正交试验设计

合集下载

正交试验设计

正交试验设计

4
1222211
5
2121212
6
2122121
7
2211221
8
2212112
两个三水平因素的交互作用列占二列
ห้องสมุดไป่ตู้
列号 (列号)
L9(34)两列间的交互作用
1
2
3
4
(1)
3
2
2
4
4
3
(2)
1
1
4
3
(3)
1
2
(4)
注:任意两列间的交互作用列是另外两列
9-1-2 正交表的选择及试验方案的确定 一 明确试验目的、确定考核指标 1 试验目的
这个新因素位于正交表的哪一列,由交互作用 表查出。
如从L8(27)两列间的交互作用表,可以查出任 意两列的交互作用列:
(1)、5列交互作用列是第4列; (3)、4列交互作用列是第7列; (1)、7列交互作用列是第6列,此列也相当于 (3)、4、(1)三列的交互作用列。
两个二水平因素的交互作用列只占一列
(1)只考察因素的主效应,要使正交表中因素的个 数等于或大于要考察的因素的个数
(2)除考察因素的主效应外,还要考察交互作用, 则需选有交互作用表的正交表。而且各个因素安 排在哪一列,要查阅交互作用表
(3)试验精度要求高,要选择试验次数多的正交表
只要能满足试验基本要求,要尽量选用试验次 数少的正交表
试验点分布均匀,称为均衡分散性
四 交互作用表 在常用正交表中,有些只能考察因素本身的效 应,不能用来考察因素之间的交互作用。
如L12(211)和L18(37)
另一些正交表则能够分析因素之间的交互作用
如果因素A和B存在交互作用,在正交表中应看 成一个新的因素,记作A×B,称为一级交互作用

正交试验设计

正交试验设计
案仅包括9个水平组合,而全方面试验方案 包括27个水平。
4
上一张 下一张 主 页 退 出
表5-1
5
上一张 下一张 主 页 退 出
注:任意两列旳交互作用列为另外两 列
附:正交表L9(34)
试验号
列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1ห้องสมุดไป่ตู้
3
2
8
3
2
1
3
9
3
3
2
1
6
3
上一张 下一张 主 页 退 出
1.2 正交设计旳基本特点
❖ 用部分试验来替代全方面试验,经过对部分 试验成果旳分析,了解全方面试验旳情况。
❖ 当交互作用存在时,有可能出现交互作用旳 混杂。即忽视了部分交互作用来降低试验次 数。
如对于上述3原因3水平试验,若不考虑交
互作用,可利用正交表L9(34)安排,试验方
代表正交表;
❖ L右下角旳数字“8”表达有8行,用这张正交 表安排试验包括8个处理(水平组合);
❖ 括号内旳底数“2” 表达原因旳水平数,括 号内2旳指数“7”表达有7列,
❖ 用这张正交表最多能够安排7个2水平原因。 8
上一张 下一张 主 页 退 出
表5-2
9
上一张 下一张 主 页 退 出
L8(27)二列间交互作用列表
第五章 正交试验设计

正交试验设计

正交试验设计

正交试验设计1. 什么是正交试验设计?正交试验设计(Orthogonal Experimental Design)是一种实验设计方法,旨在通过少量试验点,充分收集实验数据,从而减少实验变量的数量,提高实验效率。

正交试验设计适用于产品工艺改进、优化设计、参数选择以及产品性能分析等场景。

正交试验设计的核心思想是通过合理的设计选择,通过改变实验因素的组合,以及试验点数的把握,实现大量试验数据的获取。

在正交试验设计中,通过选择一组适当的实验因素、水平和试验点数,保证实验结果具有可靠性和有效性。

2. 正交试验设计的原理正交试验设计的原理是通过合理选取试验因素的水平,使得因素之间的影响相互独立,避免因素之间的干扰,以确保实验结果的可靠性和有效性。

正交试验设计使用正交表作为设计工具,正交表是由一组正交矩阵构成的,每个矩阵的行数代表试验因素的水平数,列数代表试验点数。

正交表的特点是每一列中任意两个数字之间都正交,即两个数字的乘积等于零。

这种正交性保证了试验因素之间的独立性,减小了因素之间的相互影响,提高了试验效率。

正交试验设计的步骤如下:1.确定试验目标和要素:明确需要优化的目标和相关的要素。

2.选择正交表和水平数:根据要素和水平数选择合适的正交表。

3.确定试验因素和水平:根据试验目标和要素,确定需要进行试验的因素和每个因素的水平。

4.填写正交表:根据选择的正交表和确定的试验因素水平,将试验因素填写到正交表中。

5.进行试验和收集数据:按照正交表中的设计进行试验,记录实验数据。

6.数据分析和优化:通过对实验数据的分析,得出结论并优化设计。

3. 正交试验设计的优势正交试验设计具有以下几个优势:•提高实验效率:通过合理选择试验因素和水平数,正交试验设计可以通过少量的试验点获取大量的实验数据,提高了实验效率。

•确保实验结果可靠性:正交试验设计通过合理的设计选择,避免了因素之间的干扰,保证了实验结果的可靠性。

•降低实验成本:正交试验设计可以在保证实验效果的前提下,减少试验点的数量,降低实验成本。

正交试验设计

正交试验设计

正交试验设计
正交试验设计(Orthogonal experimental design)是一种常用于科学实验设计的方法。

它是统计学中一种重要的试验设计方法,通过选择合适的正交表将试验因素进行组合,以达到最大程度地减少误差和提高效率的目的。

正交实验设计最常见的类型是正交数组设计(Orthogonal array design),通过正交表将试验因素的各个水平进行组合,以实
现均匀分布和互不干扰的目的。

这种设计方法可以帮助确定影响结果的主要因素,找出最优的处理条件,并提高试验的可信度和重复性。

正交试验设计的特点之一是可以通过相对较少的实验次数得出准确的结果。

它通过最小化不相关的因素,使试验结果更易于解释和分析,并避免重复实验浪费资源和时间。

正交试验设计还可以通过分析试验结果和误差分布,确定主要影响因素的重要性和交互作用的效应。

通过建立数学模型和进行回归分析,可以进一步优化试验结果,并提高产品的质量和效率。

正交试验设计广泛应用于工程、制造、化学、医药等领域。

它可以帮助确定最佳工艺参数、产品配方、药物剂量等,并优化生产过程、提高产品质量和效率。

它还可以用于新产品开发、工艺改进、质量控制等方面。

正交试验设计的成功关键一是正确选择试验因素和水平,确保
能够覆盖全部可能的条件。

另外,正确解读试验结果、分析影响因素的相对重要性和相互作用也是至关重要的。

总之,正交试验设计是一种有效的实验设计方法,可以在较短的时间内得出准确的结果,并提供优化产品和工艺的参考依据。

它具有广泛的应用前景,并在工程和科学研究中发挥着重要的作用。

正交试验设计方法

正交试验设计方法
正交表常用拉丁字母(如L、N等)表示,字母的下方标有数字,表示该行的次数, 例如L4(2^3)表示一个四水平、三次方的正交表。
正交试验设计的核心思想
通过对试验条件的合理安排,减少试验次数,提 高试验效率,同时保证结果的准确性和可靠性。
通过正交试验设计,可以分析各因素对试验结果 的影响程度,找出最优的试验条件或最优组合。
均衡性
正交试验设计能够保证试验点在试验空间中均匀分布,使得试验结果 具有更好的均衡性和代表性。
简单易行
正交试验设计方法简单易行,易于理解和操作,不需要复杂的数学工 具和编程技能。
统计分析方便
正交试验设计的结果可以通过正交表进行统计分析,计算简单,结果 直观。
缺点
适用范围有限
正交试验设计适用于因子数量 和水平数量不太多的情况,对 于高维度的复杂问题可能不太 适用。
试验设计
采用正交表进行试验设计,确保每个 试验方案具有均衡的代表性。
结果分析
通过方差分析、极差分析等方法,找 出最优的混合肥料配方。
实例二:机械零件的加工工艺优化
目的因素与水平源自通过正交试验设计,优化机械零件的加工 工艺,提高生产效率。
选择切削速度、进给量、切削深度三个工 艺参数作为试验因素,每个因素选取四个 水平。
在农业领域,正交试验设计用于研究 不同种植条件和施肥方案对农作物产 量的影响。
化学工业
在化学工业中,正交试验设计用于确 定最佳的化学反应条件,提高生产效 率和产品质量。
02
正交试验设计的基本原理
正交表的概念
正交表是一套规则,用于安排多因素多水平的试验,其特点是每个因素在试验中 出现的次数相等,且在各次试验中因素的排列顺序相同。
正交试验设计方法

正交试验设计及其应用

正交试验设计及其应用

正交试验设计及其应用正交试验设计是一种高效合理的研究手段,广泛应用于自然科学、社会经济等领域。

本文将介绍正交试验设计的基本概念、类型及其应用,旨在帮助读者更好地了解这一重要的研究方法。

1、什么是正交试验设计正交试验设计是一种试验设计方法,它通过运用正交表来安排多因素多水平的试验,以实现对各因素效应的快速、准确地检测。

正交试验设计具有均衡分散、整齐可比、易于操作等优点,因此被广泛应用于各种科学研究中。

在正交试验设计中,试验的因素和水平通常是已知的,试验者需要选择合适的正交表来安排试验。

通过正交试验设计,可以有效地减少试验次数,同时保证试验结果的准确性和可靠性。

2、正交试验设计的类型正交试验设计可以根据不同的标准进行分类。

其中,最常见的分类方式是根据试验的完整性和验证方式不同来进行区分。

完全正交试验设计是一种完整的正交试验设计,它对所有可能的组合都进行了试验。

这种设计方法适用于试验因素和水平都不太多,且对所有组合都进行试验可行的情况。

部分正交试验设计则是对完全正交试验设计的一种简化。

它通过选取部分代表性组合进行试验,以达到在减少试验次数的同时,仍能有效地获取各因素效应的目的。

部分正交试验设计通常适用于因素和水平较多,不可能对所有组合都进行试验的情况。

交叉验证是另一种常见的正交试验设计类型。

它主要用于对新模型或新方法的性能进行评估。

在交叉验证中,将数据集分成若干份,每次使用不同的数据份来训练和验证模型或方法,以获取更准确的性能指标。

3、正交试验设计的应用正交试验设计的应用范围非常广泛,以下列举几个主要领域:自然科学领域:在自然科学领域,正交试验设计常被用于研究物理、化学、生物等实验科学。

例如,在化学反应中,通过正交试验设计可以快速找到最佳的反应条件;在生物学研究中,正交试验设计可以用于筛选最优的实验条件或寻找某些生物因素之间的相互作用。

社会经济领域:在社会经济领域,正交试验设计也发挥着重要作用。

例如,政府和企业可以利用正交试验设计进行政策制定和决策分析;在金融领域,正交试验设计可以用于风险评估和投资组合优化;在市场营销中,正交试验设计可以帮助企业了解客户需求,优化产品设计和营销策略。

正交试验设计(内容详尽)

正交试验设计(内容详尽)

偏差大小,通常用 V 表示:
V S2 / f
存在期望值时:
V
1 n
n
( xi
i 1
)2
不存在期望值时:
V
1 n1
n
( xi
i 1
x)2
均方差也称为准偏差或标准差,定义为方差的平方根,
通常用 表示,即
存在期望值时:
V
1 n
n i 1
( xi
)2
不存在期望值时:
V
1 n
1
n i 1
正交试验设计
7.1.5 试验的主要步骤(阶段)
● 试验设计阶段——选题、设计试验方案、准备试 验材料及设备、安排试验环境等;
● 试验实施阶段——按计划进行试验(包括试验操 作、收集试验数据等);
● 试验分析阶段——核查试验数据、进行统计分析、 解释试验结果、获取试验结论等。
正交试验设计
7.1.6 试验设计的基本原则(费歇尔三原则)
● 重复原则——利用重复观测减小试验误差,提高试 验精度;
● 随机化原则——目的是为了消除或减小人为因素引 起的系统误差的影响;
● 局部控制原则——该原则也称为区组控制原则,指 的是把比较的水平设置在差异较小的区组内,其目的也是 为了消除或减小试验中系统误差的影响。例如,按机器设 备、班次、原料批号、操作人员划分区组。
其他:
★ 标示因素
★ 区组因素
★ 信号因素
★ 误差因素
正交试验设计
⑷ 因素的水平 试验中因素变化的状态和条件称为因素的水平或位数,
简称水平。水平用数字(1,2,3…)表示。 试验中设计过程中水平的选取原则是:
◆ 宜选用三水平,以有利于实验结果的分析; ◆ 水平通常取等间隔,特殊情况下取对数间隔; ◆ 水平应该具体。水平应该是可控的,其变化对试验指 标有影响。

正交试验设计法简介

正交试验设计法简介

正交试验设计法简介一、概述正交试验设计法,又称为正交实验设计、正交表设计或正交测试设计,是一种高效、系统的试验设计方法。

该方法源于数学中的正交性概念,通过正交表来安排多因素试验,使得每个因素的每个水平都能在其他因素的所有水平中均衡出现,从而能够有效地分析多个因素对试验结果的影响。

正交试验设计法最初由日本统计学家田口玄一博士于20世纪50年代提出,并在工程领域得到了广泛应用。

正交试验设计法的主要优点包括试验次数少、数据分析简便、试验效果高等。

通过正交表的设计,可以大大减少试验次数,提高试验效率同时,正交表的规范化和系统性使得试验数据的分析变得简单明了,便于找出影响试验结果的主要因素和最优组合。

正交试验设计法广泛应用于工业、农业、医学、军事等领域。

在工业生产中,正交试验设计法可用于优化产品设计、改进生产工艺、提高产品质量等在农业研究中,可用于优化作物种植方案、提高作物产量等在医学研究中,可用于药物筛选、临床治疗方案优化等。

正交试验设计法还可用于系统可靠性分析、多目标决策等领域。

正交试验设计法是一种高效、实用的试验设计方法,对于多因素、多水平的试验问题具有重要的应用价值。

通过正交表的设计和分析,可以系统地研究多个因素对试验结果的影响,找出最优方案,提高试验效率和效果。

1. 正交试验设计法的定义正交试验设计法是一种研究多因素多水平的科学实验设计方法。

它基于Galois理论,从大量的实验点中挑选出适量的、有代表性的点进行试验,这些点具有“均匀分散,齐整可比”的特点。

这种方法的主要工具是正交表,通过合理安排实验,可以在最少的试验次数下达到与大量全面试验等效的结果。

正交试验设计法具有高效率、快速和经济的特点,被广泛应用于各个领域,如生物学、软件测试等。

2. 正交试验设计法的起源与发展正交试验设计法的起源可以追溯到古希腊时期。

当时,为了满足国王检阅臣民时的要求,即每个方队中每行有一个民族代表,每列也要有一个民族的代表,数学家们设计了一种方阵,被称为拉丁方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正交试验设计1 正交试验设计的概念及原理 1.1 基本概念利用正交表来安排与分析多因素试验的一种设计方法。

特点:在试验因素的全部水平组合中,仅挑选部分有代表性的水平组合进行试验。

通过部分实施的试验结果,了解全面试验情况,从中找出较优的处理组合。

考察增稠剂用量、pH 值和杀菌温度对豆奶稳定性的影响。

每个因素设置3个水平进行试验 。

全面试验:可以分析各因素的效应,交互作用,也可选出最优水平组合。

全面试验包含的水平组合数较多,工作量大,在有些情况下无法完成 。

若试验的主要目的是寻求最优水平组合,则可利用正交表来设计安排试验。

● 正交试验是用部分试验来代替全面试验的,它不可能像全面试验那样对各因素效应、交互作用一一分析; ● 当交互作用存在时,有可能出现交互作用的混杂。

● 虽然正交试验设计有上述不足,但它能通过部分试验找到最优水平组合,因而很受实际工作者青睐。

1.2 基本原理在试验安排中,每个因素在研究的范围内选几个水平, 可以理解为在选优区内打上网格,如果网上的每个点都做试验,就是全面试验。

3个因素的选优区可以用一个立方体表示。

3个因素各取3个水平,把立方体划分成27个格点。

若27个网格点都试验,就是全面试验。

A2 A3A1B1C1B3 B2A 因素:增稠剂用量,A1、A2、A3B 因素:pH ,B1、B2、B3C 因素:杀菌温度,C1、C2、C33因素 3水平33=271.2 基本原理正交设计就是从选优区全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。

A1B1C1 A1B2C2 A1B3C3A2B1C2A2B2C3A3B1C3A3B2C1A3B3C2A2B3C1A1B1C3A1B3C1A2B1C1 A2B2C1A2B3C3A3B1C1A3B2C39个组合保证了A 的每个水平与B 、C 的各个水平在试验中各搭配一次。

任一因素的每个水平都与另外两个因素的每个水平相组合且组合1次。

对于A 、B 、C 3个因素来说,是在27个全面试验点中选择9个试验点,仅是全面试验的三分之一。

☐ 9个试验点在选优区中分布是均衡的,在立方体的每个平面 上,都恰是3个试验点;在立方体的每条线上也恰有一个试验点。

☐ 9个试验点均衡地分布于整个立方体内,有很强的代表性,能够比较全面地反映选优区内的基本情况。

)3(49L 正交表最多可安排的因素(互作)数9行,可以安排的试验次数(水平组合数)1.3 正交表及其性质● 此表共有4列,可以安排4个因素;● 每一列有1、2、3三种数字,代表各因素的不同水平;表中有9行,代表9个不同处理组合。

试验号 1 1 1 2 1 3 1 4 2 5 2 6 2 7 3 8 3 正交性(1) 任一列中,各水平都出现,且出现的次数相等(2) 任两列之间各种不同水平的所有可能组合都出现,且出现的次数相等即每个因素的一个水平与另一因素的各个水平所有可能组合次数相等,表明任意两列各个数字之间的搭配是均匀的。

代表性(1) 任一列的各水平都出现,使得部分试验中包括了所有因素的所有水平; (2) 任两列的所有水平组合都出现,使任意两因素间的试验组合为全面试验。

(3)由于正交表的正交性,正交试验的试验点必然均衡地分布在全面试验点中,具有很强的代表性。

因此,部分试验寻找的最优条件与全面试验所找的最优条件,应有一致的趋势。

综合可比性(1) 任一列的各水平出现的次数相等; 1 231 1 1 1 1 1 12 2 1 2 2 2 1 2 2 1 2 2 2 1 )3(49L )3(49L )2(78L(2) 任两列间所有水平组合出现次数相等,使得任一因素各水平的试验条件相同。

这就保证了在每列因素各水平的效果中,最大限度地排除了其他因素的干扰。

从而可以综合比较该因素不同水平对试验指标的影响情况。

根据以上特性,我们用正交表安排的试验,具有均衡分散和整齐可比的特点。

均衡分散● 是指用正交表挑选出来的各因素水平组合在全部水平组合中的分布是均匀的 。

● 这些点代表性强,能够较好地反映全面试验的情况。

整齐可比● 指每一个因素的各水平间具有可比性。

● 正交表中每一因素的任一水平下都均衡地包含着另外因素的各个水平,当比较某因素不同水平时,其它因素的效应都彼此抵消。

● 如在A 、B 、C 3个因素中,A 因素的3个水平A1、A2、A3条件下各有B 、C 的 3个不同水平,即:在这9个水平组合中,A 因素各水平下包括了B 、C 因素的3个水平,当比较A 因素不同水平时,B 因素不同水平的效应相互抵消,C 因素不同水平的效应也相互抵消。

所以A 因素3个水平间具有综合可比性。

● 同样,B 、C 因素3个水平间亦具有综合可比性。

1 正交试验设计的概念及原理 正交性 代表性 综合可比性 正交表的三个基本性质中,● 正交性是核心,是基础,● 1.4 正交表的类别如L4(2的3次方)、L8(27)、L12(211)等各列中的水平为2,称为2水平正交表; L9(34)、L27(313)等各列水平为3,称为3水平正交表。

如L8(4×24)表中有一列的水平数为4,有4也就是说该表可以安排一个4水平因素和4个2水平因素。

2 正交试验设计的基本程序(实例分析)为提高山楂原料的利用率,研究酶法液化工艺制造山楂原汁,拟通过正交试验来寻找酶法液化的最佳工艺条件。

对本试验分析,影响山楂液化率的因素很多,如山楂品种、山楂果肉的破碎度、果肉加水量、原料pH 值、果胶酶种类、加酶量、酶解温度、酶解时间等等。

经全面考虑,最后确定果肉加水量、加酶量、酶解温度和酶解时间为本试验的试验因素,分别记作A 、B 、C 和D ,进行四因素正交试验,各因素均取3个水平,因素水平表如下表所示。

水平试验因素A1B1C A1B2C A1B3C A2B1C A2B2C A2B3C A3B1CA3B2CA3B3C加水量(mL/100g )A 加酶量(mL/100g )B 酶解温度(℃)C 酶解时间(h )D1 10 1 20 1.52 50 4 35 2.5 3907503.5(3) 选择合适的正交表 正交表的选择原则是在能够安排下试验因素和交互作用的前提下,尽可能选用较小的正交表,以减少试验次数。

试验因素的水平数=正交表中的水平数。

因素个数(包括交互作用)小于等于正交表的列数。

各因素及交互作用的自由度之和 < 所选正交表的总自由度,以便估计试验误差。

若各因素及交互作用的自由度之和=所选正交表总自由度,则可采用有重复正交试验来估计试验误差。

正交表选择依据 列数(正交表的列数c ≥因素所占列数+交互作用所占列数+空列) 自由度(正交表的总自由度(a-1)≥因素自由度+交互作用自由度+误差自由度。

)此例有4个3水平因素。

若仅考察4个因素对液化率的影响效果,不考察因素间的交互作用,故宜选用L9(34)正交表。

若要考察交互作用,则应选用L27(313)。

(4) 表头设计 所谓表头设计,就是把试验因素和要考察的交互作用分别安排到正交表的各列中去的过程。

在不考察交互作用时,各因素可随机安排在各列上;若考察交互作用,就应按所选正交表的交互作用列表安排各因素与交互作用,以防止设计“混杂” 。

此例不考察交互作用,可将加水量(A)、加酶量(B)和酶解温度 (C)、酶解时间(D )依次安排在L9(34)的第1、2、3、4列上,如下表所示。

(5)编制试验方案,按方案进行试验,记录试验结果。

把正交表中安排各因素的列(不包含欲考察的交互作用列)中的每个水平数字换成该因素的实际水平值,便形成了正交试验方案。

试验号并非试验顺序,为了排除误差干扰,试验中可随机进行;安排试验方案时,部分因素的水平可采用随机安排。

2.2 试验结果分析3.1.1 不考察交互作用的结果分析极差分析法-R 法 1. 计算(K jm ,k jm ,Rj )2. 判断(因素主次,优水平,优组合)Kjm 为第j 列因素m 水平所对应的试验指标和,kjm 为Kjm 平均值。

由kjm 大小可以判断第j 列因素优水平和优组合。

Rj 为第j 列因素的极差,反映了第j 列因素水平波动时,试验指标的变动幅度。

Rj 越大,说明该因素对试验指标的影响越大。

根据Rj 大小,可以判断因素的主次顺序。

(1)确定试验因素的优水平和最优水平组合 )2(78L根据正交设计的特性,对A1、A2、A3来说,三组试验的试验条件是完全一样的(综合可比性),可进行直接比较。

如果因素A 对试验指标无影响时,那么kA1、kA2、kA3应该相等.由计算可见,kA1、kA2、kA3实际上不相等。

说明,A 因素的水平变动对试验结果有影响。

因此,根据kA1、kA2、kA3的大小可以判断A1、A2、A3对试验指标的影响大小。

由于试验指标为液化率,而kA2>kA3>kA1,所以可断定A2为A 因素的优水平。

同理,可以计算并确定B3、C3、D1分别为B 、C 、D 因素的优水平。

四个因素的优水平组合A2B3C3D1为本试验的最优水平组合,即酶法液化生产山楂清汁的最优工艺条件为加水量50mL/100g ,加酶量7mL/100g ,酶解温度为50℃,酶解时间为1.5h 。

(2)确定因素的主次顺序。

根据极差Rj 的大小,可以判断各因素对试验指标的影响主次。

(3)绘制因素与指标趋势图.以各因素水平为横坐标,试验指标的平均值(kjm )为纵坐标,绘制因素与指标趋势图。

由因素与指标趋势图可以更直观地看出试验指标随着因素水平的变化而变化的趋势,可为进一步试验指明方向。

表 试验结果分析试验结果 (液化率 %) 0 17 24 12 47 28 1 18 4241241701=++=A K 7.131=A K 872847122=++=A K 292=A K 61421813=++=A K 3.203=A K,3.1.2 考察交互作用的试验设计及结果分析实例分析2 某一种抗菌素的发酵培养基由A、B、C 三种成分组成,各有2个水平,除考察A、B、C三个因素的主效外,还考察A与B、B与C的交互作用。

(1) 选用正交表,进行表头设计本试验有3个2水平的因素和两个交互作用需要考察,各项自由度之和为:3×(2-1)+2×(2-1)×(2-1)=5 该正交表中有基本列和交互列之分,基本列就是各因素所占的列,交互列则为两因素交互作用所占的列。

如果将A因素放在第1列,B 因素放在第2列,查表可知,第1列与第2列的交互作用列是第3列,于是将A与B 的交互作用A×B放在第3列。

这样第3列不能再安排其它因素,以免出现“混杂”。

然后将C放在第4列,B×C应放在第6列,余下列为空列,如此可得表头设计。

相关文档
最新文档