解析】由于AB →=AC →+CD →+DB →,则AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1. cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12,AB →,CD →〉=60°.3.【答案】16a 2【解析】因为点E ,F 分别是AB ,AD 上的点, 所以EF →=13BD →,所以EF →·BC →=13BD →·BC →,结合图形可知〈BD →,BC →〉=60°,所以EF →·BC →=13BD →·BC →=13×a ×a ×cos 60°=16a 2.4.【答案】63【解析】如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎡⎦⎤12(DB →+DC →)-DA →= 13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →= 1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.5.(1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ),BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)解:DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎡⎦⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎡⎦⎤16(b +c -5a )2=22, DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14,所以cos 〈DM →,AO →〉=1412×22=22.又〈DM →,AO →〉∈[0,π],所以〈DM →,AO →〉=π4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

()
4) p q p q p2 q2 ( )
3.如图:已知A 空B间 C 的D 四 每边 条形 边和等 对1于 角 ,线 E 点 、 F长 分别 A是 B 、 AD 的中点。 计( 算 1) E: F BA(2)EF BD(3)EF DC(4)EF AC
A
E
F
B
D
C
三、典型例题
例1:已知m,n是平面内的两条相交直线,直线l与的交点为B,且 l⊥m,l⊥n,求证:l⊥
注意: 数量积不满足结合律
(ab)ca(bc)
二、 课堂练习
1.已知 a2 2, b 2,ab 2 2
则a,b所夹的_角__为__.___
2 .判断真假: 1)若 a b 0, 则 a 0, b 0 ( )
2) (a b) c a (b c)
()
3) p 2 q 2 ( p q)2
| CD|2(CA ABBD)2 |CA|2 | AB|2 | BD|2 a2 b2 c2
CD a2b2c2
2.已知空间四边形 ABCD 的每条边和对角线的长都等于
a ,点 M、N 分别是边 AB、CD 的中点。
CD a2 b2
例4 已知在平行六面体 A B C D A B C D 中,AB4,
A D 3 , A A 5 , B A D 9 0 , B A A D A A 6 0 ,
求对角线 A C 的长。
D'
A'
B'
C' 解: A C A B A D A A
| AC |2 (AB AD AA)2 | AB |2 | AD|2 | AA |2
∴ l⊥g
∴ l⊥g
这就证明了直线l垂直于平面内的 任一条直线,所以l⊥
例2:已知:在空间四边形OABC中,OA⊥BC, OB⊥AC,求证:OC⊥AB
O
证明:由 O已 A BC 知 , OB AC
所以OABC0, OB AC0
OA(OCOB) 0
A
C
OB(OCOA) 0
B
所以OAOCOAOB
OBOCOBOA 所以OAOCOBOC 0
如果 a,b,则称 a与b互相垂直, a 并 b 记作:
2
2)两个向量的数量积
设OAa,则有向线O段 A的长度叫做a向 的量 长度或,记模作a: 已知空间两个a,向 b,量 则a b cosa,b叫做向a量 ,b的数量积, 记作a: b,即
ab abcosa,b
注意: ①两个向量的数量积是数量,而不是向量. ②零向量与任意向量的数量积等于零。
例1:已知m,n是平面内的两条相交直线,直线l与的交点为B,且
l⊥m,l⊥n,求证:l⊥
证明:在内作不与m、n重合的任一条
直线g,在l、m、n、g上取非零向
量l、m、n、g,因m与n相交,得向量
m、n不平行,由共面向量定理
l
可知,存在唯一的有序实数对(x,y),
g m
lm gn n
使
g=xm+yn, l·g=xl·m+yl·n ∵ l·m=0,l·n=0 ∴ l·g=0
定理可知,存在唯一的 有序实数对 x, y , 使
PA x PO yOA
PA a PO a OA a 0
a PA,即a PA.
例3 如图,已知线段 A B 在平面 内,线段 AC
,线段BDAB,线段 DD ,DBD30,如 果 A B a,A C B D b,求 C 、D 之间的距离。
3)射影
已知向A量 B=a和轴 l, e是l上与 l同方向的单位向 点A量 在。作 l上的射A1影 ,作点 B在l上的射B1, 影则 A1B1叫做向A量 B在轴 l上的 或在 e方向上的正射影 射, 影简 。称
A1B1 ABcosa,eae
B
e
A1
A
B1
l
注意:A B 是轴l上的正射影A1B1是一个可正可负的实数, 它的符号代表向量 A B 与l的方向的相对关系,大小代表 在l上射影的长度。
D A
C B
2(AB AD AB AA AD AA) 42 32 52 2(0 10 7.5) 85
|AC| 85
1.已知线段 A B 、B D 在平面 内,BDAB,线段 AC ,如果 A B a ,B D b ,A C c,求 C 、D 之间的距离.
C
c
D
a
b
A
B
解:∵
4)空间向量的数量积性质
对于非零向量 a , b ,有:
1) a e a cos a , e
2) a b a b 0
2
3) a a a
注意: ①性质2)是证明两向量垂直的依据; ②性质3)是求向量的长度(模)的依据;
5)空间向量的数量积满足的运算律
1) (a)b (ab)
2) ab ba (交换律) 3)a(bc) abac (分配律)
3.1.3空间向量的数量积运算
教学过程
一、几个概念
1) 两个向量的夹角的定义
如图,已知两个 量a,非 b.在零空向间任取 O, 一点
作OAa,OBb,则角 AO叫 B 做向a与 量 b的夹角,
记作a,: b a
A
a
B O
b
b
范围 0: a,b在这个规定下量 ,的 两夹 个角 向就
被唯一确定了 a,, b=并 b,a且
(OAOB)OC 0
BAOC 0
所以 OC AB
巩固练习:利用向量知识证明三垂线定理
已知P: O ,PA 分别是平 的面 垂线,O斜是 A线 PA,
在内的射a影 ,, 且aOA
求证 a: PA
证明:在 a上取非零向量 a
P
而 PO , PO a PO a 0
OA a
又 OA a, OA a 0 又 PO , OA 相交,得 PO , OA不平行,由共面向量
解:由 AC,可知 .
C
由DBD30知 C A,B D 120.
D
| CD |2 CD CD (CA AB BD)2
b a
b D'
| CA|2 | AB |2 | BD |2 2CA AB 2CA BD 2AB BD
A
B
b2 a2 b2 2b2 cos120
a2 b2
分析:由定义可知,只需证l与平面内
任意直线g垂直。
l
g m
lm gn n
要证l与g垂直,只需证l·g=0 而m,n不平行,由共面向量定理知, 存在唯一的有序实数对(x,y)使得 g=xm+yn
要证l·g=0,只需l· g= x而l·l·m+my=l·0 n,=0l·n=0
故 l·g=0
三、典型例题
相关文档
最新文档