初一数学第七章三角形

合集下载

初一数学三角形知识点详解

初一数学三角形知识点详解

初一数学三角形知识点详解1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.快速判定方法:1)不等边三角形:最小两个边之和大于第三个边,就能组成三角形。

2)等腰三角形:两腰之和大于底,就能组成三角形。

3)等边三角形:肯定能组成。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的画法8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9. 三角形内角和定理:三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余;推论2 三角形的一个外角等于和它不相邻的两个内角和;推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。

10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角(六选三原则)11.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。

一、基础选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为() A.10 B.12 C.14 D.162.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是()A.a>2 B.2<a<14 C.7<a<14 D.a<143.一个三角形的三个内角中,锐角的个数最少为()A.0 B.1 C.2 D.34.下面说法错误的是()A.三角形的三条角平分线交于一点B.三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是()A.中线 B.角平分线C.高线 D.三角形的角平分线6.如图5-12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是()A.∠1 B.∠2 C.∠B D.∠1、∠2和∠B7.点P是△ABC内任意一点,则∠APC与∠B的大小关系是() A.∠APC>∠B B.∠APC=∠B C.∠APC<∠B D.不能确定8.已知:a、b、c是△ABC三边长,且M=(a+b+c)(a+b-c)(a-b-c),那么() A.M>0 B.M=0 C.M<0 D.不能确定二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC中,AB=6,AC=10,那么BC边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形.4.一个等腰三角形两边的长分别是15cm和7cm则它的周长是__________.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________.7.在△ABC中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5-13,在△ABC中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D、C、F、E,则_______是△ABC中BC边上的高,_________是△ABC中AB边上的高,_________是△ABC中AC边上的高,CF是△ABC的高,也是△_______、△_______、△_______、△_________的高.9.如图5-14,△ABC的两个外角的平分线相交于点D,如果∠A=50°,那么∠D=_____.10.如图5-15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC=_____.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、拓展选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()A.4对B.5对C.6对D.7对4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0)B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.610.三角形所有外角的和是()A.180°B.360°C.720°D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A.小于直角; B.等于直角; C.大于直角; D.大于或等于直角一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C二、1.3;2.;3.锐角;4.;6.和;7.;8.;9.;10.;12..三1.A;2.D;3.A;4.C;5.B;6.C;7.B;10.C;11.D;12.D;13.C;。

初中数学七年级下册第七章《三角形的内角和》精品说

初中数学七年级下册第七章《三角形的内角和》精品说

新课标人教版初中数学七年级下册第七章《三角形的内角和》精品说课稿一、教材分析:(一)、教材的地位和作用《三角形的内角和》是人教版七年级下册第七章《三角形》的第二节内容,“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也为今后掌握多边形内角和及其他实际问题打下基础,因此,掌握三角形的内角和是180度这一规律具有重要意义。

本节课是在学生学习了平行线的性质及三角形有关的概念,边、角之间的关系的基础上,让学生动手操作,通过拼图说出“三角形的内角和等于180°”成立的理由,对“三角形的内角和定理”进行证明及简单应用。

由浅入深,循序渐进,引导学生观察、实验、猜测,验证,逐步培养学生的逻辑推理能力.(二)、说学生:七年级学生年龄较小,思维正处在具体形象思维向抽象逻辑思维转变的阶段,也是由代数运算向几何推理过渡的较好时期,通过前面的学习,学生已具备一些分析问题、解决问题的能力,这样可以让学生和谐地融入到探究性学习的氛围中。

(三)、教学目标1、知识与技能:掌握“三角形内角和定理”的证明及其简单应用。

2、过程与方法:学了三角形内角和后,能运用所学知识解决简单的问题,训练学生对所学知识的运用能力。

3、情感态度与价值观:通过让学生积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

由具体实例的引导,让学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与研究。

初步感受从个别到一般的思维过程。

(四)、重难点的确立教学重点:三角形内角和定理及用它解决简单的实际问题。

教学难点:三角形内角和等于1800的证明及辅助线的使用。

二、教法与学法分析:1、说教法:本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化,在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是用三种拼图法得出三角形内角和是180°的结论,教师采用点拨的方法,启发学生主动思考,尝试用多种方法来证明这个结论,使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识。

2023年苏科版七年级数学下册第七章《认识三角形》导学案1

2023年苏科版七年级数学下册第七章《认识三角形》导学案1

新苏科版七年级数学下册第七章《认识三角形》导学案教学三维目标知识与技能认识三角形的概念及其基本要素,并能用符号语言表示三角形及其基本要素,理解三角形三边之间的关系.过程与方法能正确区分锐角三角形、直角三角形、钝角三角形,体悟分类的数学思想.情感态度价值观.理解三角形三边之间的关系,并能用于解决相关的问题;提高自主探究的能力,增强学好数学的信心.教学重点三角形的概念及三角形的三边之间的关系的探究与归纳,发展推理能力及表达能力. 教学难点三角形三边关系的应用.教学设计预习作业检查1.预习课本P20到P21,回答下列问题:(1)三角形是由______条不在同一直线上的线段,____________相接组成的图形. (2)三角形的基本元素:三个_______:用大写字母表示.例如:A B C三个_______:用一个大写字母或三个大写字母表示. 例如:∠A,∠ABC三条______ :用两个大写字母或一个小写字母表示. 例如:BC a注意:在表示的时候要注意角与边的对应.∠A←→a边(BC)∠B←→b边(AC)∠C←→c边(AB)(3)以A、B、C为顶点的三角形可以表示为____________________.(4)三角形的分类按角分:按边分:(5)完成P22的做一做:(做在书上)(6)三角形三边之间的关系是:_____________________________________________. (7)下列各组长度的3条线段,不能构成三角形的是()A.3cm 8cm. 10cmB.5cm 4cm 9cmC.4cm 6cm 9cmD.2cm 3cm 4cm(8)一个等腰三角形的两边长分别是6cm和9cm,则它的周长是.教学环节教学活动过程思考与调整活动内容师生行为“15分钟温故、自学、群学”环节1.△ABC是△DEF经过平移得到的,若AD =4cm,则BE = __ cm,CF= __ cm,若M为AB的中点,N为DE的中点,则MN = cm.2.交流完成预习作业3.完成P24的练一练“20分钟展示交流质疑、训练点拨提高”环节1.三角形的分类2.(1)一个等腰三角形的两边分别为3和6,这个三角形的周长是_______________.(2)一个等腰三角形的两角分别为40度和70度,这个三角形的另一个角是__________.3.画一个三角形,量出它的三边长分别是___________________,计算三角形的任意两边之差,并与第三边比较,发现a-b c, c-b a,c-a b. 因此______________________________________.4.有两根长度分别为4cm和7cm的木棒,①用2cm的木棒与它们能摆成三角形吗?为什么?②长度为11cm的木棒呢?③长度为4cm的木棒呢?④什么长度范围的木棒, 能与原来的两根木棒摆成三角形?“10分钟检测、反馈、矫正、小结”环节当堂检测题:1.小晶有两根长度为5cm、8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm 、3cm、8cm 、15cm的木条供她选择,那她第三根应选择()A.2cmB.3cmC.8cmD.15cm2.等腰三角形的一边长为3㎝,另一边长是5㎝,则它的第三边长为.3.等腰三角形的一边长为2㎝,另一边长是5㎝,则它的第三边长为.4.如图,以∠C为内角的三角形有在这两个三角形中,∠C的对边分别为和5.如图:有A、B、C、D四个村庄,打算公用一个水厂,若要使用的水管最节约,水厂应建在村庄的什么地方?6.已知△ABC中,a=2,b=4,第三边c为偶数,求c的值.7.有长度分别为2cm,3cm,4cm和5cm的小木棒各两根..,任取其中3根,你可以搭出几种不.同.的三角形?课后作业师生反思AB CDABCD····G 321F E D CB A课后作业1、如图,AB ∥CD 。

七年级数学集体备课(第七章三角形学案)

七年级数学集体备课(第七章三角形学案)

ca bAB C第一课时三角形的边一、新课导入1、三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2、对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?二、学习目标1、三角形的三边关系。

2、用三边关系判断三条线段能否组成三角形。

三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程.研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟)要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。

一边阅读一边完成检测一。

检测练习一、1、的图形叫三角形。

2、如图线段AB,BC,CA是三角形的,点A,B,C是三角形的,∠ A、∠ B、∠ C是 ,叫做,简称。

3、用符号语言表示上图的三角形.顶点是的三角形,记作,读作:。

4、按照三个内角的大小,可以将三角形分为5、三角形按边可分为研读二、认真阅读课本( P64“探究”,时间:3分钟)要求:思考“探究”中的问题,理解三角形两边的和大于第三边;游戏:用棍子摆三角形.检测练习二、6、在三角形ABC中,AB+BC AC AC+BC AB AB+AC BC7、假设一只小虫从点B出发,沿三角形的边爬到点C,有路线。

路线最近,根据是: ,于是有:(得出的结论) .8、下列下列长度的三条线段能否构成三角形,为什么?(1)3、4、8 (2)5、6、11 (3)5、6、10研读三、认真阅读课本认真看课本( P64例题,时间:5分钟)要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。

(2)、对这例题的解法你还有哪些不理解的?(3)、一边阅读例题一边完成检测练习三。

检测练习三、9、一个等腰三角形的周长为28cm。

①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!)解:(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么? (二)你认为应该注意什么问题?五、强化训练【A】组1、下列说法正确的是(1)等边三角形是等腰三角形(2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形(3)三角形的两边之差大于第三边(4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形其中正确的是()A、1个B、2个C、3个D、4个2、一个不等边三角形有两边分别是3、5另一边可能是( )A、1B、2C、3D、43、下列长度的各边能组成三角形的是()A、3cm、12cm、8cmB、6cm、8cm、15cm 、3cm、5cm D、6。

初一数学第七章 三角形有关的练习题(含答案)

初一数学第七章 三角形有关的练习题(含答案)

与三角形有关的线段习题精选习题一一、选择题:1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )A.1个 B.2个 C.3个 D.4个2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )A.6<L<15 B.6<L<16 C.11<L<13 D.10<L<163.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm的木棒 B.20cm的木棒C.50cm的木棒 D.60cm的木棒4.已知等腰三角形的两边长分别为3和6,则它的周长为( )A.9 B.12 C.15 D.12或155.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( )A. 2cm B. 3cm C. 4cm D. 5cm6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个 B.3个 C.4个 D.5个二、填空题:1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.2.若等腰三角形的两边长分别为3和7,则它的周长为_______;若等腰三角形的两边长分别是3和4,则它的周长为_____.3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.6.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.三、基础训练:1.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).2.已知等腰三角形的两边长分别为4,9,求它的周长.四、提高训练:设△ABC的三边a,b,c的长度都是自然数,且a≤b≤c,a+b+c=13,则以a,b,c为边的三角形共有几个?五、探索发现:若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少?六、中考题与竞赛题:1.(2001.南京)有下列长度的三条线段,能组成三角形的是( )A. 1cm, 2cm, 3cm B. 1cm, 2cm, 4cm; C. 2cm, 3cm, 4cm D. 2cm, 3cm,6cm2.(2002.青海)两根木棒的长分别是8cm,10cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x的取值范围是________;如果以5cm为等腰三角形的一边,另一边为10cm,则它的周长为________.答案:一、1.B 2.D 3.B 4.C 5.B 6.B二、1.5<c<9 6或8 6 2.17 10或11 3.0<a<12 b>2 4.3 5. 5cm 6. 7cm三、1.解:在△APB中,AP+BP>AB,同理BP+PC>BC,PC+AP>AC,三式相加得2(AP+BP+PC)>AB+AC+BC,∴AP+BP+CP>(AB+AC+BC).2.22四、5个五、25个六、1. C 2. 2cm<x< 18cm 25cm.习题二一、选择题:1.如图1所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B落在点B′的位置,则线段AC具有性质( )A.是边BB′上的中线 B.是边BB′上的高C.是∠BAB′的角平分线 D.以上三种性质合一2.如图2所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线 B.BD是△ABC的中线C.AD=DC,BD=EC D.∠C的对边是DE3.如图3所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC= 4cm2,则S阴影等于( )A. 2cm2 B. 1cm 2 C.cm2 D.cm24.在△ABC,∠A=90°,角平分线AE、中线AD、高AH的大小关系为( )A.AH<AE<AD B.AH<AD<AE C.AH≤AD≤AE D.AH≤AE≤AD5.在△ABC中,D是BC上的点,且BD:DC=2:1,S△ACD=12,那么S△ABC等于( )A.30 B. 36 C.72 D.246.不是利用三角形稳定性的是( )A.自行车的三角形车架 B.三角形房架C.照相机的三角架 D.矩形门框的斜拉条二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC中,∠B=80°,∠C=40°,AD,AE分别是△ABC的高线和角平分线,则∠DAE 的度数为_________.4.三角形的三条中线交于一点,这一点在_______,三角形的三条角平分线交于一点,这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____.三、基础训练:1.如图所示,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.2.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.四、提高训练:在△ABC中,∠A=50°,高BE,CF所在的直线交于点O,求∠BOC的度数.五、探索发现:如图所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s与n有什么关系,并求出当n=13时,s的值.六、中考题与竞赛题:(2000.杭州)AD,AE分别是等边三角形ABC的高和中线,则AD 与AE 的大小关系为____.答案:一、1.D 2.D 3.B 4.D 5.B 6.C二、1.135 2.3条或7条 3.20°4.三角形内部三角形内部三角形内部、边上或外部三、1.∠AEC=45° 2.AD= 13cm四、∠BOC=50°或130°五、s=3n-3,当n=13时,s=36.六、AD=AE.。

初中数学 第七章《三角形》单元训练题(含答案)

初中数学 第七章《三角形》单元训练题(含答案)

第七章《三角形》单元训练题A 卷(基础知识部分,50分)一、精心选一选(每题2分,共10分) 1.下列说法中错误的是( )A.三角形三条角平分线都在三角形的内部B.三角形的三条中线都在三角形的内部C.三角形的三条高都在三角形的内部D.三角形三条高至少有一条在三角形的内部 2.下列说法中正确的是 ( )A .三角形的外角中至少有两个锐角B .三角形的外角中至少有两个钝角C .三角形的内角中至少有一个直角D .三角形的内角中至少有一个钝角 3. 一个多边形的边数每增加一条,这个多边形的( )A.内角和增加360°B.外角和增加360°C.对角线增加一条D.内角和增加180° 4.等腰三角形的两边分别长7cm 和13cm ,则它的周长是( ) A.27cm B.33cm C.7cm 或33cm D.以上结论都不对 5.△ABC 中,∠A=2∠B =3∠C ,则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.含30°角的直角三角形 二、细心填一填(每题3分,共15分) 6.如图所示,图中的∠1=______________º.7.△ABC 中,若∠A +∠C =2∠B ,最小角为30°,则最大的角为_______8.现有长度分别为1cm 、2cm 、3cm 、4cm 、5cm 的5条线段,从其中选三条线段为边可以构成_____________个不同的三角形9.如果三角形的三边长分别为3、4、12a ,那么a 的取值范围是_______________ 10.如果一个多边形的每一个外角都小于45º这样的多边形边数的最小值是_______. 三、耐心解一解(第11~13题各6分,第14题7分,共25分) 11.△ABC 中,∠ABC 、∠ACB 的平分线相交于点O 。

(1)若∠ABC = 40°,∠ACB = 50°,则∠BOC =_________。

人教版七年级下数学第七章_三角形_知识点+考点+典型例题(含答案)

人教版七年级下数学第七章_三角形_知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

初一年级数学第七章三角形期中考复习题

初一年级数学第七章三角形期中考复习题

第七章 三角形期中考复习题一 选择题1、以下列各组长度的线段为边:能构成三角形的是: A .7cm :5cm :12cm B .6cm :8cm :15cm C .4cm :6cm :5cm D .8cm :4cm :3cm2、如图2:已知∠B =∠C :则∠ADC 与∠AEB 的大小关系是: A 、∠ADC >∠AEB B 、∠ADC <∠AEB C 、∠ADC =∠AEB D 、大小关系不能确定3、一个多边形的内角和比它的外角和的2倍还大180°:这个多边形的边数为: A .7 B .8 C .9 D .104、用一批完全相同的多边形地砖铺地面:不能进行镶嵌的是( )A 、正三角形B 、正方形C 、正八边形D 、正六边形 5、已知线段a 、b 、c :有a >b >c :则组成三角形必须满足的条件是( )A.a+b>cB.b+c>aC.c+a>bD.a-b>c 6、能把三角形的面积平分的是( )7、下列图形中能够用来作平面镶嵌的是( )A 、正八边形B 、正七边形C 、正六边形D 、正五边形 8、△ABC 中:三边长分别为6,7:x :则x 的取值范围为( )。

A 、2<x <12B 、1<x <13C 、6<x <7D 、无法确定9、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点:且S △ABC =4cm 2:则S 阴影的值为( )A 、2cm 2B 、cm 2C 、cm 2 D 、1cm 210、如图:在锐角△ABC 中:CD 、BE 分别是AB 、AC 边上的高: 且相交于一点P :若∠A=50°:则∠BPC 的度数是( )A .150°B .130°C .120°D .100°11、中华人民共和国国旗上的五角星:它的五个锐角的度数和是( )A 、500B 、100 0C 、180 0D 、 20012、在 ABC 中:三个内角满足∠B -∠A=∠C -∠B :则∠B 等于( ) A 、70° B 、60° C 、90° D 、120° 13、在锐角三角形中:最大内角的取值范围是( )A 、0°<<90°B 、60°<<180°C 、60°<<90°D 、60°≤<90DA BECP14、给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点:这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点:且这点在三角形内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
C
第七章 三角形
认识三角形
1.三角形的概念
由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示
通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角. 3.三角形中的三种重要线段
三角形的角平分线、中线、高线是三角形中的三种重要线段.
1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.
②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.
③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.
2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.
注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.
3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高. 注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.
练习:1、图中共有( )个三角形。

A :5 B :6 C :7 D :8
2、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF
3、三角形一边上的高( )。

A :必在三角形内部
B :必在三角形的边上
C :必在三角形外部
D :以上三种情况都有可能
4、能将三角形的面积分成相等的两部分的是( )。

A :三角形的角平分线
B :三角形的中线
C :三角形的高线
D :以上都不对 6、具备下列条件的三角形中,不是直角三角形的是( )。

A :∠A+∠B=∠C B :∠A=∠B=
1
2
∠C C :∠A=90°-∠B D :∠A-∠B=90 7、一个三角形最多有 个直角,有 个钝角,有 个锐角。

8、△ABC 的周长是12 cm ,边长分别为a ,b , c , 且 a=b+1 , b=c+1 , 则a= cm , b= cm , c= cm 。

三角形的内、外角和定理及其推论的应用
1.三角形的一个外角等于 两个内角的和;
2.三角形三角形的一个外角 任何一个与它不相邻的内角
3. 三角形的内角和 三角形的外角和等于
练习:1、三角形的三个外角中,钝角最多有( )。

A :1个
B : 2个
C :3 个
D : 4 个 2、下列说法错误的是( )。

A :一个三角形中至少有两个锐角
B :一个三角形中,一定有一个外角大于其中的一个内角
C :在一个三角形中至少有一个角大于60°
D :锐角三角形,任何两个内角的和均大于90° 3、一个三角形的外角恰好等于和它相邻的内角,则这个三角形是( )。

A :锐角三角形 B :直角三角形 C :钝角三角形 D :不能确定 4、直角三角形两锐角的平分线相交所成的钝角是( )。

A :120° B : 135° C :150° D : 165°
A C
D
E
A
B D A
B C
D 5、△ABC 中,B C A ∠=∠=∠3,1000
,则.___________=∠B
6、在△ABC 中,∠A=100°,∠B-∠C=40°,则∠B= ,∠C= 。

7、如图1,∠B=50°,∠C=60°,AD 为△ABC 的角平分线,求∠ADB 的度数。

9、已知:如图3,AE ∥BD ,∠B=28°,∠A=95°,求∠C 的度数。

图1 图3
三角形三边关系的应用
三角形的任何两边的和 第三边. 三角形的任何两边的差 第三边.
练习:1、以下列线段为边不能组成等腰三角形的是( )。

A :2、2、4
B :6、3、6
C :4、4、5
D :1、1、1
2、现有两根木棒,它们的长度分别为40 cm 和50 cm ,若要钉成一个三角架,则在下列四根棒中应选取( )。

A :10 cm 的木棒 B :40 cm 的木棒 C :90 cm 的木棒 D :100 cm 的木棒
3、三条线段a=5,b=3,c 为整数,从a 、b 、c 为边组成的三角形共有( ). A :3个 B :5个 C :无数多个 D : 无法确定
4、在△ABC 中,a=3x ,b=4x ,c=14 ,则 x 的取值范围是( )。

A :2<x<14 B: x>2 C: x<14 D: 7<x<14
5、如果三角形的三边长分别为 m-1, m , m+1 (m 为正数),则m 的取值范围是( )。

A :m>0 B: m>-2 C: m >2 D: m < 2
6、等腰三角形的两边长为25cm 和12cm ,那么它的第三边长为 cm 。

7、工人师傅在做完门框后.为防变形常常像图4中所示的那样上两条斜拉的木条 这样做根据的数学道理是 。

8、已知一个三角形的周长为15 cm ,且其中的两边都等于第三边的2倍,求这个三角形的最短边。

9、如果a ,b ,c 为三角形的三边,且2
2()
()0a b a c b c -+-+-=,试判断这个三角形的形状。

10、△ABC 的周长为24,BC=10,AD 是△ABC 的中线,且被分得的两个三角形的周长差为2,求AB 和AC 的长。

多边形的内、外角和定理的综合应用
n 边形的内角和为_________________;正n 边形的单个内角为 任意多边形的外角和都为________;正n 边形的单个外角为
1、若四边形的四个内角大小之比为1:2:3:4,则这四个内角的大小为 。

2、如果六边形的各个内角都相等,那么它的一个内角是 。

3、在各个内角都相等的多边形中,一个外角等于一个内角的
1
3
,则这个多边形的每个内角为 度。

4、(n+1)边形的内角和比n 边形的内角和大( )。

A : 180° B : 360° C :n ×180° D: n ×360° 5、n 边形的内角中,最多有( )个锐角。

A :1个 B : 2 个 C : 3个 D : 4个 7、若多边形内角和分别为下列度数时,试分别求出多边形的边数。

① 1260° ② 2160°
8、已知n 边形的内角和与外角和之比为9:2,求n 。

知识回顾
1.等腰三角形的边长为1和2,那么它的周长为( )A 、5 B 、4 C 、5或4 D 、以上都不对 2.在三角形的三个外角中,锐角最多只有( )A 、3个 B 、2个 C 、1个 D 、0个 3.(n+1)边形的内角和比n 边形的内角和大( )A 、180° B 、360° C 、n ·180° D 、n ·360° 4.将一个正方形桌面砍下一个角后,桌子剩下的角的个数是( )A 、3个B 、4个C 、5个 D 、3个或4个或5个 5.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与
∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律,你发现的规律是( ) A 、∠1+∠2=2∠A
B 、∠1+∠2=∠A
C 、∠A=2(∠1+∠2)
D 、∠1+∠2=
2
1
∠A 二、潜心填空
6.木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是 三角形的稳定性 7.某一个三角形的外角中有一个角是锐角,那么这个三角形是 钝角三角形
8.一个多边形的内角和是外角和的一半,则它的边数是 3
9.如图,正方形ABCD 中,截去∠B 、∠D 后,∠1、∠2、∠3、∠4的和为 540º 三、解答题
10.如图直线AD 和BC 相交于O ,AB ∥CD ,∠AOC=95°,∠B=50°,求∠A 和∠D 。

∠D=∠A=45º
11.如图,已知△ABC ,D 在BC 的延长线上,E 在CA 的延长线上,F 在AB 上,试比较∠1与∠2的大小。

∠2>∠1
1
2
A
B
C
D E
B
A
C
D 2
13
4
A
B
C D
O
E
A。

相关文档
最新文档