正交试验设计

合集下载

正交试验设计

正交试验设计

4
1222211
5
2121212
6
2122121
7
2211221
8
2212112
两个三水平因素的交互作用列占二列
ห้องสมุดไป่ตู้
列号 (列号)
L9(34)两列间的交互作用
1
2
3
4
(1)
3
2
2
4
4
3
(2)
1
1
4
3
(3)
1
2
(4)
注:任意两列间的交互作用列是另外两列
9-1-2 正交表的选择及试验方案的确定 一 明确试验目的、确定考核指标 1 试验目的
这个新因素位于正交表的哪一列,由交互作用 表查出。
如从L8(27)两列间的交互作用表,可以查出任 意两列的交互作用列:
(1)、5列交互作用列是第4列; (3)、4列交互作用列是第7列; (1)、7列交互作用列是第6列,此列也相当于 (3)、4、(1)三列的交互作用列。
两个二水平因素的交互作用列只占一列
(1)只考察因素的主效应,要使正交表中因素的个 数等于或大于要考察的因素的个数
(2)除考察因素的主效应外,还要考察交互作用, 则需选有交互作用表的正交表。而且各个因素安 排在哪一列,要查阅交互作用表
(3)试验精度要求高,要选择试验次数多的正交表
只要能满足试验基本要求,要尽量选用试验次 数少的正交表
试验点分布均匀,称为均衡分散性
四 交互作用表 在常用正交表中,有些只能考察因素本身的效 应,不能用来考察因素之间的交互作用。
如L12(211)和L18(37)
另一些正交表则能够分析因素之间的交互作用
如果因素A和B存在交互作用,在正交表中应看 成一个新的因素,记作A×B,称为一级交互作用

正交试验设计

正交试验设计
案仅包括9个水平组合,而全方面试验方案 包括27个水平。
4
上一张 下一张 主 页 退 出
表5-1
5
上一张 下一张 主 页 退 出
注:任意两列旳交互作用列为另外两 列
附:正交表L9(34)
试验号
列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1ห้องสมุดไป่ตู้
3
2
8
3
2
1
3
9
3
3
2
1
6
3
上一张 下一张 主 页 退 出
1.2 正交设计旳基本特点
❖ 用部分试验来替代全方面试验,经过对部分 试验成果旳分析,了解全方面试验旳情况。
❖ 当交互作用存在时,有可能出现交互作用旳 混杂。即忽视了部分交互作用来降低试验次 数。
如对于上述3原因3水平试验,若不考虑交
互作用,可利用正交表L9(34)安排,试验方
代表正交表;
❖ L右下角旳数字“8”表达有8行,用这张正交 表安排试验包括8个处理(水平组合);
❖ 括号内旳底数“2” 表达原因旳水平数,括 号内2旳指数“7”表达有7列,
❖ 用这张正交表最多能够安排7个2水平原因。 8
上一张 下一张 主 页 退 出
表5-2
9
上一张 下一张 主 页 退 出
L8(27)二列间交互作用列表
第五章 正交试验设计

正交试验设计

正交试验设计

正交试验设计1. 什么是正交试验设计?正交试验设计(Orthogonal Experimental Design)是一种实验设计方法,旨在通过少量试验点,充分收集实验数据,从而减少实验变量的数量,提高实验效率。

正交试验设计适用于产品工艺改进、优化设计、参数选择以及产品性能分析等场景。

正交试验设计的核心思想是通过合理的设计选择,通过改变实验因素的组合,以及试验点数的把握,实现大量试验数据的获取。

在正交试验设计中,通过选择一组适当的实验因素、水平和试验点数,保证实验结果具有可靠性和有效性。

2. 正交试验设计的原理正交试验设计的原理是通过合理选取试验因素的水平,使得因素之间的影响相互独立,避免因素之间的干扰,以确保实验结果的可靠性和有效性。

正交试验设计使用正交表作为设计工具,正交表是由一组正交矩阵构成的,每个矩阵的行数代表试验因素的水平数,列数代表试验点数。

正交表的特点是每一列中任意两个数字之间都正交,即两个数字的乘积等于零。

这种正交性保证了试验因素之间的独立性,减小了因素之间的相互影响,提高了试验效率。

正交试验设计的步骤如下:1.确定试验目标和要素:明确需要优化的目标和相关的要素。

2.选择正交表和水平数:根据要素和水平数选择合适的正交表。

3.确定试验因素和水平:根据试验目标和要素,确定需要进行试验的因素和每个因素的水平。

4.填写正交表:根据选择的正交表和确定的试验因素水平,将试验因素填写到正交表中。

5.进行试验和收集数据:按照正交表中的设计进行试验,记录实验数据。

6.数据分析和优化:通过对实验数据的分析,得出结论并优化设计。

3. 正交试验设计的优势正交试验设计具有以下几个优势:•提高实验效率:通过合理选择试验因素和水平数,正交试验设计可以通过少量的试验点获取大量的实验数据,提高了实验效率。

•确保实验结果可靠性:正交试验设计通过合理的设计选择,避免了因素之间的干扰,保证了实验结果的可靠性。

•降低实验成本:正交试验设计可以在保证实验效果的前提下,减少试验点的数量,降低实验成本。

第七章-正交试验设计法

第七章-正交试验设计法

第七章-正交试验设计法第七章:正交试验设计法正交试验设计法是一种实验设计方法,旨在有效地确定多个因素对结果的影响,并找到最佳的组合条件。

正交设计法是一种统计方法,通过在试验设计中使用正交矩阵来实现对各个因素的全面考虑和分析。

本章将详细介绍正交试验设计法的原理、应用和优势。

7.1 正交试验设计法的原理正交试验设计法的原理基于一个关键观点:在多因素实验设计中,通过设计合理的试验矩阵,能够避免因素之间的相互干扰,从而有效地确定各个因素对结果的影响。

正交试验设计法通过使用正交矩阵,将各个因素进行组合,确保在限定的试验条件下,各个因素之间的相互影响最小化。

这样,通过对正交试验设计法进行数据分析,可以准确地确定各个因素对结果的主导程度。

7.2 正交试验设计法的应用正交试验设计法在许多领域中得到广泛应用,特别是在工程、医学、化学和农业等实验研究中。

正交试验设计法可以帮助研究人员从多个因素中确定影响结果的主要因素,并找到最佳的操作条件。

例如,在工程领域中,正交试验设计法可以用于确定材料的最佳组合,以提高产品质量和性能。

在医学研究中,正交试验设计法可用于确定药物的最佳剂量和治疗方案。

在农业研究中,正交试验设计法可以用于确定最佳的种植条件和施肥方法。

总之,正交试验设计法可以帮助研究人员快速、准确地找到最佳的解决方案。

7.3 正交试验设计法的优势正交试验设计法相比传统的试验设计方法有以下几个优势:1. 高效性:正交试验设计法可以通过使用正交矩阵,将多个因素进行有效组合,从而减少试验次数,提高试验效率。

2. 统计可靠性:正交试验设计法通过使用正交矩阵,可以有效地避免因素之间的相互干扰,确保实验结果的统计可靠性。

3. 实用性:正交试验设计法不仅可以用于确定各个因素对结果的影响程度,还可以用于优化因素的组合以达到最佳效果。

4. 灵活性:正交试验设计法可以应用于不同的实验设计要求,可灵活调整试验因素和水平,以满足具体的研究需求。

正交试验设计

正交试验设计

正交试验设计
正交试验设计(Orthogonal experimental design)是一种常用于科学实验设计的方法。

它是统计学中一种重要的试验设计方法,通过选择合适的正交表将试验因素进行组合,以达到最大程度地减少误差和提高效率的目的。

正交实验设计最常见的类型是正交数组设计(Orthogonal array design),通过正交表将试验因素的各个水平进行组合,以实
现均匀分布和互不干扰的目的。

这种设计方法可以帮助确定影响结果的主要因素,找出最优的处理条件,并提高试验的可信度和重复性。

正交试验设计的特点之一是可以通过相对较少的实验次数得出准确的结果。

它通过最小化不相关的因素,使试验结果更易于解释和分析,并避免重复实验浪费资源和时间。

正交试验设计还可以通过分析试验结果和误差分布,确定主要影响因素的重要性和交互作用的效应。

通过建立数学模型和进行回归分析,可以进一步优化试验结果,并提高产品的质量和效率。

正交试验设计广泛应用于工程、制造、化学、医药等领域。

它可以帮助确定最佳工艺参数、产品配方、药物剂量等,并优化生产过程、提高产品质量和效率。

它还可以用于新产品开发、工艺改进、质量控制等方面。

正交试验设计的成功关键一是正确选择试验因素和水平,确保
能够覆盖全部可能的条件。

另外,正确解读试验结果、分析影响因素的相对重要性和相互作用也是至关重要的。

总之,正交试验设计是一种有效的实验设计方法,可以在较短的时间内得出准确的结果,并提供优化产品和工艺的参考依据。

它具有广泛的应用前景,并在工程和科学研究中发挥着重要的作用。

正交试验设计方法

正交试验设计方法
正交表常用拉丁字母(如L、N等)表示,字母的下方标有数字,表示该行的次数, 例如L4(2^3)表示一个四水平、三次方的正交表。
正交试验设计的核心思想
通过对试验条件的合理安排,减少试验次数,提 高试验效率,同时保证结果的准确性和可靠性。
通过正交试验设计,可以分析各因素对试验结果 的影响程度,找出最优的试验条件或最优组合。
均衡性
正交试验设计能够保证试验点在试验空间中均匀分布,使得试验结果 具有更好的均衡性和代表性。
简单易行
正交试验设计方法简单易行,易于理解和操作,不需要复杂的数学工 具和编程技能。
统计分析方便
正交试验设计的结果可以通过正交表进行统计分析,计算简单,结果 直观。
缺点
适用范围有限
正交试验设计适用于因子数量 和水平数量不太多的情况,对 于高维度的复杂问题可能不太 适用。
试验设计
采用正交表进行试验设计,确保每个 试验方案具有均衡的代表性。
结果分析
通过方差分析、极差分析等方法,找 出最优的混合肥料配方。
实例二:机械零件的加工工艺优化
目的因素与水平源自通过正交试验设计,优化机械零件的加工 工艺,提高生产效率。
选择切削速度、进给量、切削深度三个工 艺参数作为试验因素,每个因素选取四个 水平。
在农业领域,正交试验设计用于研究 不同种植条件和施肥方案对农作物产 量的影响。
化学工业
在化学工业中,正交试验设计用于确 定最佳的化学反应条件,提高生产效 率和产品质量。
02
正交试验设计的基本原理
正交表的概念
正交表是一套规则,用于安排多因素多水平的试验,其特点是每个因素在试验中 出现的次数相等,且在各次试验中因素的排列顺序相同。
正交试验设计方法

正交试验设计及其应用

正交试验设计及其应用

正交试验设计及其应用正交试验设计是一种高效合理的研究手段,广泛应用于自然科学、社会经济等领域。

本文将介绍正交试验设计的基本概念、类型及其应用,旨在帮助读者更好地了解这一重要的研究方法。

1、什么是正交试验设计正交试验设计是一种试验设计方法,它通过运用正交表来安排多因素多水平的试验,以实现对各因素效应的快速、准确地检测。

正交试验设计具有均衡分散、整齐可比、易于操作等优点,因此被广泛应用于各种科学研究中。

在正交试验设计中,试验的因素和水平通常是已知的,试验者需要选择合适的正交表来安排试验。

通过正交试验设计,可以有效地减少试验次数,同时保证试验结果的准确性和可靠性。

2、正交试验设计的类型正交试验设计可以根据不同的标准进行分类。

其中,最常见的分类方式是根据试验的完整性和验证方式不同来进行区分。

完全正交试验设计是一种完整的正交试验设计,它对所有可能的组合都进行了试验。

这种设计方法适用于试验因素和水平都不太多,且对所有组合都进行试验可行的情况。

部分正交试验设计则是对完全正交试验设计的一种简化。

它通过选取部分代表性组合进行试验,以达到在减少试验次数的同时,仍能有效地获取各因素效应的目的。

部分正交试验设计通常适用于因素和水平较多,不可能对所有组合都进行试验的情况。

交叉验证是另一种常见的正交试验设计类型。

它主要用于对新模型或新方法的性能进行评估。

在交叉验证中,将数据集分成若干份,每次使用不同的数据份来训练和验证模型或方法,以获取更准确的性能指标。

3、正交试验设计的应用正交试验设计的应用范围非常广泛,以下列举几个主要领域:自然科学领域:在自然科学领域,正交试验设计常被用于研究物理、化学、生物等实验科学。

例如,在化学反应中,通过正交试验设计可以快速找到最佳的反应条件;在生物学研究中,正交试验设计可以用于筛选最优的实验条件或寻找某些生物因素之间的相互作用。

社会经济领域:在社会经济领域,正交试验设计也发挥着重要作用。

例如,政府和企业可以利用正交试验设计进行政策制定和决策分析;在金融领域,正交试验设计可以用于风险评估和投资组合优化;在市场营销中,正交试验设计可以帮助企业了解客户需求,优化产品设计和营销策略。

正交试验设计(内容详尽)

正交试验设计(内容详尽)

偏差大小,通常用 V 表示:
V S2 / f
存在期望值时:
V
1 n
n
( xi
i 1
)2
不存在期望值时:
V
1 n1
n
( xi
i 1
x)2
均方差也称为准偏差或标准差,定义为方差的平方根,
通常用 表示,即
存在期望值时:
V
1 n
n i 1
( xi
)2
不存在期望值时:
V
1 n
1
n i 1
正交试验设计
7.1.5 试验的主要步骤(阶段)
● 试验设计阶段——选题、设计试验方案、准备试 验材料及设备、安排试验环境等;
● 试验实施阶段——按计划进行试验(包括试验操 作、收集试验数据等);
● 试验分析阶段——核查试验数据、进行统计分析、 解释试验结果、获取试验结论等。
正交试验设计
7.1.6 试验设计的基本原则(费歇尔三原则)
● 重复原则——利用重复观测减小试验误差,提高试 验精度;
● 随机化原则——目的是为了消除或减小人为因素引 起的系统误差的影响;
● 局部控制原则——该原则也称为区组控制原则,指 的是把比较的水平设置在差异较小的区组内,其目的也是 为了消除或减小试验中系统误差的影响。例如,按机器设 备、班次、原料批号、操作人员划分区组。
其他:
★ 标示因素
★ 区组因素
★ 信号因素
★ 误差因素
正交试验设计
⑷ 因素的水平 试验中因素变化的状态和条件称为因素的水平或位数,
简称水平。水平用数字(1,2,3…)表示。 试验中设计过程中水平的选取原则是:
◆ 宜选用三水平,以有利于实验结果的分析; ◆ 水平通常取等间隔,特殊情况下取对数间隔; ◆ 水平应该具体。水平应该是可控的,其变化对试验指 标有影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正交试验设计法[17]正交试验设计是利用“正交表”选择试验的条件,并利用正交表的特点进行数据分析,找出最好的或满意的试验条件,适用于多因素的设计问题。

正交试验法的理论基础是正交拉丁方理论与群论。

在工作中可用的多因素寻优工作方法,一类是从优选区某一点开始试验,一步一步到达较优点,这类实验方法叫序贯试验法,如因素轮换法、爬山法等;另一类是,在优选区内一次布置一批试验点,通过对这批试验结果的分析,逐步缩小优选范围从而达到较优点,如正交试验法等。

科研中普遍采用正交试验法,因其具有如下优点:①实用上按表格安排试验,使用方便;②布点均衡、试验次数较少;③在正交试验法中的最好点,虽然不一定是全面试验的最好点,但也往往是相当好的点。

特别在只有一两个因素起主要作用时,正交试验法能保证主要因素的各种可能都不会漏掉。

这点在探索性工作中很重要,其他试验方法难于作到;④正交试验法提供一种分析结果(包括交互作用)的方法,结果直观易分析。

且每个试验水平都重复相同次数,可以消除部分试验误差的干扰;⑤因其具有正交性,易于分析出各因素的主效应。

名词解释:1 试验因素:影响考核指标取值的量称为试验因素(因子),一般记为:A,B,C等。

有定量的因素,可控因素,定性的因素,不可控因素等。

2 因素的位级(水平):指试验因素所处的状态。

4 考核指标:根据试验目的而选定的用来衡量试验效果的量值(指标)。

5 完全因素位级组合:指参与实验的全部因素与全部位级相互之间的全部组合次数,即全部的实验次数。

6 部分因素位级组合:⑴单因素转换法⑵正交试验法7 正交表的符号:正交表是运用组合数学理论在正交拉丁名的基础上构造的一种规格化的表格。

符号:Ln(ji) 其中:L--正交表的符号n--正交表的行数(试验次数,试验方案数)j--正交表中的数码(因素的位级数)i--正交表的列数(试验因素的个数)N=ji--全部试验次数(完全因素位级组合数)总之,利用正交试验法的设计方案,结合代数方法对数据进行分析,可达到使试验收敛速度加快、试验的效率非常高的效果。

可利用试验结果获取更多信息,准确掌握效应的趋势规律,而且优选点可超越所选水平范围和精度,从而可大大减少试验次数。

这种联用技术,对于可获得定量结果或结果容易定量化,以及试验代价高时,很有效。

正交实验设计当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。

因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。

正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。

是一种高效率、快速、经济的实验设计方法。

日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。

例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。

若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。

因而正交实验设计在很多领域的研究中已经得到广泛应用。

1.正交表正交表是一整套规则的设计表格,用。

L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。

例如L9(34), (表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。

一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。

根据正交表的数据结构看出,正交表是一个n行c 列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现次。

正交表具有以下两项性质:(1)每一列中,不同的数字出现的次数相等。

例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。

(2)任意两列中数字的排列方式齐全而且均衡。

例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。

每种对数出现次数相等。

在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。

以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。

通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。

2. 交互作用表每一张正交表后都附有相应的交互作用表,它是专门用来安排交互作用试验。

表14就是L8(27)表的交互作用表。

安排交互作用的试验时,是将两个因素的交互作用当作一个新的因素,占用一列,为交互作用列,从表14中可查出L8(27)正交表中的任何两列的交互作用列。

表中带( )的为主因素的列号,它与另一主因素的交互列为第一个列号从左向右,第二个列号顺次由下向上,二者相交的号为二者的交互作用列。

例如将A因素排为第(1)列,B因素排为第(2)列,两数字相交为3,则第3列为A×B交互作用列。

又如可以看到第4列与第6列的交互列是第2列,等等。

3.正交实验的表头设计表头设计是正交设计的关键,它承担着将各因素及交互作用合理安排到正交表的各列中的重要任务,因此一个表头设计就是一个设计方案。

表头设计的主要步骤如下:(1)确定列数根据试验目的,选择处理因素与不可忽略的交互作用,明确其共有多少个数,如果对研究中的某些问题尚不太了解,列可多一些,但一般不宜过多。

当每个试验号无重复,只有1个试验数据时,可设2个或多个空白列,作为计算误差项之用。

(2)确定各因素的水平数根据研究目的,一般二水平(有、无)可作因素筛选用;也可适用于试验次数少、分批进行的研究。

三水平可观察变化趋势,选择最佳搭配;多水平能以一次满足试验要求。

(3)选定正交表根据确定的列数©与水平数(t)选择相应的正交表。

例如观察5个因素8个一级交互作用,留两个空白列,且每个因素取2水平,则适宜选L16(215)表。

由于同水平的正交表有多个,如L8(27)、L12(211)、L16(215),一般只要表中列数比考虑需要观察的个数稍多一点即可,这样省工省时。

(4)表头安排应优先考虑交互作用不可忽略的处理因素,按照不可混杂的原则,将它们及交互作用首先在表头排妥,而后再将剩余各因素任意安排在各列上。

例如某项目考察4个因素A、B、C、D及A×B交互作用,各因素均为2水平,现选取L8(27)表,由于AB两因素需要观察其交互作用,故将二者优先安排在第1、2列,根据交互作用表查得A×B应排在第3列,于是C排在第4列,由于A×C交互在第5列,B×C 交互作用在第6列,虽然未考查A×C与B×C,为避免混杂之嫌,D就排在第7列。

(5)组织实施方案根据选定正交表中各因素占有列的水平数列,构成实施方案表,按实验号依次进行,共作n次实验,每次实验按表中横行的各水平组合进行。

例如L9(34)表,若安排四个因素,第一次实验A、B、C、D四因素均取1水平,第二次实验A因素1水平,B、C、D取2水平,……第九次实验A、B因素取3水平,C因素取2水平,D因素取1水平。

实验结果数据记录在该行的末尾。

因此整个设计过程我们可用一句话归纳为:“因素顺序上列、水平对号入座,实验横着作”。

4.二水平有交互作用的正交实验设计与方差分析例8 某研究室研究影响某试剂回收率的三个因素,包括温度、反应时间、原料配比,每个因素都为二水平,各因素及其水平见表16。

选用L8(27)正交表进行实验,实验结果见表17。

首先计算Ij 与IIj ,Ij为第j列第1水平各试验结果取值之和,IIj为第j列第2水平各试验结果取值之和。

然后进行方差分析。

过程为:求:总离差平方和各列离差平方和 SSj=本例各列离均差平方和见表10最底部一行。

即各空列SSj之和。

即误差平方和自由度v为各列水平数减1,交互作用项的自由度为相交因素自由度的乘积。

分析结果见表18。

从表18看出,在α=0.05水准上,只有C因素与A×B交互作用有统计学意义,其余各因素均无统计学意义,A因素影响最小,考虑到交互作用A×B的影响较大,且它们的二水平为优。

在C2的情况下,有B1A2和B1,A1两种组合状况下的回收率最高。

考虑到B因素影响较A因素影响大些,而B中选B1为好,故选A2B1。

这样最后决定最佳配方为A2B1C2,即80℃,反应时间2.5h,原料配比为1.2:1。

如果使用计算机进行统计分析,在数据是只需要输入试验因素和实验结果的内容,交互作用界的内容不用输入,然后按照表头定义要分析的模型进行方差分析。

1.正交试验法的评价正交试验法的理论基础是正交拉丁方理论与群论。

在工作中可用的多因素寻优工作方法,一类是从优选区某一点开始试验,一步一步到达较优点,这类实验方法叫序贯试验法,如因素轮换法、爬山法等;另一类是,在优选区内一次布置一批试验点,通过对这批试验结果的分析,逐步缩小优选范围从而达到较优点,如正交试验法等。

科研中普遍采用正交试验法,因其具有如下优点:①实用上按表格安排试验,使用方便;②布点均衡、试验次数较少;③在正交试验法中的最好点,虽然不一定是全面试验的最好点,但也往往是相当好的点。

特别在只有一两个因素起主要作用时,正交试验法能保证主要因素的各种可能都不会漏掉。

这点在探索性工作中很重要,其他试验方法难于作到;④正交试验法提供一种分析结果(包括交互作用)的方法,结果直观易分析。

且每个试验水平都重复相同次数,可以消除部分试验误差的干扰;⑤因其具有正交性,易于分析出各因素的主效应。

但其也有一些缺点:它提供的数据分析方法所获得的优选值,只能是试验所用水平的某种组合,优选结果不会超越所取水平的范围;另外,也不能给进一步的试验提供明确的指向性,使试验仍然带很强的摸索性色彩,不很精确。

这样,正交试验法用在初步筛选时显得收敛速度缓慢、难于确定数据变化规律,增加试验次数。

尤其在试验工作烦琐、费用昂贵的情况更显突出。

2.正交试验法的代数学基础对试验的寻优工作,用数学语言可描述为求多维连续空间上的最大或最小值(极值)。

相关文档
最新文档