正交试验设计法
正交试验设计法简介

正交试验设计法简介一、本文概述正交试验设计法是一种高效、系统的试验设计方法,广泛应用于科学研究、工程实践以及日常生产中的优化问题。
本文将对正交试验设计法的基本概念、原理、应用及其优势进行详细介绍,旨在帮助读者更好地理解和应用这一实用的试验设计方法。
正交试验设计法基于数理统计和正交表的理论,通过合理安排试验因素与水平,以较少的试验次数获得丰富的试验信息。
该方法的核心在于利用正交表的正交性,使得各试验因素之间互不干扰,从而能够准确地评估各因素对试验结果的影响程度。
本文将从正交试验设计法的基本原理出发,阐述其在实际应用中的操作步骤和方法。
通过具体案例的分析,展示正交试验设计法在解决实际问题中的优势和应用价值。
本文还将对正交试验设计法的局限性和改进方向进行探讨,以期为读者提供更为全面、深入的了解。
二、正交试验设计法的基本原理正交试验设计法是一种以数理统计和正交性原理为基础的高效试验设计方法。
其基本原理在于,通过选择一组具有代表性的试验点,即正交表中的行,来全面、均衡地考察多个因素在不同水平下的试验效果。
这种方法能够在保证试验全面性的大大减少试验次数,提高试验效率。
正交试验设计法主要基于两个核心原理:正交性原理和代表性原理。
正交性原理指的是在试验设计中,各因素之间应相互独立,互不影响,从而确保试验结果的准确性和可靠性。
代表性原理则是指在选择试验点时,应确保每个试验点都能代表一定的因素水平组合,以便全面考察各因素对试验结果的影响。
正交表是正交试验设计法的核心工具,它是一种具有特定结构的表格,用于安排试验因素和水平。
正交表具有均衡分散和整齐可比的特点,能够确保每个试验点都具有一定的代表性,并且各因素之间保持正交性。
通过正交表,可以方便地安排试验,并对试验结果进行分析和比较。
正交试验设计法的应用范围广泛,适用于多因素、多水平的试验场景。
它不仅可以用于新产品的开发和优化,还可以用于工艺改进、质量控制等领域。
通过正交试验设计法,可以更加高效地找出最优的参数组合,提高产品的性能和质量,降低生产成本,为企业带来更大的经济效益。
正交试验设计法

正交试验设计法
2 产生和发展历史
2.1 产生
二十世纪二十年代,英国罗隆姆斯特农业试验站,首先从 大量的试验中挑选适量的、具有代表性、典型性的试验点来合 理的安排田间试验排列问题。
2.2 系统总结
1925年费歇尔在《研究工作中的统计方法》一书中,曾 对试验设计加以系统论述。由于此法行之有效,很快被英、美 等军事工业和科研部门所采用。
表2 L9(34)表
行
项目
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
列
5
2
2
3
1
6
2
3
1
2
ห้องสมุดไป่ตู้
7
3
1
3
2
8
3
2
1
3
9
3
3
2
1
正交试验设计法
通过认真分析这两个正交表,可以发现: ◆ 每1个纵列中,各种数码出现的次数相同
在L4(23)表中,每列“1”出现2次,“2”出现2次; 在L9(34)表中,“1”“2”“3”各出现3次。
8
12
转化率(%)
31 54 38 53 49 42 57 62 64
正交试验设计法
5.5 确定试验方案并记录试验结果
5.5.1 表头设计后(A占第1列、B占第2列、C占第3列),各水 平按正交表要求对号入座,填入上表。这样9个横行,每1行即是1 个试验方案,如第1行为A1B1C1、第9行为A3B3C2,等等。
正交试验设计方法(详细步骤)

正交试验设计方法(详细步骤)正交试验设计方法(详细步骤)正交试验设计(Orthogonal Experimental Design),又称为正交阵列试验设计,是一种常用的优化设计方法。
它通过选择合适的试验因素水平组合,在有限的试验次数下,高效地确定最优的工艺参数和条件,从而得到最佳的工艺方案。
本文将详细介绍正交试验设计的步骤。
第一步:确定试验目标和试验因素在进行正交试验设计之前,首先需要明确试验的目标和需要考察的因素。
试验目标可以是产品质量的提高、生产效率的提升或成本的降低等。
试验因素是指影响试验目标的各项参数或条件,例如温度、时间、压力、pH值等。
第二步:确定试验水平和设计矩阵根据实际情况和试验因素的范围,确定每个试验因素的几个水平。
一般而言,水平数不宜过多,以免增加试验次数和成本。
然后,利用正交表或正交试验设计软件生成设计矩阵。
正交表是一种特殊的齐次分数阵,能够保证各个试验因素的水平组合均匀分布,并使得试验方案具有正交性,即各个试验因素相互独立,不会产生相互影响。
第三步:进行试验并记录结果按照设计矩阵,进行实际的试验操作。
对于每个试验组合,根据试验方案进行操作,并记录相关的观测结果。
需要注意的是,试验过程应具备可重复性和可比较性,以保证结果的准确性和可靠性。
第四步:数据处理和分析试验完成后,要对试验结果进行数据处理和分析。
常见的分析方法包括方差分析、回归分析和优化分析等。
方差分析可以帮助确定各个试验因素的主效应、交互作用和误差项的大小,进而判断试验因素对试验目标的影响程度。
回归分析可以建立试验因素与试验目标之间的数学模型,进一步优化工艺参数。
优化分析可以确定各个试验因素的最优水平组合,得到最佳的工艺方案。
第五步:验证和优化在进行正交试验设计时,往往需要进行多次试验和优化,以进一步验证和确认试验结果的可靠性。
通过不断调整和优化试验方案,最终得到满足要求的工艺方案。
综上所述,正交试验设计是一种高效的优化设计方法,可以在有限的试验次数下,确定最佳的工艺参数和条件。
统计方法第七章正交试验设计法与价值

根据试验因素和水平数选择合适的正 交表,确保试验设计的有效性。
明确试验目的
明确试验的目的和需要考察的指标, 以便选择合适的因素和水平。
控制试验误差
在试验过程中要严格控制各种误差, 确保试验结果的准确性和可靠性。
合理分析试验结果
对试验结果进行科学合理的分析,找 出各因素对指标的影响规律,为优化 设计和生产提供指导。
案例三
工程领域中,利用正交试验设计法对某机械产品的设计方案进行优化,通过分析不同设计参数对产品性 能的影响,找到了最佳设计方案,提高了产品性能和市场竞争力。
科研领域应用前景展望
随着科技的不断进步和科研需求的日益增长,正交试验设计法在科研领域的应用前景将更加广阔。未 来可以进一步探索该方法在交叉学科研究、大数据分析和人工智能等领域的应用潜力。
提升用户体验
通过正交试验设计法改进产品设计,可以更好地满足用户需求,提升用户体验和满意度。
增强产品竞争力
优化产品设计可以提高产品的附加值和市场竞争力,从而增加企业的市场份额和盈利能力。
推动技术创新,提升企业竞争力
促进技术创新
正交试验设计法可以激发企业的创新 活力,推动企业不断进行技术创新和
产品升级。
可分析性
广泛应用
通过对试验结果进行统计分析,可以得到 各因素对指标的影响程度、最优组合以及 因素之间的交互作用等信息。
正交试验设计法在工业、农业、医学、社 会科学等领域得到了广泛应用,为复杂问 题的解决提供了有效的工具。
02
正交表及其构造
正交表定义与性质
正交表定义
均衡性
独立性
正交性
正交表是一种特制的表格,用 于安排多因素试验,使得各因 素的各种水平组合在试验中出 现的次数相等,从而有效地减 少试验次数,提高试验效率。
质量管理之正交试验设计法

正交试验设计法一、什么是正交试验设计法正交试验设计法(简称正交试验法)就是利用正交表来合理安排试验的一种方法。
二、正交表表1正交表L9(34)此表是日本规格协会推荐的正交表表1就是一张已经设计好的正交表,它有9行4列,表内有3种数码—“1”、“2”、“3”。
如果我们用L表示正交表,n 表示正交表的行数;q表示正交表的列数;t表示正交表内的数码种类,那么一张正交表可以用符号表示为:例如:L9(34)正交表,最多可以安排4个因素做试验,每个因素可取3个水平,共有9种试验方案,这显然大大减少了试验方案是数量,因为如果安排4因素3水平的全搭配试验必须有34=81钟试验方案才行。
三、正交表的优点多:可以考虑多因素,多指标。
快:试验周期短,见效快。
好;可以找到最佳方案。
省:试验次数少。
假如:考虑十三个因素,三水平的试验。
用L27(313)安排只要做27次试验。
而进行全面试验时,则要做313=1594323次试验,如果每天做10次试验,也要做436.8年之久方可做完.四、正交试验表的种类分两类:一类是水平数相同的正交表,即正交表中每一列所包含的代表水平的数码是一样的。
例如:L4(23)、L8(27)、L9(34)等等。
另一类是水平数不同的正交表,例如:L8(41×24)、L18(21×37)、L18(61×36)、L16(42×212)L32(49×24)。
L8(41×24)四:常用正交试验设计与分析步骤1、明确试验目的2、确定考察指标3、挑因素选水平4、设计试验方案5、实施试验方案6、试验结论分析7、验证试验8、结论与建议例:设计纸飞机试验1、试验目的:找到一组飞行距离最远的纸飞机设计参数。
2、考察指标Y——纸飞机飞行距离。
3、挑因素选水平分析:影响Y的重要因素A:材料B:尺寸C:抛出力D:抛出角度根据实际情况每个因素取3个水平制定因素水平表因素水平表4、设计试验方案由因素水平表可以清楚的看出,这是一项4因素3水平的试验,必须有3种数码的正交表中找到合适的表安排此项试验,这类表试验次数最少的是L9(34)表于是就选L9(34)正交表安排试验方案。
正交试验设计方法讲义及举例

正交试验设计方法讲义及举例正交试验设计方法是一种多因素试验设计方法,它能够有效地减少试验所需的样本数量,提高试验结果的精确性和可靠性。
正交试验设计方法是在已知因素水平的情况下选择对试验结果影响最大的因素进行研究的一种方法。
以下是正交试验设计方法的讲义及举例:一、正交试验设计方法的原理及步骤:1.原理:正交试验设计方法通过选择适当的正交表,将多个因素的不同水平组合进行排列,使各因素的变化对试验结果影响均匀化,从而获得准确可靠的试验结果。
2.步骤:a.确定试验因素及其水平:根据试验目的确定需要研究的因素及其水平。
b.选择正交表:根据试验因素的个数和水平确定适用的正交表,正交表能够保证试验结果的均匀性和可靠性。
c.设计试验方案:根据选择的正交表,将试验因素的水平进行组合,获得试验方案。
d.进行试验:按照试验方案进行实际试验。
e.分析试验结果:对试验结果进行统计分析,获得对试验因素的影响程度及其交互作用等信息。
f.微调试验方案:根据试验结果微调试验方案,迭代优化试验过程。
二、正交试验设计方法的优点:1.降低样本数量:正交试验设计方法能够通过对试验水平的排列组合,使试验因素的水平均匀分布,从而减少试验所需的样本数量。
2.提高试验效率:正交试验设计方法能够在有限样本量下获得更多的试验信息,提高试验效率。
3.确保结果可靠:正交试验设计方法通过保证试验因素的均匀分布,减少人为因素的干扰,从而保证试验结果的可靠性和准确性。
4.揭示因素交互作用:正交试验设计方法能够揭示因素之间的交互作用,进一步优化设计过程。
三、正交试验设计方法的举例:例如,公司要研究一种新的洗发水对头发柔顺度的影响,试验主要包括3个因素:洗发水品牌(A、B、C)、洗发水用量(X、Y、Z)和洗发水停留时间(T1、T2、T3)。
根据正交试验设计方法,按照以下步骤进行设计:1.选择正交表:根据3个因素和各因素的水平,选择适用的正交表,如L9正交表。
2.设计试验方案:根据L9正交表,将3个因素的水平进行组合,得到9个试验方案,每个方案分别测试一种组合情况。
第七章-正交试验设计法

第七章-正交试验设计法第七章:正交试验设计法正交试验设计法是一种实验设计方法,旨在有效地确定多个因素对结果的影响,并找到最佳的组合条件。
正交设计法是一种统计方法,通过在试验设计中使用正交矩阵来实现对各个因素的全面考虑和分析。
本章将详细介绍正交试验设计法的原理、应用和优势。
7.1 正交试验设计法的原理正交试验设计法的原理基于一个关键观点:在多因素实验设计中,通过设计合理的试验矩阵,能够避免因素之间的相互干扰,从而有效地确定各个因素对结果的影响。
正交试验设计法通过使用正交矩阵,将各个因素进行组合,确保在限定的试验条件下,各个因素之间的相互影响最小化。
这样,通过对正交试验设计法进行数据分析,可以准确地确定各个因素对结果的主导程度。
7.2 正交试验设计法的应用正交试验设计法在许多领域中得到广泛应用,特别是在工程、医学、化学和农业等实验研究中。
正交试验设计法可以帮助研究人员从多个因素中确定影响结果的主要因素,并找到最佳的操作条件。
例如,在工程领域中,正交试验设计法可以用于确定材料的最佳组合,以提高产品质量和性能。
在医学研究中,正交试验设计法可用于确定药物的最佳剂量和治疗方案。
在农业研究中,正交试验设计法可以用于确定最佳的种植条件和施肥方法。
总之,正交试验设计法可以帮助研究人员快速、准确地找到最佳的解决方案。
7.3 正交试验设计法的优势正交试验设计法相比传统的试验设计方法有以下几个优势:1. 高效性:正交试验设计法可以通过使用正交矩阵,将多个因素进行有效组合,从而减少试验次数,提高试验效率。
2. 统计可靠性:正交试验设计法通过使用正交矩阵,可以有效地避免因素之间的相互干扰,确保实验结果的统计可靠性。
3. 实用性:正交试验设计法不仅可以用于确定各个因素对结果的影响程度,还可以用于优化因素的组合以达到最佳效果。
4. 灵活性:正交试验设计法可以应用于不同的实验设计要求,可灵活调整试验因素和水平,以满足具体的研究需求。
正交试验设计法简介

正交试验设计法简介一、概述正交试验设计法,又称为正交实验设计、正交表设计或正交测试设计,是一种高效、系统的试验设计方法。
该方法源于数学中的正交性概念,通过正交表来安排多因素试验,使得每个因素的每个水平都能在其他因素的所有水平中均衡出现,从而能够有效地分析多个因素对试验结果的影响。
正交试验设计法最初由日本统计学家田口玄一博士于20世纪50年代提出,并在工程领域得到了广泛应用。
正交试验设计法的主要优点包括试验次数少、数据分析简便、试验效果高等。
通过正交表的设计,可以大大减少试验次数,提高试验效率同时,正交表的规范化和系统性使得试验数据的分析变得简单明了,便于找出影响试验结果的主要因素和最优组合。
正交试验设计法广泛应用于工业、农业、医学、军事等领域。
在工业生产中,正交试验设计法可用于优化产品设计、改进生产工艺、提高产品质量等在农业研究中,可用于优化作物种植方案、提高作物产量等在医学研究中,可用于药物筛选、临床治疗方案优化等。
正交试验设计法还可用于系统可靠性分析、多目标决策等领域。
正交试验设计法是一种高效、实用的试验设计方法,对于多因素、多水平的试验问题具有重要的应用价值。
通过正交表的设计和分析,可以系统地研究多个因素对试验结果的影响,找出最优方案,提高试验效率和效果。
1. 正交试验设计法的定义正交试验设计法是一种研究多因素多水平的科学实验设计方法。
它基于Galois理论,从大量的实验点中挑选出适量的、有代表性的点进行试验,这些点具有“均匀分散,齐整可比”的特点。
这种方法的主要工具是正交表,通过合理安排实验,可以在最少的试验次数下达到与大量全面试验等效的结果。
正交试验设计法具有高效率、快速和经济的特点,被广泛应用于各个领域,如生物学、软件测试等。
2. 正交试验设计法的起源与发展正交试验设计法的起源可以追溯到古希腊时期。
当时,为了满足国王检阅臣民时的要求,即每个方队中每行有一个民族代表,每列也要有一个民族的代表,数学家们设计了一种方阵,被称为拉丁方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2
基本概念
基本工具
表1 L4(23)表: 列
项目
1 行 2
1 1 1
2 1 2
3 1 2
3
4
2
2
1
2
2
1
该表是一个3列4行的矩阵,每一个因素占用1列,该 表最多能考查3个因素,每个因素分为2个水平,共有4 个横行,也就是4个试验方案,每1行是1个方案。
正交试验设计法
再以L9(34)为例: 表2 L9(34)表 行 项目 1 1 1 2 1 3 1 4 1
正交试验设计法
3 基本概念
3.1 常用名词
3.1.2 因素 也称因子,是试验中考察对试验指标可能有影响的原因或 要素。通常用大写字母A、B、C等来表示。 因素又分可控因素与不可控因素,而对不可控因素要尽量 保持一致。这样在进行试验结果数据的处理过程中,就可以 忽略不可控因素对试验造成的影响。
正交试验设计法
5.4 选择合适的正交表进行表头设计
从因素水平表看,为3因素3水平,可选用L9(34)正交表。选择 正交表的原则,应当是被选用正交表的因素数与水平数大于或等 于所要进行试验考察的因素数与水平数。3个因素按顺序占1、2、 3列,这种把因素放入正交表表头的工作成为表头设计,见表4:
项 目
A(℃)
B(min) C(%)
转化率(%)
1
2 3
80பைடு நூலகம்
80 80
90
120 150
5
6 7
31
54 38
4
水 5 6 7 8 平 9 K1
85
85 85 90 90 90 123
90
120 150 90 120 150 141
6
7 5 7 5 6 135
53
49 42 57 62 64
K2
K3 K1 K2 K3 R
144
183 41 48 61 20
正交试验设计法
2 产生和发展历史
2.3 推广
二次世界大战后,英国出版了《正交试验应用实例》,介 绍了应用成果。于是正交试验设计法相继传到世界各国。
2.4 发展
1949年以日本人田口玄一博士为首的一批研究人员用正 交表安排试验方案。1952年田口玄一在日本东海电报公司,运 用正交表进行试验取得了全面成功,之后正交试验设计法在日 本的工业生产中得到迅速推广。
正交试验设计法
5.6 计算分析试验结果
图示说明 5.6.2.3.2
为直观起见,用因素的水平变化为横坐标,指标的算数平均 值为纵坐标,画出水平与指标图,如图1: 从图中可明显看出最佳方案应为:A3B2C2。而正交试验选出 的最佳方案为A3B3C2,即第9号方案,显然,正交试验中的9个方 案中没有A3B2C2这一方案,其是否为最佳方案,需要通过正式试 验来验证。
A
明确影响试验 指标各因素的主次顺序
B
C
4、主要解决 的问题
迅速找到优化方案,缩短产品开发周期 或尽量使生产按最佳工艺条件运行
通过试验结果分析 可以进一步指明试验方向避免盲目性
D
正交试验设计法
5 应用实例
某化工厂为了开发某种产品,经初步试验确定了生产配方 和工艺流程为了提高该产品的转化率,特安排正交试验,经 分析,影响转化率的因素有3个,即反应温度、反应时间、用 碱量。
正交试验设计法
研发部 李增友
LOGO
Company
正交试验设计法
1
概念
2
产生和发展历史 基本概念 主要解决的问题
简介
3 4 5
应用实例
正交试验设计法
1 概念
正交试验法是用正交表来安排和分析多因素问 题试验的一种数理统计方法。 优点:试验次数少、效果好、方法简单、使用 方便、效率高。 用途:在工农业生产和其他科学研究领域中得 到广泛地应用,效果显著。
正交试验设计法
5.6.2.3.2 图示说明
正交试验设计法
5.7 验证性实验
为了与正交试验选出的最佳方案进行对比,用A3B2C2方案和 A3B3C2方案各做一次验证试验,转化率分别为74%和65%,说明 A3B2C2方案实为最佳方案。 上例表明,最佳方案虽然不在正交试验9个方案中,但通过计 算分析即可准确选出,这充分说明了正交试验法的科学性。
正交试验设计法
5.6 计算分析试验结果 5.6.2.3.1 分析说明
下面我们从数据处理的分组情况入手来进行说明。首选分析 A因素的K1、K2、K3这3个值,它对A因素来说,分别代表1水平、2 水平、3水平的试验结果,再分析B因素和C因素,发现在这3个数 值中,B因素和C因素的1、2和3水平,均各出现一次,出现机会是 均等的,A因素的K1、K2、K3这3个值,B因素和C因素对它们无影 响,3个值的不同只是A因素的水平变化引起的。同理,B因素和C 因素的极差,也都是各自水平变化引起的,与其它因素无关。这 一点是由正交表的整齐可比性决定的,数据处理非常方便。
制定因素水平表
确定考查指标
Add your company slogan
LOGO
Company
总
结
最佳方案选取 应注意的问题
一般情况,各 因素的最好水平组合 就是最佳方案
实际工作中,有 时要考虑因素的主次 :主要因素按有利于 指标的水平选取;次 要因素应考虑其他条 件,如生产率、成本 、劳动条件等,其目 的是得到符合生产实 际的最优或较优方案
总
结
正交试验步骤
记录实验结果 选取最佳方案 表头设计 验证最佳方案
3 基本概念
3.1 常用名词
3.1.3 水平
试验中选定的因素所处的状态和条件称为水平或位级。例 如加热温度为70℃、80℃、90℃这3个状态,可分别用1、 2、3来表示。同理一个因素可分为4水平、5水平或更多水平, 可以此类推。分别用1、2、3、4、5等来表示。
正交试验设计法
3 基本概念
3.2 基本工具
◆正交表中,任意两列,每1行组成1个数字对,有多少行
就有多少个这样的数字对,这些数字对都是完全有序的
◆各种数字出现的次数必须相同,这是正交表必须满足的
的两个特性。
◆ 其他正交表如:L8(27)、 L12(211)、L18(37)、L32
(49)、L25(56)等都满足这两个特性。
正交试验设计法
节省人力、 物力、财力、时间
正交表,它是一种依据数理统计原理而制定的具有某种 数字性质的标准化表格。以基本的L4(23)正交表为例: L: 正交表代号(Lation Square) 2: 因素水平数(本表为2水平,每个因素分2个档次) 3: 纵列数(3个纵列能安排3个因素) 4: 横行数(4个横行,每行为1个试验方案)
正交试验设计法
165
144 47 55 48 8
171
144 45 57 48 12
正交试验设计法
5.5 确定试验方案并记录试验结果
5.5.1 表头设计后(A占第1列、B占第2列、C占第3列),各水 平按正交表要求对号入座,填入上表。这样9个横行,每1行即是1 个试验方案,如第1行为A1B1C1、第9行为A3B3C2,等等。 5.5.2 按每个试验要求做试验,把试验结果即每个方案实际得 到的转化率记录在该方案的右侧,填入上表。
正交试验设计法
5.6 计算分析试验结果
5.6.1 直接比较 对试验结果直接进行比较,找出最好的方案,显然转化率最高 者是9号方案,转化率为64%,方案为A3B3C2,即反应温度90℃, 反应时间为150min,碱的用量为6%。 5.6.2 计算分析 因为L9(34)正交表(34)实际上有81个方案, L9(34)仅做了9次 试验,最佳方案可能在做过的9次方案中,也可能不在,所以必须 计算分析,找出最佳方案。
正交试验设计法
5.6 计算分析试验结果
5.6.2.1 计算K1、K2、K3的值 把每个因素1水平所有方案试验结果相加; 把2水平所有方案 试验结果相加;把3水平所有方案试验结果相加。这实际上是把每 个因素的试验结果分成了3组。分别用K1、K2、K3表示,如A因素1 水平方案试验结果即是A因素的K1,记在A因素下方。把计算结果 分别记在A、B、C这3个因素的下方。为了直观,再分别计算各自 的算术平均值K。 5.6.2.2 计算各因素的极差 各因素K最大值减去最小值即为极差 5.6.2.3 分析计算结果 分析表明极差越大的因素重要程度越高。因此因素主次顺序 应为:A→C→B。下面我们从数据处理的分组情况入手来进行说明。 首选分析A因素的K1、K2、K3这3个值
正交试验设计法
2 产生和发展历史
2.1 产生
二十世纪二十年代,英国罗隆姆斯特农业试验站,首先从 大量的试验中挑选适量的、具有代表性、典型性的试验点来合 理的安排田间试验排列问题。
2.2 系统总结
1925年费歇尔在《研究工作中的统计方法》一书中,曾 对试验设计加以系统论述。由于此法行之有效,很快被英、美 等军事工业和科研部门所采用。
2.5 在我国的推广
五十年代开始研究,很快受到工农业生产部门和科研单 位的重视和欢迎。八十年代被列为现代管理方法在经济管理中 广泛应用。随着科技和经济的发展,正交试验法作为多因素试 验优化的一种科学方法,必将得到广泛的应用和发展。
正交试验设计法
3 基本概念
3.1 常用名词
3.1.1 指标 在试验中需要考察的效果的特性值,简称为指标。其与 试验目的是相对应的。目的是提高产量,则产量是试验要考察 的指标;目的是降低成本,则成本是试验要考察的指标。 指标分定量指标和定性指标,正交试验需要通过量化指标 以提高可比性,所以通常把定性指标通过评分等级等方法转化 为定量指标。
5.1 确定因素波动范围
反应温度:80-90℃; 反应时间:90-150min; 碱用量:5%-7%。