广东省河源市紫金县2019届九年级下学期数学测试题

合集下载

2019年最新广东九年级中考数学模拟试卷含答案

2019年最新广东九年级中考数学模拟试卷含答案

14 .如下左图,CD 是 Rt △ABC 斜边 AB 上的高,将△ BCD 沿 CD 折叠, B 点恰好落在AB 的中点 E 处,那么∠ A 等于度.15 .按一定规律排列的一列数:,1,1,□,,,,⋯请你仔细观察,按照此规律方框内的数字应为.16 .如右上图, C 为半圆内一点,O 为圆心,直径AB 长为 2cm ,∠BOC=60 °,∠BCO=90 °,将△BOC 绕圆心 O 逆时针旋转至△B′ OC′,在OA点上,那么边 BC 扫过区域〔图中阴影局部〕的面积为cm 2.三、解答题〔本大题共3 小题,每题6 分共 18 分〕17 .计算:〔π﹣3.14 〕0﹣|sin60°4|+﹣〔〕﹣1.18.先化简,再求值:÷〔﹣〕,其中 a=.19.如图,在△ ABC 中, AB=AC .(1 〕试用直尺和圆规在 AC 上找一点 D ,使 AD=BD 〔不写作法,但需保存作图痕迹〕.(2 〕在〔 1 〕中,连接 BD ,假设 BD=BC ,求∠A 的度数.四、解答题〔本大题共3 小题,每题7 分共 21 分〕20 .某校学生利用双休时间去距学校10km的炎帝故里参观,一局部学生骑自行车先走,过了20min后,其余学生乘汽车沿一样路线出发,结果他们同时到达.汽车的速度是骑车学生速度的2 倍,求骑车学生的速度和汽车的速度.21 .在一次综合实践活动中,小明要测某地一座古塔AE 的高度.如图,塔基顶端B〔和 A 、 E共线〕与地面 C 处固定的绳索的长BC 为 80m .她先测得∠BCA=35然°后,从 C 点沿 AC 方向走 30m 到达 D 点,又测得塔顶 E 的仰角为50 °,求塔高AE .〔人的高度忽略不计,结果用含非特殊角的三角函数表示〕22.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了假设干天的空气质量情况作为样本进展统计,绘制了如下列图的条形统计图和扇形统计图〔局部信息未给出〕.请你根据图中提供的信息,解答以下问题:(1 〕计算被抽取的天数;(2 〕请补全条形统计图,并求扇形统计图中表示“优〞的扇形的圆心角度数;(3 〕请估计该市这一年〔 365 天〕到达“优〞和“良〞的总天数.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.五、解答题〔本大题共3 小题,每题9 分共 27 分〕23 .如图,, A 〔 0, 4〕, B〔﹣ 3, 0〕, C〔 2, 0〕, D 为 B 点关于 AC 的对称点,反比例函数 y=的图象经过D 点.(1 〕证明四边形 ABCD 为菱形;(2 〕求此反比例函数的解析式;〔 3 〕在 y=的图象〔x>0〕上一点N,y轴正半轴上一点M ,且四边形ABMN是平行四边形,求 M 点的坐标.24 .如图,在 Rt △ABC 中,∠ ACB=90 °AO,是△ABC 的角平分线.以O 为圆心, OC 为半径作⊙ O .〔 1〕求证: AB 是⊙ O 的切线.〔 2〕 AO 交⊙ O 于点 E,延长 AO 交⊙ O 于点 D , tanD=,求的值.〔 3〕在〔 2 〕的条件下,设⊙ O 的半径为 3 ,求 AB 的长.。

2019年广东省初中学业模拟考试 数学参考答案及评分标准

2019年广东省初中学业模拟考试 数学参考答案及评分标准

……4 分
(3)将 A(4,–2),B(–2,4)代入 y k1x b ,得 k1 =–1,b=2,
∴一次函数的关系式为 y=–x+2,与 x 轴交于点 C(2,0),
∴图象沿 x 轴翻折后,得 A′(4,2),
S A' BC

(4

2)
(4

2)
1 2

1 2

44

1 2

22
21 题答案图–2 (列表方法略,参照给分)。
P(吃到 B 粽子)= 3 = 1 12 4
答:他第二个吃到的恰好是 B 粽子的概率是 1 。 4
……2 分 ……4 分
……5 分 ……7 分
22. (1)证明:在矩形 ABCD 中,AD=BC,∠A=∠B=90°. ∵E 是 AB 的中点, ∴AE=BE. 在△ADE 与△BCE 中,
……4 分 A
∵AD 平分∠BAC,
∴∠CAD=∠DAB.
……5 分
∵∠ACB=90°,
∴∠DAB+∠B+∠CAD=90°. ∴3∠B=90°. ∴∠B=90°.
D C ……6 分
数学参考答案及评分标准 第 1 页(共 4 页)
B 19 题答案图
四、解答题(二)(本大题 3 小题,每小题 7 分,共 21 分) 20. 解:(1)设 A 型圆珠笔购进 x 支,B 型圆珠笔 y 支,
y
∴∠NA′P=∠NPA,
y
在△A′NP 与△APM 中,
A' NP AMP 90
NA' P MPA

PA' AP
C N A′
P

2019年3月2019届九年级模拟大联考(广东)-数学(全解全析)

2019年3月2019届九年级模拟大联考(广东)-数学(全解全析)

⎩ ⎨ 1 11. 【答案】A1 【解析】∵-1<- 22. 【答案】D<0<1,∴最小的数为-1.故选 A .【解析】从正面看易得第一层有 3 个正方形,第二层中间有一个正方形.故选 D . 3.【答案】B【解析】352 万=3520000=3.52×106,故选 B . 4.【答案】D5.【答案】D【解析】数据 7 出现了三次,次数最多,为众数.故选 D . 6.【答案】A【解析】∵关于 x 的一元二次方程(m −1)x 2−2x −1=0 有两个不相等的实数根,⎧m -1 ≠ 0 ∴ ⎨∆= (-2)2- 4⨯ (m -1) ⨯ (-1) > 0,解得:m >0 且 m ≠1,故选 A .*网 7.【答案】C【解析】360÷36=10,则正多边形的边数为 10.故选 C . 8.【答案】D【解析】因为 B 点坐标为(-4,-2),所以 A 点坐标为(4,2),那么双曲线的解析式为 y = 8,设 Cx⎧mn = 8点坐标为(m ,n ) ,那么⎪(n - m ) ⋅ 4 ⋅ = 6⎧m = 2 ,解得⎨n = 4 ,所以 C 点的坐标为(2,4),故选 D . ⎩⎪ 2 2⎩⎨9.【答案】C10.【答案】A【解析】设CD 的长为x ,△ABC 与正方形DEFG 重合部分( 图中阴影部分) 的面积为y ,当 C 从D 点运动到E 点时,即0 ≤x ≤ 2 时,y =1⨯ 2⨯ 2 -1(2 -x) ⨯ (2 -x) =-1x 2 + 2x .2 2 2当 A 从D 点运动到E 点时,即2 <x ≤ 4 时,y =1⨯[2 - (x - 2)][2 - (x - 2)] =1x 2 - 4x + 8 ,2 2⎧y =-1x2 + 2x (0 ≤x ≤ 2 )∴ y 与x 之间的函数关系⎪⎪y =⎩21x2 - 4x + 8(2 <x ≤ 4)2,由函数关系式可看出A 中的函数图象与所求的分段函数对应.故选A.*网11.【答案】4(x + 2)(x - 2)【解析】4x2 -16 = 4 (x2-22)= 4(x + 2)(x - 2) ,故答案为:4(x + 2)(x - 2) .12.【答案】3 ≤x < 4⎧x - 3 ≥ 0①【解析】⎨⎩3x < 2x + 4②,∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为:3≤x<4.13.【答案】145【解析】如图所示:过点A 作AD⊥BC 于点D,连接AC.∵S = 20 -1⨯ 2⨯5 -1⨯ 2⨯ 4 -1⨯1⨯ 4 = 9 ,S =1⨯BC ⨯AD = 9 ,∴1⨯ 2 5 A D = 9 ,△ABC 2 2 2 △ABC 2 2解得:AD =9 5,故sin∠ABC =AD=.故答案为:.5114.【答案】2AB 145 14515.【答案】7;2n-1【解析】根据题意分析可得:第1 幅图中有1 个.第 2 幅图中有2×2-1=3 个.*网第3 幅图中有2×3-1=5 个.第4 幅图中有2×4-1=7 个.……可以发现,每个图形都比前一个图形多2 个.故第n 幅图中共有(2n-1)个.故答案为:7;2n-1.16.【答案】10π cm2【解析】∵AC 与BD 是⊙O 的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOC,∴图中阴影部分的面积=S扇形AOD +S扇形BOC=2S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×72π⨯52360=10π,故答案为:10π cm2.17.【解析】原式=4×3+22-3-2+1(2 分)33 3 3 2 2=2 +2 -4(4 分)=4 -4.(6 分)x 2÷-x 218. 【解析】原式=(x +1)(x -1) x +1=x 2(x +1)(x -1)⋅x +1 -x 2= - 1 x -1,(3 分)当 x = 时,原式= -1.(6 分)20.【解析】(1)如图,射线 CF 即为所求.(2)∵∠CAD =∠CDA ,∴AC =DC ,即△CAD 为等腰三角形. 又 CF 是顶角∠ACD 的平分线,学&科网∴CF 是底边 AD 的中线,即 F 为 AD 的中点,(5 分)∵E 是 AB 的中点,∴EF 为△ABD 的中位线, 1(3 分)∴EF = 2BD =2.(7 分)22.【解析】(1)200.(2 分)这次活动一共调查的学生数为 80÷40%=200 人,故答案为:200.(2)喜欢科普的学生数为 200×30%=60 人,如图,(4 分)(3)72.(6 分)在扇形统计图中,喜欢漫画的部分所占圆心角是40200×360°=72°.故答案为:72. (4)喜欢“科普常识”的学生人数为 2800×30%=840 名.(7 分)23.【解析】(1)把 A (-1,2)代入 y =-x 2+c 得:-1+c =2,解得:c =3,学&科网 ∴y =-x 2+3,(2 分)把 B (2,n )代入 y =-x 2+3 得:n =-1, ∴B (2,-1),⎩⎨⎧-k + b = 2把 A (-1,2)、B (2,-1)分别代入 y =kx +b 得⎨2k + b = -1 ,⎧k = -1 解得: ,⎩b = 1∴y =-x +1.(4 分)(2) 根据图象得:使二次函数的值大于一次函数的值的 x 的取值范围是-1<x <2.(6 分)(3) 连接 AC 、BC ,设直线 AB 交 y 轴于点 D ,如图,把 x =0 代入 y =-x 2+3 得:y =3, ∴C (0,3),把 x =0 代入 y =-x +1 得:y =1,∴D (0,1),∴CD =3-1=2,则 S △ABC = S △ACD + S △BCD= 1 ⨯ 2⨯ 1+ 1⨯ 2⨯ 2 = 1+ 2 = 3 .(9 分) 2 2∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,(4 分)∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA 是半径,∴PA 是⊙O 的切线.(6 分)2 2 ∴△MBC ∽△BNC , ∴BC MC ,NC BC∴BC 2=NC ×MC , 1∴NC = x ,21∴MN =2x + 21x =2.5x , ∴OM = 2MN =1.25x ,∴OC =2x -1.25x =0.75x ,∵O 是 BD 的中点,C 是 AB 的中点,AD =6, 1∴OC =0.75x = 2解得:x =4,AD =3,∴MO =1.25x =1.25×4=5,∴⊙O 的半径为 5.(9 分)∴△PMN ≌△PDF (ASA ),∴PN =PF .(3 分)②∵PM ⊥PD ,DP =MP ,∴DM 2=DP 2+MP 2=2DP 2,∴DM = DP .∵又∵DM =DN +MN ,且由①可得 MN =DF ,∴DM =DN +DF ,∴DF +DN = DP .(6 分)(2)DN -DF = 2DP .理由如下:过点P 作PM1⊥PD,PM1 交AD 边于点M1,如图,。

2019年广东省中考数学真题试题(含答案)

2019年广东省中考数学真题试题(含答案)

2019年广东省初中学业水平考试数学(含答案)说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A .b 6÷b 3=b 2B .b 3·b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .ba <08.化简24的结果是A .﹣4B .4C .±4D .29.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=210.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 12.如图,已知a ∥b ,∠l=75°,则∠2 =________.13.一个多边形的内角和是1080°,这个多边形的边数是_________.14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=315米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD =2,求ECAE 的值.四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C的圆心角的度数为_______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832 与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?解析卷1.﹣2的绝对值是A .2B .﹣2C .D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×106【答案】B【解析】a ×10n 形式,其中0≤|a|<10.【考点】科学记数法213.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2 B.b3·b3=b9 C.a2+a2=2a2 D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .<0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式.【考点】二次根式9.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0 C .x 1+x 2=2 D .x 1·x 2=2【答案】Db a24a a 2【解析】因式分解x (x-2)=0,解得两个根分别为0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF ,∠AHN=∠GFN ,△ANH ≌△GNF (AAS ),①正确;由①得AN=GN=1,∵NG ⊥FG ,NA 不垂直于AF ,∴FN 不是∠AFG 的角平分线,∴∠AFN ≠∠HFG ,②错误;由△AKH ∽△MKF ,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN ,∴K 为NH 的中点,即FN=2NK ,③正确;S △AFN =AN ·FG=1,S △ADM =DM ·AD=4,∴S △AFN :S △ADM =1:4,④正确. 【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+()﹣1=____________. 【答案】4212131【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【答案】21【解析】由已知条件得x-2y=3,原式=4(x-2y )+9=12+9=21.【考点】代数式的整体思想15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).315【答案】15+15【解析】AC=CD ·tan30°+CD ·tan45°=15+15.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).【答案】a+8b【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)3317.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值: ,其中x=.【答案】解:原式==×=当x=,原式===1+.【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.4-x x-x 2-x 1-2-x x22÷⎪⎭⎫⎝⎛22-x 1-x 4-x x-x 22÷2-x 1-x ()()()1-x x 2-x 2x +x 2x +2222+2222+2DB ADEC AE【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC∴= ∵=2 ∴=2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将EC AE DB AD DB AD EC AE测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种404∴P (甲乙)== 答:同时抽到甲、乙两名学生的概率为. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的623131三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB==,AC==,BC==(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=BC= (或用等面积法AB ·AC=BC ·AD 求出AD 长度)∵S 阴影=S △ABC -S 扇形EAFS △ABC =××=202262+1022262+1022284+54215221102102S 扇形EAF ==5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=图象过点A (﹣1,4) ()25241π xk 2xk2xk 2∴4=,解得k 2=﹣4∴反比例函数表达式为∵反比例函数图象过点B (4,n )∴n==﹣1,∴B (4,﹣1)∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1) ∴,解得 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP :S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC1-k 2x 4-y =x 4-y =44-⎩⎨⎧+=+=b k 41-b -k 411⎩⎨⎧==3b1-k1∴ ∵MN=a+1,BN=4-a∴,解得a= ∴-a+3= ∴点P 坐标为(,) (或用两点之间的距离公式AP=,BP=,由解得a 1=,a 2=-6舍去) 【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.BNMN BP AP =21a -41a =+32373237()()224-3a -1a +++()()223-a 1-a -4++21BP AP =32【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA∴ ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识 25.如题25-1图,在平面直角坐标系中,抛物线y=与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;BCAB AB BE =837 -x 433x 832+(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y==得点D 坐标为(﹣3,) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:837 -x 433x 832+()32-3x 83+32过点D 作DG⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC∽△FOC∴ 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF,OA=1,DG=3,CG=m+∵CO⊥FA ∴FO=OA=1∴,解得m= (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=x+,再求出点C 的坐标)∴点C 坐标为(0,) ∴CD=CE==6∵tan∠CFO== ∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC∥BA∵BF=BO-FO=6∴CE=BFCOCG FO DG =32m32m 13+=3333()223233++FOCO 3∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=(A )当P 在点A 右侧时,m >1 (a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在 (b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=(舍去),m 2=1(舍去),这种不存在 (B )当P 在线段AB 之间时,﹣7<m <1(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时 ∴﹣,解得m 1=﹣11,m 2=1(舍去) 837-m 433m 832+3211DD AD AM PM =3241-m 837-m 433m 832=+35-11DD AD AM PM =3241-m 837-m 433m 832=+35-11AD DD AM PM =3241-m 837-m 433m 832=+432(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴﹣,解得m 1=,m 2=1(舍去) 综上所述,点P 的横坐标为,﹣11,,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想11DD AD AM PM =3241-m 837-m 433m 832=+337-35-337-。

九年级数学下册 各单元综合测试题含答案共12套

九年级数学下册 各单元综合测试题含答案共12套

人教版九年级数学下册第二十六章综合测试卷01一、选择题(每小题4分,共32分)1.已知反比例函数的图象经过点()2,1P -,则这个函数的图象位于()A .第一、第三象限B .第二、第三象限C .第二、第四象限D .第三、第四象限2.下列说法正确的是()A .在2xy =中,y 与x 成正比例B .在2xy =-中,y 与1x成反比例C .在11y x =+中,y 与1x +成反比例D .在213y x=中,y 与x 成反比例3.已知反比例函数()0ky k x=<的图象上有两点()1,A x y ,()22,B x y ,且12x x <,则12y y -的值是()A .正数B .负数C .非负数D .不确定4.(2013·四川攀枝花中考)二次函数()20y ax bx c a =++≠的图象如图所示,则函数ay x=与y bx c =+在同一直角坐标系内的大致图象是()A B C D5.面积为2的ABC △,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()A B C D6.若点()3,4是反比例函数72m y x-=图象上的一点,则此函数图象必过点()A .()6,2-B .()2,6-C .()4,3D .()3,4-7.已知反比例函数ky x=与关于x 的一次函数y kx b =+的图象的一个交点坐标为()2,1-,则点(),k b 关于y 轴的对称点是()A .()2,3-B .()2,3-C .()2,3D .()2,3--8.在同一平面直角坐标系中,函数1y x=-与函数y x =的图象的交点个数是()A .0B .1C .2D .3二、填空题(每小题4分,共32分)9.已知反比例函数()232m y m x -=-的图象过点()4,P n ,则n 的值为________.10.已知反比例函数的图象经过点(),2m 和()2,3-,则m 的值为________.11.已知反比例函数32ay x-=的图象在第二、第四象限,则a 的取值范围是________.12.已知一次函数23y x =--的图象与反比例函数ky x=的图象相交于第四象限内的一个点(),3P a a -,则这个反比例函数的解析式为________.13.反比例函数()10y x x=-<的图象应在第________象限.14.老师给了一个y 关于x 的函数解析式,甲、乙、丙、丁四位同学各指出这个函数的一条性质:甲:函数的图象不过第三象限;乙:函数的图象过第一象限;丙:当1x >时,y 随x 的增大而减小;丁:当2x <时,0y >.已知这四位同学的叙述都正确,请你写出满足上述所有性质的一个函数解析式:________________.15.如图所示,在反比例函数()20y x x=>的图象上有点1P ,2P ,3P ,4P ,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,则123S S S ++=________.16.如图所示,直线y mx =与双曲线ky x=交于A ,B 两点,过点A 作AM x ⊥轴于点M ,连接BM ,若2ABM S =△,则k 的值为________.三、解答题(共36分)17.(9分)为了绿化环境,某单位进行植树造林活动,计划每天植树0.5公顷,6天植完.(1)写出植树时间t (单位:天)与植树速度v (单位:公顷/天)之间的函数解析式.(2)天气预报报近几天有雨,该单位决定3天之内植完,那么每天至少要植树多少公顷?18.(9分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO .在一次矿难事件的调查中发现:从零时起,井内空气中CO 的浓度达到4 mg/L ,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L ,发生爆炸;爆炸后,空气中的CO 浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO 浓度y 与时间x 的函数解析式,并写出相应的自变量的取值范围.(2)当空气中的CO 浓度达到34 mg/L 时,井下3km 的矿工接到自动报警信号,这时他们至少要以多少千米每小时的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?19.(9分)如图所示,已知一次函数()0y kx b k =+≠的图象与x 轴、y 轴分别交于A ,B 两点,且与反比例函数()0my m x=≠的图象在第一象限内交于点C ,CD 垂直于x 轴,垂足为D ,若1OA OB OD ===.(1)求点A ,B ,D 的坐标;(2)求一次函数与反比例函数的解析式.20.(9分)(2013·浙江衢州中考)如图所示,函数为14y x =-+的图象与函数()220k y x x=>的图象交于(),1A a ,()1,B b 两点.(1)求函数2y 的解析式;(2)观察图象,比较当0x >时,1y 与2y 的大小.第二十六章综合测试答案解析一、1.【答案】C【解析】设函数解析式为()0ky k x=≠.因为其图象过点()2,1P -,所以()2120k =⨯=--<,所以其图象位于第二、第四象限.2.【答案】C 3.【答案】D【解析】可分以下三种情况讨论:①若120x x <<,由反比例函数()0ky k x =<的性质可得12y y <,所以120y y -<,即12y y -的值是负数.②若120x x <<,由反比例函数()0ky k x =<的性质可得12y y >,所以120y y ->,即12y y -的值是正数.③若120x x <<,由反比例函数()0ky k x=<的性质可得12y y <,所以120y y -<,即12y y -的值是负数.所以12y y -的值不确定.4.【答案】B【解析】因为二次函数()20y axbx c a =++≠的图象开口向下,所以0a <.因为对称轴经过x 轴的负半轴,所以a ,b 同号,所以0b <.因为图象经过y 轴的正半轴,所以0c >.因为函数ay x=,0a <,所以图象分别在第二、第四象限.因为y bx c =+,0b <,0c >,所以图象经过第一、第二、第四象限.5.【答案】C【解析】因为y 与x 的函数解析式为()40y x x=->,所以其图象为双曲线在第一象限内的一支.6.【答案】C【解析】双曲线上任意点的横、纵坐标的积相等.7.【答案】C【解析】因为两函数的图象相交于点()2,1-,所以点()2,1-既在反比例函数的图象上,又在一次函数的图象上.把点()2,1-的坐标代入反比例函数k y x=中,得2k =-.把点()2,1-的坐标和2k =-代入一次函数y kx b =+中,得3b =,即点(),k b 为()2,3-,点()2,3-关于y 轴的对称点为()23,.8.【答案】A 二、9.【答案】1-【解析】由题意得23120m m ⎧-=-⎨-≠⎩,,解得2m =-,所以4y x -=.把4x =代入4y x -=,得1y =-,即1n =-.10.【答案】3-【解析】设反比例函数的解析式为()0ky k x=≠.由题意得()223k m ==⨯-,所以3m =-.11.【答案】32a >【解析】因为反比例函数32a y x -=的图象在第二、第四象限,所以320a -<.所以32a >.12.【答案】27y x=-【解析】将点P 的坐标(),3a a -代入一次函数的解析式得,323a a -=--,所以3a =.所以点P 的坐标为()3,9-.将点P 的坐标()3,9-代入反比例函数解析式得93k =-.所以27k =-.所以反比例函数的解析式为27y x=-.13.【答案】二【解析】反比例函数1y x=-的图象在第二、第四象限,因为0x <,所以其图象应在第二象限.14.【答案】()10y x x =>或112y x =-+(答案不唯一)【解析】此函数可以是一次函数,也可以是反比例函数.若是一次函数y kx b =+,只需0k <,图象与x 轴交于()2,0点即可;若是反比例函数k y x=,需0k >,且0x >.另外,还可以写其他函数解析式,只要满足题意即可.15.【答案】32【解析】由题意得()11,2P ,()22,1P ,323,3P ⎛⎫ ⎪⎝⎭,414,2P ⎛⎫ ⎪⎝⎭,1S为正方形,故1111S =⨯=.对于2S 来说,它的长为1,宽为点2P 的纵坐标减去点3P 的纵坐标,2211133S ⎛⎫=⨯-= ⎪⎝⎭.同理,32111326S ⎛⎫=⨯-= ⎪⎝⎭.故1231131362S S S ++=++=.16.【答案】2【解析】设(),A x y ,则(),B x y --,则OM x =,AM y =,B点到x 轴的距离为||y y AM -==,所以11222ABM AOM BOM S S S xy xy =+=+=△△△,即2xy =.所以2k =.17.【答案】(1)由题意知0.56tv =⨯,所以3t v=.即t 与v 之间的函数解析式为()30t v v=>.(2)当3t =时,有33v =,所以313v ==,即每天至少要植树1公顷.18.【答案】(1)因为爆炸前CO 浓度呈直线型增加,所以可设y 与x 的函数解析式为()110y k x b k =+≠.由图象可知1y k x b =+过点()0,4和点()7,46,所以14746b k b =⎧⎨+=⎩,,解得164.k b =⎧⎨=⎩,所以64y x =+,此时自变量x 的取值范围是07x ≤≤.因为爆炸后浓度成反比例下降,所以可设y 与x 的函数解析式为()220k y k x=≠.由图象知kiy x =过点()7,46,所以2467k =.所以2322k =.所以322y x=,此时自变量x 的取值范围是7x >.(2)当34y =时,由64y x =+,得6434x +=,5x =.所以撤离的最长时间为752-=(h ).所以撤离的最小速度为32 1.5÷=(km/h ).(3)当4y =时,由322y x=得,80.5x =,80.5773.5-=(h ).所以矿工至少在爆炸后73.5h 才能下井.19.【答案】(1)因为1OA OB OD ===,所以A ,B ,D 三点的坐标为()1,0A -,()0,1B ,()1,0D .(2)因为点A ,B 在一次函数y kx b =+的图象上,所以01k b b -+=⎧⎨=⎩,,解得11.k b =⎧⎨=⎩,所以一次函数的解析式为1y x =+.因为点C 在一次函数1y x =+的图象上,CD x ⊥轴,且1OD =,所以点C 的横坐标为1,纵坐标为112+=,即点C 的坐标为()1,2.又因为点C 在反比例函数my x=的图象上,所以2m =,所以反比例函数的解析式为2y x=.20.【答案】(1)把点A 的坐标代入14y x =-+,得41a -+=,解得3a =,所以()3,1A .把点A 的坐标代入22=k y x的,得23k =.所以函数2y 的解析式为23y x=.(2)由图象可知,当01x <<或3x >时,12y y <;当1x =或3x =时,12y y =;当13x <<时,12y y >.人教版九年级数学下册第二十七章综合测试卷01一、选择题(每小题3分,共42分)1.要做甲、乙两个形状相同的三角形框架,已有三角形框架甲,它的三边长分别是50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,那么符合条件的三角形共有()A .1种B .2种C .3种D .4种2.如图所示,在ABC △中,DE BC ∥,DF AB ∥,则下列等式错误的是()A .AE ADAB AC=B .CD DFAC AB=C .BE CDAE AD=D .BF BECF AE=3.在太阳光下,同一时刻物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么,影长为30m 的旗杆高为()A .20cmB .18cmC .16cmD .15cm4.如果一个三角形的一条高将这个三角形分成两个相似的三角形,那么这个三角形必是()A .等腰三角形B .任意三角形C .直角三角形D .直角三角形或等腰三角形5.如图所示,已知点M 是ABCD 上AB 边的中点,CM 交BD 于点E ,则图中阴影部分面积与ABCD 面积之比为()A .13B .14C .25D .5126.如图所示,ABC △与DEF △位似,且A 是OD 的中点,则等BCEF=()A .12B .13C .14D .237.如图所示,斜拉桥是利用一组钢索把桥面重力传递到耸立在两侧的高塔上的桥梁,它不需建造桥墩,图中1A B 1,22A B ,…,55A B .是斜拉桥上5条互相平行的钢索,并且1B ,2B ,3B ,4B ,5B .被均匀地固定在桥上,如果最长钢索180A B =1m ,最短钢索5520A B =m ,那么钢索33A B ,22A B 的长分别为()A .50m ,65mB .50m ,35mC .50m ,57.5mD .40m ,42.5m8.如图所示,若DAC ABC △∽△,则需满足()A .AC ABCD BC=B .CD BCDA AC=C .2CD AD DB = D .2AC BC CD= 9.如图所示,ABC △是等边三角形,它被一平行于BC 的矩形所截,AB 被截成三等份,则图中阴影部分的面积是ABC △面积的()A .19B .29C .13D .4910.如图所示,在ABC △中,3AB AD =,DE BC ∥,EF AB ∥,若9AB =,2DE =,则线段FC 的长度是()A .6B .5C .4D .311.在ABCD 中,10AB =,6AD =,E 是AD 的中点,在AB 上取一点F ,使CBF CDE △∽△,如图所示,则AF 的长是()A .5B .8.2C .6.4D .1.812.如图所示,在正方形ABCD 的外侧作等边ADE △,BE ,CE 分别交AD 于G ,H ,设CDH △,GHE △的面积分别为1S ,2S ,则()A .1232S S =B .1223S S =C .122S =D 122S =13.如图所示,把PQR △沿着PQ 的方向平移到P Q R '''△的位置,它们重叠部分的面积是PQR △面积的一半,若PQ =,则此三角形移动的距离PP '是()A .12B .2C .1D 114.(2012·贵州毕节中考)如图所示,在平面直角坐标系中,以原点O 为位似中心,将ABO △扩大到原来的2倍,得到A BO '△.若点A 的坐标是()12,,则点A '的坐标是()A .()24,B .()12-,-C .()24--,D .()2,1--二、填空题(每空3分,共18分)15.如图所示,两个三角形的关系是________(填“相似”或“不相似”),理由是________.16.在ABC △中,5AB =,2AC =,AD 平分BAC ∠交BC 于D ,DE AC ∥交AB 于E ,则BDE △与ABC△的周长之比是_____________.17.已知ABC △与DEF △相似且面积比为4:25,则ABC △与DEF △的相似比为________.18.如图所示,锐角三角形ABC 的边AB ,AC 上的高线CE ,BF 相交于点D ,请写出图中的两对相似三角形________.(用相似符号连接)19.ABO △的顶点坐标分别为()3,3A -,()3,3B ,()0,0O ,试将ABO △放大为EFO △,使EFO △与ABO △的相似比为2:1,则E 点的坐标为,F 点的坐标为________.20.如图所示,ABC △与A B C '''△是位似图形,点O 是位似中心,若2OA AA '=,8ABC S =△,则A B C S '''=△________.三、解答题(共60分)21.(10分)如图所示,90ACB CDA ∠=∠=︒,4AC =,8AB =,当AD 为何值时,以A ,B ,C 为顶点的三角形与以A ,C ,D 为顶点的三角形相似.22.(10分)如图所示,学校的围墙外有一旗杆AB ,甲在操场上C 处直立3m 高的竹竿CD ,乙从C 处退到E 处恰好看到竹竿顶端D 与旗杆顶端B 重合,量得3CE =m ,乙的眼睛到地面的距离 1.5FE =m ;丙在1C 处也直立3m 高的竹竿11C D ,乙从E 处退后6m 到1E 处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D ,与旗杆顶端B 也重合,量得114C E =m.求旗杆AB 的高.23.(12分)(2012·山东潍坊中考)如图所示,ABC △的两个顶点B ,C 在圆上,顶点A 在圆外,AB ,AC 分别交圆于E ,D 两点,连接EC ,BD .(1)求证:ABD ACE △∽△;(2)若BEC △与BDC △的面积相等,试判定ABC △的形状.24.如图所示,已知ABC △是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t (单位:s ),解答下列问题:(1)当2t =s 时,判断BPQ △的形状,并说明理由;(2)设BPQ △的面积为S (单位:2cm ),求S 与t 的函数解析式;(3)作QR BA ∥交AC 于点R ,连接PR ,当t 为何值时,APR PRQ △∽△?25.(14分)如图所示,在正方形ABCD 中,E 是BC 上的一点,连接AE ,作BF AE ⊥,垂足为H ,交CD 于F ,作CG AE ∥,交BF 于G 求证:(1)CG BH =;(2)2FC BF GF = ;(3)22FC GF AB GB=.第二十七章综合测试答案解析一、1.【答案】C【解析】由于甲和乙的对应边不确定,故有三种对应关系,即50cm 和20cm 是对应边,60cm 与20cm 是对应边,80cm 和20cm 是对应边,故选C .2.【答案】D【解析】DE BC ∥,AE AD AB AC ∴=,BE CD AE AD =,∴A ,C 正确;D F AB ∥,CDF CAB ∴△∽△,CD DFAC AB∴=,BF AD CF DC =.又AD AE DC BE =,BF AECF BE∴=,∴B 正确,D 错调,故选D .3.【答案】B【解析】设旗杆高为m x ,由题意得1.52.530x=,18x ∴=.4.【答案】D【解析】如图所示,若ADB ADC △∽△,则B C ∠=∠,AB AC ∴=,即ABC △为等腰三角形;若ADB CDA △∽△,则B CAD ∠=∠.90B BAD ∠+∠=︒ ,90CAD BAD ∠∴∠+=︒,即90BAC ∠=︒,ABC∴△为直角三角形,故该三角形为直角三角形或等腰三角形.5.【答案】A【解析】设BM E S x =△,DC AB ∥,CDE MBE ∴ △△,DE DCEB MB∴=.又因为M 是AB 的中点,AB DC =,21DE DC EB MB ∴==.2CDE MBE S DC S MB ⎛⎫∴= ⎪⎝⎭△△,即=4CDE S x△,4CDE S x ∴=△.MDE △与MBE △的高相同,2MED MEB S DES EB∴==△△,2MED x ∴=△,同理2BEC x ∴=△.23S DMB x x x ∴=+=△,又因为D M 是ABD △的中线,224DAM DMB S S x x x∴==+=△△,44312ABC D C D E BM E D AMS S S S S x x x x x ∴=++=+++= △△△阴+.41123ABCDS x S x ∴== 阴,故选A .6.【答案】A【解析】ABC △与DEF △位似,A BD E ∴∥,BC EF ∥,OA OBOD OE∴=,OBC OEF △∽△,BC OB OA EF OE OD ∴==.又因为A 是OD 的中点,12BC OA EF OD ∴==.7.【答案】A【解析】设12233445B B B B B B B B x ====.5511A B A B ∥,5511OA B OA B ∴ △△.555111A B OB A B OB ∴=,即5520=804OB OB x+,543OB x ∴=.同理333111A B OB A B OB =,222111A B OB A B OB =,334348043x x xA B x x ++∴=+,2243348043x xA B x x +∴=+.3350A B ∴=m ,2265A B =m .故选A .8.【答案】D【解析】C ∠ 是公共角,要使DAC ABC △∽△,∴只需AC CDCB AC=,即2AC CB CD = ,故选D .9.【答案】C 【解析】设AEFS x =△.由题意得AE EH HB ==,EF HG ∥,AEF AHG ∴△∽△,214AEF AHG S AE S AH ⎛⎫∴== ⎪⎝⎭△△,44AHG AEF S S x ∴==△△,43AH G AEF EH G F S S S x x x ∴=-=-=△△四边形.EF BC ∥,AEF ABC ∴△∽△,219AEF ABC S AE S AB ⎛⎫∴== ⎪⎝⎭△△.99ABC AEF S S x ∴==△△,31=93EHGF ABC S x S x ∴=四边形△.10.【答案】C【解析】DE BC ∥,EF AB ∥,四边形B F E D 为平行四边形,2BF DE ∴==.FC CE BF AE =,CE BDAE AD=,FC BD BF AD ∴=.又3AB AD =,9AB =,3AD ∴=,6BD =.6=23FC ∴,4FC ∴=.11.【答案】B 【解析】E 是AD 的中点,132DE AD =∴=.在ABCD 中,10CD AB ==,6BC AD ==.CBF CDE △∽△.CB BF CD DE ∴=,即6103BF=,1.8BF ∴=,10 1.88.2AF AB BF =-=-=.12.【答案】A【解析】设正方形的边长为x ,作EM AD ⊥于M.22EM AE x ∴==.9060150BAE BAG GAE ∠=∠+∠=︒+︒=︒,AB AE =,()1180150152AEG ∴∠=︒-︒=︒,601575EGH GAE AEG ∠=∠+∠=︒+︒=︒,同理75EHG ∠=︒,EG EH ∴=,EMH EMG ∴△≌△,∵EM CD ∥,22EMH S S ∴=△.EG EH = ,EMH CDH △∽△,2EMH CDH S ED S CD ⎛⎫∴= ⎪⎝⎭△△,即2132EMH x S S x ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭△,134EMH S S =△,211332242EMH S S S S ∴==⨯=△,即1232S S =,故选A .13.【答案】D【解析】由题意知R P RP ''∥,MP Q RPQ ' △△,2MP Q RPQS QP S QP ''⎛⎫∴= ⎪⎝⎭△△,即212=.1QP ∴'=,1PP '∴=-.14.【答案】C【解析】ABO △与A B O ''△位似,原点O 为位似中心,位似比为1:2,且不在同一象限,则点A '的横、纵坐标分别为点A 的横、纵坐标的2-倍.二、15.【答案】相似三边对应成比例,两三角形相似【解析】4652697.53===,三边对应成比例,两三角形相似.16.【答案】5:7【解析】AD 平分BAC ∠,BAD CAD ∠=∠∴.又DE AC ∥,EDA DAC ∠=∠∴,E D A E A D ∠=∠,D E A E =.DE AC ∥,BDE BCA ∴△∽△,DE BE AC BA ∴=,即525DE DE -=,107DE ∴=,105727DE AC ∴==.BDE ∴△与ABC △的周长之比为5:7.17.【答案】2:5【解析】相似三角形面积的比等于相似比的平方,面积比为4:25.相似比为2:5.18.【答案】BDE CDF △∽△,ABF ACE△∽△【解析】BF AC ⊥ ,CE AB ⊥,BFC AFB AEC BEC ∠=∠=∠=∠∴.BED CFD ∠=∠ ,BDE CDF ∠=∠,BDE CDF ∴△∽△.A A ∠=∠ ,AFB AEC ∠=∠,ABF ACE ∴△∽△.19.【答案】()6,6-或()6,6-()6,6或()6,6--【解析】把A ,B 两点的横坐标和纵坐标分别乘2或2-,即得到点E ,F 的横坐标和纵坐标.20.【答案】18【解析】2OA AA '= ,:2:3OA OA '∴=,:4:9ABC A B C S S '''=△△.8ABC S ∴=△,18A B C S '''∴=△.三、21.【答案】90ACB CDA ∠=∠=︒ ,当AB AC AC AD =时,ABC ACD △△,即844AD =,2A D ∴=.当AB ACCA CD=时,ABC CAD △△,即844CD=,2CD ∴=,AD ∴=.∴当2AD =或A D =时,以A ,B ,C 为顶点的三角形与以A ,C ,D 为顶点的三角形相似.22.【答案】如图所示,设直线1F F 与AB ,CD ,11C D 分别交于点G ,M ,N ,令BG x =,GM y =.MD GB ∥,DM MFBG GF ∴=.又 1.5DM DC EF =-=,3MF CE ==,1.533x y=+.又1ND GB ∥,111D N NF BG GF ∴=.又1 1.5D N DM ==,136GF GM MF FF y =++=++1, 1.5463x y ∴=++,解方程组 1.5331.5463x y xy ⎧=⎪+⎪⎨⎪=⎪++⎩,得915x y =⎧⎨=⎩.∴旗杆AB 的高为9 1.510.5+=(m ).23.【答案】(1)证明:∵弧ED 所对的圆周角相等,EBD ECD ∠=∠∴.又A A ∠=∠,ABD ACE ∴△∽△.(2)解法1:BEC BCD S S = △△,BCE ABC BEC S S S =-△△△,ABD BAC BCD S S S =-△△△,ACE ABD S S ∴=△△.又由(1)知ABD ACE △△,∴对应边之比等于1,AB AC ∴=,即ABC △为等腰三角形.解法2:连接ED .BEC △与BCD △的面积相等,有公共底边BC ,∴高相等,即E ,D 两点到BC 的距离相等,ED BC ∴∥.BCE CED ∠=∠∴.又CED CBD ∠=∠,BCE CBD ∠=∠∴.由(1)知ABD ACE △∽△,ABD ACE ∠=∠∴,ABD CBD ACE BCE ∠+∠=∠+∠,ABC ACB ∴∠=∠,AB AC ∴=,即ABC △为等腰三角形.24.【答案】(1)BPQ △是等边三角形.理由:当2t =s 时,212AP =⨯=,224BQ =⨯=.624BP AB AP =∴=--=.BQ BP ∴=.又60B ∠=︒,BPQ ∴△是等边三角形.(2)过Q 作QE AB ⊥,垂足为E .由2QB t =,得2 60Q E tsin =,AP t =,故6PB t =-.()11622BPQ S BP QE t ∴=⨯=-△.(3)QR BA ∥,60QRC A ∠=∠=∴︒,60RQC B ∠=∠=︒.又60C ∠=︒,QRC ∴△是等边三角形,62QR RC QC t ∴===-.又BE t =,662EP AB AP BE t t t ∴=--=--=-.EP QR ∥,EP QR =,故四边形EPRQ 是平行四边形.PR EQ ∴=.而APR PRQ △△,PR QRAP PR ∴=,即t ,65t ∴=.∴当65t =s 时,APR PRQ △△.25.【答案】(1)BF AE ⊥ ,CG AE ∥,CG BF ∴⊥.∵在正方形ABCD 中,90ABH CBG ∠+∠=︒,且90CBG BCG ∠+∠=︒,90BAH ABH ∠+∠=︒,BAH CBG ∠=∠∴,ABH BCG ∠=∠,AB BC =,ABH BCG ∴△≌△,CG BH ∴=.(2)BFC CFG ∠=∠ ,90BCF CGF ∠=∠=︒,CFG BFC ∴△∽△,FC GFBF FC∴=,即2FC BF GF = .(3)∵在Rt BCF △中,CG BF ⊥,CBG FBC ∠=∠∴,90BGC BCF ∠=∠=︒,CBG FBC ∴△∽△.BC BG BF BC ∴=,2 BC BG BF ∴= .AB BC = ,2AB BG BF ∴= ,22FC FG BF FG AB BG BF BG ∴== ,即22FC GF AB GB=.人教版九年级数学下册第二十八章综合测试卷01一、选择题(每小题3分,共36分)1.如图所示,在正方形网格中,tan α等于()A .1B .2C .12D .52.如图所示,已知在Rt ABC △中,90C ∠=︒,4AC =,1tan 2A =,则BC 的长是()A .2B .8C .25D .453.已知α为锐角,()1cos 902α︒-=,则α∠的度数为()A .30︒B .45︒C .60︒D .90︒4.如图所示,在Rt ABO △中,斜边1AB =.若OC BA ∥,36AOC ∠=︒,则()A .点B 到AO 的距离为sin 54︒B .点B 到AO 的距离为tan 36︒C .点A 到OC 的距离为sin 36sin 54︒︒D .点A 到OC 的距离为cos 36sin 54︒︒5.将()05-,()33-,()2cos30--︒这三个实数按从小到大的顺序排列,正确的顺序是()A .()()()3235cos 30----︒<<B .()()()32cos 3053--︒--<<C .()()()3253cos 30----︒<<D .()()()32cos 3035--︒--<<6.一直角三角形的两条边长分别为3,4,则较小锐角的正切值为()A .34B .43C .34或73D .以上答案都不对7.若A ∠是锐角,且2sin 5A =,则A ∠的取值范围是()A .030A ︒︒<∠<B .3045A ︒︒<∠<C .4560A ︒︒<∠<D .6090A ︒︒<∠<8.河堤横断面如图所示,堤高 5 m BC =,迎水坡AB 的坡比为BC 与水平宽度AC 之比),则AC 的长为()A .B .10mC .15mD .9.在等腰ABC △中,一腰上的高为1,腰与底边的夹角为15°,则ABC △的面积为()A .1B C .12D .1410.若菱形的边长为1cm ,其中一内角为60°,则它的面积为()A 2B 2C .22 cmD .211.如图所示,在ABC △中,AD BC ⊥于D ,CE AB ⊥于E ,且2BE AE =,已知AD =,tan BCE ∠,那么CE 等于()A .B .2-C .D .12.下图是以ABC △的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD AB ⊥交AB 于D .已知3cos5ACD ∠=,4BC =,AC 则的长为()A .1B .203C .3D .163二、填空题(每小题3分,共24分)13.计算2sin 60tan 30sin 45︒÷︒+︒=________.14.如图所示,在Rt ABC △中,90C ∠=︒,3AC =,4BC =,则sin A =________.15.如图所示,P 为α∠的边OA 上一点,且P 点的坐标为()3,4,则sin cos αα+=________.16.图是某超市自动扶梯的示意图,大厅两层之间的距离 6.5 m h =,自动扶梯的倾斜角为30°,若自动扶梯运行速度为0.5 m/s v =,则顾客乘自动扶梯上一层楼的时间为________s .17.在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200 m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图所示),那么,由此可知B ,C 两地相距________m .18.数学实践探究课中,老师布置给同学们一个测量学校旗杆的高度的作业.如图所示,小民所在的学习小组在距离旗杆底部10m 的地方,用测角仪(测角仪的高度忽略不计)测得旗杆顶端的仰角为60°,则旗杆的高度是________m .19.如图所示,在顶角为30°的等腰三角形ABC △中,AB AC =,若过点C 作CD AB ⊥于点D ,则15BCD ∠=︒,根据图形计算tan 15︒=________.20.如图所示,小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得 4 m CD =,10 m BC =,CD 与地面成30°角,且此时测得1m 长的杆的影子长为2m ,则电线杆的高度约为________m .(结果保留到0.1 m 1.41≈ 1.73≈)三、解答题(共60分)21.(10分)(1)计算:()1120122|3tan 303π-⎛⎫--++︒ ⎪⎝⎭.(2)先化简,再求代数式的值:222111a a a a a +⎛⎫+÷ ⎪+-+⎝⎭,其中()20121tan 60a =-+︒.22.(8分)如图所示,水渠边有一棵大木瓜树,树干DO (不计粗细)上有两个木瓜A ,B (不计大小),树干垂直于地面,量得=2 m AB ,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO .(结果精确到1m ) 1.73≈ 1.41≈)23.(9分)一副直角三角板如图所示放置,点C 在FD 的延长线上,AB CF ∥,90F ACB ∠=∠=︒,45E ∠=︒,60A ∠=︒,10AC =,试求CD 的长.24.(12分)如图所示,梯形ABCD 是拦水坝的横截面(图中i =DE 与水平宽度CE 的比),60B ∠=︒, 6 m AB =, 4 m AD =,求拦水坝的横截面ABCD 的面积.(结果精确到20.1 m ,1.414≈)25.(10分)如图所示,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60°,然后他从P 处沿坡角为45°的山坡向上走到C 处,这时,30 m PC =,点C 与点A 恰好在同一水平线上,点A ,B ,P ,C 在同一平面内.(1)求居民楼AB 的高度;(2)求C ,A 之间的距离.(精确到0.1m 1.41≈ 1.73≈ 2.45≈)26.(11分)如图,某海域有两个海拔均为200米的海岛A 和海岛B ,一勘测飞机在距离海平面垂直高度为1100m 的空中飞行,飞行到点C 处时测得正前方一海岛顶端A 的俯角是60°,然后沿平行于AB 的方向水平飞行41.9910 m ⨯到达点D 处,在D 处测得正前方另一海岛顶端B 的俯角是45°,求两海岛间的距离AB .第二十八章综合测试答案解析一、1.【答案】B 【解析】2tan ==21ααα=的对边的邻边.2.【答案】A 【解析】∵1tan 2BC A AC ==,所以122BC AC ==.3.【答案】A【解析】∵()1cos 902α︒-=,∴9060α︒-=︒,∴30α∠=︒.4.【答案】C【解析】B 到AO 的距离是指BO 的长.∵AB OC ∥,∴36BAO AOC ∠=∠=︒.在Rt BOA △中,∵90BOA ∠=︒,1AB =,∴.sin 36BOAB︒=,∴sin 36=sin 36BO AB =︒︒,故选项A 、B 均错误.过A 作AD OC ⊥于D ,则AD 的长是点A 到OC 的距离,∵36BAO ∠=︒,90AOB ∠=︒,∴54ABO ∠=︒.∵sin 36AD AO ︒=,∴·sin 36AD AO =︒.∵sin 54AOAB=,∴·sin 54AO AB -︒,∴·sin54·sin 36sin54sin36AD AB =︒︒=︒⋅︒,故选项C 正确,D 错误.5.【答案】A【解析】∵(01=,(3=-()224cos3023--⎛-︒=-= ⎝⎭,∴413-<,即((()32cos30--︒<<.6.【答案】C【解析】当4为斜边时,较小锐角的正切值为3;当4为直角边时,较小锐角的正切值为34.7.【答案】A 【解析】∵1sin302︒=,2sin 5A =,∴sinA sin 30︒<,∴30A ︒∠<.8.【答案】A【解析】∵tanBC A AC ==5AC =,∴AC =.9.【答案】A【解析】如图,过B 作BD AC ⊥,在Rt ABD △中,21530BAD ∠=⨯︒=︒,∴2AB =,∴12112ABC S =⨯⨯=△.10.【答案】A【解析】如图所示,作AE BC ⊥于点E .∵sin AE B AB=,∴()sin 1sin 60cm 2AE AB B ==⨯︒= ,∴()2=1cm 22ABCD S BC AE =⨯= 菱形.11.【答案】D【解析】∵tan BCE =∠,∴=30BCE ︒∠,∴=60B ︒∠.∵sin AD B AB =,∴6sin AD AB B ===.又2BE AE =,∴226433BE AB ==⨯=.∵tan BE BCE CE =∠,∴4tan tan30BE CE BCE ===︒∠.12.【答案】D【解析】∵AB 为直径,∴90ACB ∠=︒,∴90ACD BCD ∠+∠=︒.∵CD AB ⊥,∴90BCD B ∠+∠=︒,∴B ACD ∠=∠.∵3cos 5ACD ∠=,∴3cos =5B ,∴4tan 3B =.∵4BC =,4tan 43AC AC B BC ===,∴163AC =.二、13.【答案】2【解析】2231sin 60tan 30sin 45223222⎛︒÷︒+︒==+= ⎝⎭.14.【答案】45【解析】5AB ===,4sin 5BC A AB ==.15.【答案】75【解析】如图所示,过点P 作PB 垂直x 轴于点B .∵P 点的坐标为()3,4,∴3OB =,4PB =,∴5OP =.∴437sin cos =555PB OB OP OP αα+=+=+.16.【答案】26【解析】 6.5131sin 302h AB ===︒,∴13260.5AB t v ===(s ).17.【答案】200【解析】由题意得30CAB ∠=︒,120ABC ∠=︒,∴30ACB ∠=︒,∴CAB ACB ∠=∠,∴200 m AB BC ==.18.【答案】【解析】由题意得旗杆的高度是10tan 6010⨯︒==m ).19.【答案】2【解析】设CD x =,∵30A ∠=︒,∴2AC x =,∴2AB x =.∵tan CD A AD =,∴tan tan 30CD xAD A ===︒,∴(22DB AB AD x x =-==,∴(2tan 152x DBCD x-︒===-20.【答案】8.7【解析】如图D-6所示,延长AD ,BC ,交于点F ,作DE CF ⊥于点E .∵30DCE ∠=︒, 4 m CD =,∴ 2 m DE =,CE ===m ).∵1m 长的杆的影子的长为2m ,∴12DE EF =,∴2 4 m EF DE ==,∴(10414 m BF BC CE EF =++=+=+.∴12AB BF =,即(111478.722AB BF ==+=≈(m ).三、21.【答案】(1)解:原式=132303-+-⨯==.(2)解:原式()()()2121=11a a a a a a-++++-()()313=111a a a a a a +=+-- ,把()20121tan601a =-+︒===.22.【答案】解:设OC x =,在Rt AOC △中,∵45ACO ∠=︒,∴OA OC x ==.在Rt BOC △中,∵30BCO ∠=︒,∴·tan 303OB OC x =︒=.∵23AB OA OB x x =-=-=,解得35x =+≈.因此,C 处到树于DO 的距离CO 约为5m .23.【答案】解:如图,过点B 作BM FD ⊥于点M .在ACB △中,90ACB ∠=︒,60A ∠=︒,10AC =,∴30ABC ∠=︒,tan 60BC AC =︒=.∵AB CF ∥,∴30BCM ABC ∠=∠=︒.∴1sin302BM BC =︒== ,1cos30152CM BC === .在EFD △中,90F ∠=︒,45E ∠=︒,∴45EDF ∠=︒,∴MD BM ==15CD CM MD =-=-24.【答案】解:过点A 作AF BC ⊥,垂足为F .在Rt ABF △中,60B ∠=︒, 6 m AB =,∴sin 6sin60AF AB B ==︒=(m ),cos 6cos603BF AB B ==︒=(m ).∵AD BC ∥,AE BC ⊥,DE BC ⊥,∴四边形AFED 是矩形.∴DE AF ==, 4 m FE AD ==.在Rt CDE △中,ED i EC ==∴9EC ==(m ).∴34916BC BF FE EC =++=++=(m ).∴()()()211=4+1652.0m 22ABCD S AD BD DE +=⨯⨯≈ 梯形因此,拦水坝的横截面ABCD 的面积约为252.0 m .25.【答案】(1)解:过点P 作PD AC ⊥,垂足为D ,则45CPD PCD ∠=∠=︒,30APD ∠=︒.在Rt PCD △中,sin45CD PD PC ==︒=.易得四边形ABPD 为矩形,∴21.2AB PD ==≈(m ).(2)解:在Rt APD △中,tan AD APD PD ∠==∴AD =.∴33.4AC AD DC =+=≈(m ).26.【答案】解:如图,过点A 作AE CD ⊥于点E ,过点B 作BF CD ⊥,交CD 的延长线于点F ,连接AB .∵AB CD ∥,∴90AEF EFB ABF ∠=∠=∠=︒,∴四边形ABFE 为矩形,∴AB EF =,AE BF =.由题意可知:1100200900AE BF ==-=(m ),41.9910 m=19900 m CD =⨯.∴在Rt AEC △中,60C ∠=︒,900 m AE =,∴tan 60AE CE ===︒m ).在Rt BFD △中,45BDF ∠=︒,900 m BF =.∴900===900tan 451BF DF ︒(m )∴(1990090020800AB EF CD DF CE ==+-=+-=-m ).因此,两海岛之间的距离AB 是(20800-m .人教版九年级数学下册第二十九章综合测试卷01一、选择题(每小题3分,共36分)1.投影不可能为一条线段的是()A.线段B.正方形C.正五边形D.球2.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的3.两个不同长度的物体,在同一时刻同一地点的太阳光下,得到的投影的长度关系是()A.相等B.长的较长C.短的较长D.不能确定4.在太阳光的投影下,正方形所形成的影子可能是()A.正方形B.平行四边形或一条线段C.矩形D.菱形5.(2012·湖南益阳中考)下列命题是假命题的是()A.中心投影下,物高与影长成比例B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径6.(2012·湖北随州中考)如图所示,下列四个立体图形中,主视图与左视图相同的有()A.1个B.2个C.3个D.4个7.如图是由一些完全相同的小立方块搭成的立体图形的三视图,那么搭成这个立体图形所用的小立方块的块数是()A.5B.6C.7D.88.(2012·湖北黄冈中考)如图所示,水平放置的圆柱体的三视图是()A B C D9.用两张完全相同的矩形纸片分别卷成两个形状不同的柱面(圆柱的侧面),设较高圆柱的侧面积和底面半径分别是1S ,和1r ,较矮圆柱的侧面积和底面半径分别是2S 和2r ,那么()A .12S S =,12r r =B .12S S =,12>r r C .12S S =,12<r r D .12S S ≠,12r r ≠10.长方体的主视图与左视图如图所示(单位:cm ),则其俯视图的面积是()A .122cmB .82cmC .62cmD .42cm 11.(2012·黑龙江鸡西中考)小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图所示),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的展开图可能是()A B C D12.李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A .37B .33C .24D .21二、填空题(每空3分,共24分)13.如图所示是由若干个大小相同的小正方体堆砌而成的立体图形,那么其三视图中面积最小的是________。

2019年广东中考数学真题--含解析

2019年广东中考数学真题--含解析

2019年广东省初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019广东省,1,3分) 2-的绝对值是 A.2B.2-C.12D.2±【答案】A【解析】本题考查绝对值的概念,2-的绝对值是2,故选A 。

【知识点】绝对值2.(2019广东省,2,3分)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为 A.62.2110⨯ B.52.2110⨯ C.322110⨯ D.60.22110⨯【答案】B【解析】本题考查用科学记数法表示较大的数,221000=52.2110⨯,故选B 。

【知识点】科学记数法3.(2019广东省,3,3分) 如图,由4个相同正方体组合而成的几何体,它的左视图是A. B. C. D.【答案】A【解析】本题考查简单几何体的三视图,从左边看,看到的图形是,故选A 。

【知识点】三视图4.(2019广东省,4,3分) 下列计算正确的是 A.632b b b ÷=B.339b b b ⋅=C.2222a a a +=D.()336a a =【答案】C【解析】本题考查整式的相关运算,633b b b ÷=,33336b b b b +⋅==,2222a a a +=,()33339a a a ⨯==,正确的是C ,故选C 。

【知识点】整式的运算5.(2019广东省,5,3分) 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A. B. C. D.【答案】C【解析】本题考查中心对称图形与轴对称图形的概念 【知识点】中心对称图形 轴对称图形6.(2019广东省,6,3分) 数据3、3、5、8、11的中位数是 A.3B.4C.5D.6【答案】C【解析】本题考查中位数的概念,将数据从小到大排列,位于最中间的一个数或两个数的平均数为中位数,在3、3、5、8、11五个数中最中间的数是5,所以中位数是5,故选C 【知识点】中位数7.(2019广东省,7,3分) 实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A.a b >B.a b <C.0a b +>D.0ab<【答案】D【解析】本题考查实数大小的比较,绝对值的大小比较,两数和与两数商的符号,在数轴上右边的点所表示的数,总比左边的点所表示的数大,观察点A ,B 在数轴上的位置及到原点的距离,可以判断a<b, a b >,a+b<0, 0a b <所以成立的式子为D ,故选D 。

2019年最新广东九年级中考数学模拟试卷含答案

2019年最新某某九年级中考数学模拟试卷含答案(总分:120分,用时:100分钟)学校:___________某某:___________班级:___________得分:___________一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在3,﹣1,0,﹣2这四个数中,最大的数是()A.0B.6 C.﹣2 D.32.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.43.下列各式中,正确的是()A.2a+3b=5ab B.﹣2xy﹣3xy=﹣xy C.﹣2(a﹣6)=﹣2a+6 D.5a﹣7=﹣(7﹣5a)4.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2C.b(a2﹣b2)D.b(a+b)25.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°6.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.87.在▱ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条A.AF=CE B.AE=CFC.∠BAE=∠FCD D.∠BEA=∠FCE8.已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值X围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠09.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.110.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y … 4 0 ﹣2 ﹣2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣二、填空题(本大题共6小题,每小题4分,共24分)11.据民政部消息,截至2014年底,我国60岁以上老年人口已经达到2.12亿,其中2.12亿用科学记数法表示为.12.不等式5x﹣3<3x+5的所有正整数解的和是.13.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.14.如下左图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.16.如右上图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.三、解答题(本大题共3小题,每题6分共18分)17.计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.18.先化简,再求值:÷(﹣),其中a=.19.如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).(2)在(1)中,连接BD,若BD=BC,求∠A的度数.四、解答题(本大题共3小题,每题7分共21分)20.某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.21.在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m 到达D点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)22.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.五、解答题(本大题共3小题,每题9分共27分)23.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.24.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.25.Rt△ABC与Rt△DEF的位置如图所示,其中AC=2,BC=6,DE=3,∠D=30°,其中,Rt △DEF沿射线CB以每秒1个单位长度的速度向右运动,射线DE、DF与射线AB分别交于N、M两点,运动时间为t,当点E运动到与点B重合时停止运动.(1)当Rt△DEF在起始时,求∠AMF的度数;(2)设BC的中点的为P,当△PBM为等腰三角形时,求t的值;(3)若两个三角形重叠部分的面积为S,写出S与t的函数关系式和相应的自变量的取值X围.2017年某某中考数学押题卷(二)参考答案与试题解析参考答案一、选择题1-5、DBDAC 6-10、DBDBD二.填空题11. 2.12×108.12 6 .13.:231.14.30.15. 1 .16.π.三.解答题17.解::(π﹣3.14)0﹣|sin60°﹣4|+()﹣1=1﹣|2×﹣4|+2=1﹣|﹣1|+2=2.18.解:原式=÷[﹣]=÷=•=(a﹣2)2,∵a=,∴原式=(﹣2)2=6﹣419.解:(1)如图所示:(2)设∠A=x,∵AD=BD,∴∠DBA=∠A=x,在△ABD中∠BDC=∠A+∠DBA=2x,又∵BD=BC,∴∠C=∠BDC=2x,又∵AB=AC,∴∠ABC=∠C=2x,在△ABC中∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,∴x=36°.四.解答题20解:设骑车学生的速度为x千米/小时,汽车的速度为2x千米/小时,可得:,解得:x=15,经检验x=15是原方程的解,2x=2×15=30,答:骑车学生的速度和汽车的速度分别是每小时15km,30km.21解:在Rt△ABC中,∠ACB=35°,BC=80m,∴cos∠ACB=,∴AC=80cos35°,在Rt△ADE中,tan∠ADE=,∵AD=AC+DC=80cos35°+30,∴AE=(80cos35°+30)tan50°.答:塔高AE为(80cos35°+30)tan50°m.22解:(1)扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,∴被抽取的总天数为:12÷20%=60(天);(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;表示优的圆心角度数是360°=72°,如图所示:;(3)样本中优和良的天数分别为:12,36,一年(365天)达到优和良的总天数为:×365=292(天).故估计本市一年达到优和良的总天数为292天.五.解答题23.解:(1)∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB==5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形;(2)∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y=的图象经过D点,∴4=,∴反比例函数的解析式为:y=;(3)∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y=,得y=,∴M点的纵坐标为:﹣4=,∴M点的坐标为:(0,).24.(1)如图,过点O作OF⊥AB于点F,∵AO平分∠CAB,OC⊥AC,OF⊥AB,∴OC=OF,∴AB是⊙O的切线;(2)如图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴=,∴=;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,由(1)可知:AC=AF=4,∠OFB=∠ACB=90°,∵∠B=∠B,∴△OFB∽△ACB,∴=,设BF=a,∴BC=,∴BO=BC﹣OC=﹣3,在Rt△BOF中,BO2=OF2+BF2,∴(﹣3)2=32+a2,∴解得:a=或a=0(不合题意,舍去),∴AB=AF+BF=.25解:(1)在Rt△ABC中,tan∠B===,∴∠B=30°,在Rt△DEF中,∠D=30°,∴∠DFC=60°,∴∠FMB=∠DFC﹣∠B=30°,∴∠AMF=180°﹣∠FMB=150°;(2)∵BC=6,点P为线段BC的中点,∴BP=3,(ⅰ)若点M在线段AB上,①当PB=PM时,PB=PM=3,∵DE=3,∠D=30°,∴EF=DE•tan30°=3,∴此时t=0;②如右图(1)所示当BP=BM时,BP=BM=3,∵∠B=30°,∠DFE=60°,∴∠FMB=30°,∴△BMF为等腰三角形.过点F作FH⊥MB于H,则BH=BM=,在Rt△BHF中,∠B=30°,∴BF=,∴t=3﹣;③如右图(2)所示,当MP=MB时,∠MPB=∠B=30∵∠MFP=60°,∴PM⊥MF,∠BMF=30°∴FB=FM,设FB=x,则FM=x,PF=2x.∴3x=3,x=1∴t=2;(ⅱ)若点M在射线AB上,如右图(3)所示,∵∠PBM=150°∴当△PBM为等腰三角形时,有BP=BM=3∵△BFM为等腰三角形,∴过点F作FH⊥BM于H,则BH=BM=,在Rt△BHF中,∠FBH=30°∴BF=,∴t=3+,综上所述,t的值为0,3﹣,2,3+.(3)当0<t≤3时,BE=6﹣t,NE=(6﹣t),∴=,过点F作FH⊥MB于H,如右图(1)所示,∵FB=3﹣t∴HF=(3﹣t),HB=(3﹣t),MB=(3﹣t),∴=,∴S=S△BEN﹣S△BMF==,当3<t≤6时,BE=6﹣t,NE=(6﹣t),如右图(4)所示,∴S==,由上可得,当0<t≤3时,S=,当3<t≤6时,S=,即S=.。

(完整)2019广东省中考数学试卷及答案,推荐文档

21 2019 年广东省初中学业水平考试数学说明:1.全卷共 4 页,满分为 120 分,考试用时为 100 分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用 2B 铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改 液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2 的绝对值是A .2B .-2C .D .±22. 某网店 2019 年母亲节这天的营业额为 221000 元,将数 221000 用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×1063. 如图,由 4 个相同正方体组合而成的几何体,它的左视图是42A .b 6÷ b 3 = b 2 B .b 3 ⋅ b 3 = b 9 C .a 2 + a 2 = 2a 2 D . (a 3 )3= a 6C .a +b > 0 D .a< 0 bC . x 1 + x 2 =2D .x 1 ⋅ x 2 =2 4. 下列计算正确的是5. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6. 数据 3、3、5、8、11 的中位数是A .3B .4C .5D .67. 实数 a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是B8. 化简 的结果是A .-4B .4C .±4D .29. 已知 、 x 是一元二次方程 x 2 - 2x = 0 的两个实数根,下列结论错误的是2A .10. 如图,正方形 ABCD 的边长为 4,延长 CB 至 E 使 EB=2,以 EB 为边在上方作正方形 EFGB ,延长x 1B . x 2 - 2x =0 1 1A .a >b x 1 ≠ x 2a < b20190+ ⎛1 ⎫-1⎝ 3 ⎭ ⎪ FG 交 DC 于 M ,连接 AM 、AF ,H 为 AD 的中点,连接 FH 分别与 AB 、AM 交于点 N 、K .则下列结论:; ②∠AFN = ∠HFG ; ③FN = 2NK ; ④S AFN : S ADM = 1: 4 .其中正确的结论有A .1 个B .2 个C .3 个D .4 个二、填空题(本大题 6 小题,每小题 4 分,共 24 分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算: =.12. 如图,已知 a b ,∠1 = 75 °,则∠2= .13.一个多边形的内角和是1080︒ ,这个多边形的边数是 .14.已知 ,则代数式 的值是.4x - 8 y + 9 x = 2 y + 3 ① ≌ANH GNF15.如图,某校教学楼 AC 与实验楼 BD 的水平间距 CD= 15 3 米,在实验楼顶部 B点测得教学楼顶部A点的仰角是 30°,底部 C 点的俯角是 45°,则教学楼 AC 的高度是米(结果保留根号) .16. 如题 16-1 图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题 16-2 图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用 9 个这样的图形(题 16-1 图)拼出来的图形的总长度是(结果用含 a 、b 代数式表示) .三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)17.解不等式组:⎛x- 1⎫ ÷ x 2 - x18.先化简,再求值: ⎝ x - 2 x - 2 ⎪ ⎭ x 2 - 4, 其中 x = 2 .19.如图,在 ABC 中,点 D 是 AB 边上的一点.⎨2 (x +1)> 4 ②⎩ ① ⎧x -1 > 2EC AE(1) 请用尺规作图法,在 ABC 内,求作∠ADE ,使∠ADE =∠B ,DE 交 AC 于 E ;(不要求写作法,保留作图痕迹)(2) 在(1)的条件下,若 ,求 的值.四、解答题(二) (本大题 3 小题,每小题 7 分,共 21 分)20. 为了解某校九年级全体男生 1000 米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题 20 图表所示,根据图表信息解答下列问题:(1) x =,y = ,扇形图中表示 C 的圆心角的度数为 度;(2) 甲、乙、丙是 A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.DB AD 2EFy k 2 x21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60 个,已知每个篮球的价格为70 元,每个足球的价格为80 元.(1)若购买这两类球的总金额为4600 元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,的三个顶点均在格点上,以点A 为圆心的与BC 相切于点D,分别交AB、AC 于点E、F.(1)求 ABC 三边的长;(2)求图中由线段EB、BC、CF 及F E 所围成的阴影部分的面积.五、解答题(三)(本大题3 小题,每小题9 分,共27 分)23.如图,一次函数y=k x+b 的图象与反比例函数的图象相交于A、B 两点,其中点A 的坐标为(-11,4),点B 的坐标为(4,n).ABCy =83 x 2 + 3 3 x - 7 34 8S ∆AOP : S ∆BOP = 1: 2(1) 根据图象,直接写出满足 k x + b >k 2 的 x 的取值范围;1x(2) 求这两个函数的表达式;(3) 点 P 在线段 AB 上,且 ,求点 P 的坐标.24.如题 24-1 图,在 ABC 中,AB =AC ,⊙O 是 ABC 的外接圆,过点 C 作∠BCD =∠ACB 交⊙O 于点D ,连接 AD 交 BC 于点E ,延长 DC 至点F ,使 CF =AC ,连接 AF .(1) 求证:ED =EC ;(2) 求证:AF 是⊙O 的切线;(3) 如题 24-2 图,若点 G 是 ACD 的内心, BC ⋅ BE = 25 ,求 BG 的长.25. 如题 25-1 图,在平面直角坐标系中,抛物线 与 x 轴交于点 A 、B (点 A 在点B 右侧),点 D 为抛物线的顶点.点C 在 y 轴的正半轴上,CD 交 x 轴于点 F , CAD 绕点 C 顺时针旋转得到 CFE ,点 A 恰好旋转到点F ,连接 BE .(1)求点A、B、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2 图,过顶点D 作DD1⊥x 轴于点D1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得 P AM 与 DD1A相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?2019 广东省中考数学答案一、选择题1 2 3 4 5 6 7 8 9 10A B A C C C D B D C二、填空题11、答案:4解析:本题考查了零次幂和负指数幂的运算2 + 2 212、答案:105︒解析:本题考查了平行线的性质,互为补角的计算13、答案:8解析:本题考查了多边形内角和的计算公式14、答案:21解析:整体思想,考查了整式的运算15、答案:15 +15 3解析:本题利用了特殊三角函数值解决实际问题16、答案: a + 8b三 解答题(一)17、解: ①得:②得:∴不等式组的解集为: x > 318、解: 原式=当x = 2 时 原式= = x + 2 x2 + 2 2= 1+ 22 x > 1x > 3E19、解:(1)如图所示:∠ADE 即为所求。

2019年广东省初中学业水平考试(数学)试卷及答案

2019年广东省初中学业水平考试数学说明: .全卷共 页,满分为 分,考试用时为 分钟..答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用 铅笔把对应该号码的标号涂黑..选择题每小题选出答案后,用 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效..考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题 小题,每小题 分,共 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.. 的绝对值是( ). . .12.±.某网店 年母亲节这天的营业额为 元,将数 用科学记数法表示为( ) . . ...如图,由 个相同正方体组合而成的几何体,它的左视图是( ).下列计算正确的是( ) .632b b b ÷=.339b b b ⋅=.2222a a a +=.()363a a =.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( ).数据 、 、 、 、 的中位数是( ) .....实数 、 在数轴上的对应点的位置如图所示,下列式子成立的是( ).a b >.a b <.0a b +> .0ab< 24( ) .....已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ).12x x ≠.2112=0x x -.12=2x x +.12=2x x ⋅.如图,正方形 的边长为 ,延长 至 使 ,以 为边在上方作正方形 ,延长 交 于 ,连接 、 , 为 的中点,连接 分别与 、 交于点 、 .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有( ). 个. 个. 个. 个二、填空题(本大题 小题,每小题 分,共 分)请将下列各题的正确答案填写在答题卡相应的位置上..计算:1120193-⎛⎫+ ⎪⎝⎭.答案:解析:本题考查了零次幂和负指数幂的运算.如图,已知a b ,175∠=°,则∠ = .答案:105︒解析:本题考查了平行线的性质,互为补角的计算.一个多边形的内角和是1080︒ ,这个多边形的边数是 .答案:解析:本题考查了多边形内角和的计算公式.已知23-+的值是 .x y=+,则代数式489x y答案:解析:整体思想,考查了整式的运算.如图,某校教学楼 与实验楼 的水平间距 153米,在实验楼顶部 点测得教学楼顶部 点的仰角是 °,底部 点的俯角是 °,则教学楼 的高度是 米(结果保留根号) .答案:(15153+解析:本题利用了特殊三角函数值解决实际问题.如题 图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题 图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用 个这样的图形(题 图)拼出来的图形的总长度是 (结果用含 、 代数式表示) .答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题 小题,每小题 分,共 分).解不等式组:()12214x x ->⎧⎨+>⎩①②解 ①21>-x ②4)1(2>+x 422>+x22>x 1>x∴该不等式组的解集是.先化简,再求值:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭, 其中=2x . 解 原式)1()2)(2(21--+⋅--x x x x x xxx 2+ 当2=x原式222+2222+ 21+.如图,在ABC △中,点 是 边上的一点.( )请用尺规作图法,在ABC △内,求作∠ ,使∠ ∠ , 交 于 ;(不要求写作法,保留作图痕迹)( )在( )的条件下,若2AD DB =,求AEEC的值.解 ( )如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆2==∴DBADEC AE四、解答题(二) (本大题 小题,每小题 分,共 分).为了解某校九年级全体男生 米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为、 、 、 四个等级,绘制如下不完整的统计图表,如题 图表所示,根据图表信息解答下列问题:( ) , ,扇形图中表示 的圆心角的度数为 度;( )甲、乙、丙是 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 4x = ; 40y =解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21=63答:同时抽到甲、乙两名学生的概率为13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省河源市紫金县2019届九年级下学期数学测试题
一、单选题

(★) 1 . 下列各数中,比-2小的数是()

A.2 B.0 C.-1 D.-3
(★★) 2 . 如图,下图经过折叠不能围成一个正方体是()

A. B. C. D

(★★) 3 . 已知数据:2,1,4,6,9,8,6,1.则这组数据的中位数是()
A.4 B.5 C.6 D.4和6
(★) 4 . 若⊙O的半径为6,点P在⊙O内,则OP的长可能是()

A.5 B.6 C.7 D.8
(★★) 5 . 关于 的一元二次方程 的根的情况是( )

A.有两不相等实数根 B
.有两相等实数根

C.无实数根 D
.不能确定

(★★) 6 . 已知实数 , 在数轴上的位置如图所示,下列结论中正确的是()

A. B. C. D

(★★) 7 . 函数y= 中自变量x的取值范围是()
A.x≥-3 B.x≠-3 C.x>-3 D.x≤-3
(★★) 8 . 如图,直线 AC和直线 BD相交于点 O,若∠1+∠2=90°,则∠ BOC的度数是()

A.100° B.115°
C.135° D.145°
(★) 9 . 下列计算正确的是()

A. B. C. D

(★★)
10 . 若关于x的一元一次方程2x+3a=1的解为x=2,则关于m的一元一次不等式3-m>a

的解集为()

A.m<2 B.m<4 C.m>2 D.m>4
二、填空题

(★★) 11 . 计算: cos45°=________.
(★★) 12 . 某市常住人口约为5240000人,数字5240000用科学记数法表示________.
(★★) 13 . 如图,AB是半圆的直径,∠BAC=20°,D是 的中点,则∠DAC的度数是________.

(★★)
14 . 如图△ABC中,AC=12,DE为AB的垂直平分线,△BCE的周长为20.则BC
的长为

________.
(★★)
15 . 已知二次函数y= -x 2+2x+m的部分图象如图所示,则关于x的一元二次方程-x
2
+2x+m=0的解为________。

(★)
16 . 如图,在正方形ABCD中,对角线BD的长为 。若将BD绕点B旋转后,点D
落在

BC延长线上的点D'处,点D经过的路径为弧DD'
,则图中阴影部分的面积是

________.
三、解答题
(★★) 17 . 解方程:x 2+8x-9=0
(★★) 18 . 先化简,再求值:(x+2)(x-2)-(x-1) 2,其中x= .
(★★)
19 . 如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°
夹角

(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那
么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,

tan53°≈1.33)
(★★)
20 . 某市某幼儿园“六一”
期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加

游戏。主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子
分别对应的是a、b、c.
(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少
(直接写出答案)
?
(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游
戏,恰好是两对家庭成员的概率是多少。(画出树状图或列表)
(★★)
21 . 某中学校开展了“献爱心”捐款活动。第一天收到捐款10000
元,第三天收到捐款

12100元。
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款
?
(★★)
22 . 如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB
,他调整自己的位置,

设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,
EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高。
(★★)
23 . 如图,已知A、B两点的坐标分别为A(0, ),B(2,0),直线AB
与反比例

函数y= 的图象交于点C和点D(-1,a).

(1)求直线AB和反比例函数的解析式;
(2)求∠ACO的度数。
(★★)
24 . (2013年四川泸州10分)如图,D为⊙O上一点,点C在直径BA
的延长线上,且

∠CDA=∠CBD.

(1)求证:CD 2=CA•CB;
(2)求证:CD是⊙O的切线;

(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA= ,求BE的长.
(★)
25 . 如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C

D两点。点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)求C、D两点坐标及△BCD的面积;

(3)若点P在x轴上方的抛物线上,满足S △ PCD= S △ BCD,求点P的坐标。

相关文档
最新文档