七年级(下)数学 三角形的概念、性质及内角和

合集下载

七年级下册数学三角形的内角和

七年级下册数学三角形的内角和

七年级下册数学三角形的内角和一、三角形内角和定理。

1. 定理内容。

- 三角形的内角和等于180°。

2. 证明方法。

- 方法一:测量法(不完全严谨,但可作为初步感知)- 用量角器分别测量三角形的三个内角,然后将三个角的度数相加,会发现其和接近180°。

由于测量存在误差,所以这只能是一种初步验证的方法。

- 方法二:剪拼法。

- 把三角形的三个角剪下来,然后将它们的顶点拼在一起,可以发现这三个角能拼成一个平角,从而直观地说明三角形内角和为180°。

- 方法三:推理证明(以平行线的性质为基础)- 已知:△ABC。

- 求证:∠A + ∠B+∠C = 180°。

- 证明:过点A作直线EF∥BC。

- 因为EF∥BC,根据两直线平行,内错角相等,所以∠B = ∠FAB,∠C = ∠EAC。

- 又因为∠FAB+∠BAC + ∠EAC=180°(平角的定义),所以∠B+∠BAC+∠C = 180°,即三角形内角和为180°。

二、三角形内角和定理的应用。

1. 在求三角形内角的度数中的应用。

- 例1:在△ABC中,∠A = 50°,∠B = 60°,求∠C的度数。

- 解:根据三角形内角和定理,∠C = 180° - ∠A - ∠B。

- 已知∠A = 50°,∠B = 60°,则∠C = 180° - 50° - 60° = 70°。

2. 在判断三角形的类型中的应用。

- 例2:一个三角形的三个内角的度数之比为1:2:3,判断这个三角形是什么类型的三角形。

- 解:设三角形的三个内角分别为x,2x,3x。

- 根据三角形内角和定理可得:x + 2x+3x = 180°。

- 合并同类项得6x = 180°,解得x = 30°。

- 那么三个角的度数分别为30°,2×30° = 60°,3×30° = 90°。

七年级数学下册第四章三角形知识归纳

七年级数学下册第四章三角形知识归纳

第四章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示.2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;4、∠A、∠B、∠C为ΔABC的三个内角。

二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.用字母可表示为a+b〉c,a+c〉b,b+c〉a;a—b<c,a-c<b,b-c 〈a.2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c〉a同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。

3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b-<<+.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。

2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形,即有一个内角是钝角的三角形。

3、判定一个三角形的形状主要看三角形中最大角的度数.4、直角三角形的面积等于两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质。

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条

七年级数学(华师大版)下说课稿:9.2三角形内角和与外角和(三角形外角的性质)

七年级数学(华师大版)下说课稿:9.2三角形内角和与外角和(三角形外角的性质)
七年级数学(华师大版)下说课稿:9.2三角形内角和与外角和(三角形外角的性质)
一、教材分析
(一)内容概述
本节课选自七年级数学(华师大版)下册第九章9.2节,主题为三角形内角和与外角和(三角形外角的性质)。这一节内容是学生在学习平面几何的基础知识之后,对三角形的基本性质进行探究的一个重要环节。在这一节课中,学生将巩固已学的几何知识,同时拓展对三角形内角和与外角和的认识。
3.激发好奇心:提出一个有趣的猜想:“三角形的内角和是否等于180°?”引发学生的好奇心,激发学习兴趣。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.探索三角形内角和:引导学生通过实际操作(如剪、拼、折等)验证三角形内角和为180°,并解释其几何原理。
2.介绍三角形外角的性质:通过动态演示和实际操作,让学生观察和发现三角形外角与不相邻内角的关系,引导学生掌握外角性质。
3.课堂实践:组织学生进行实际操作,如测量三角形的内角和、画外角等,让学生在实践中感受几何知识。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一张地图,提出问题:“如何确定地图上两个相邻城镇之间的方向?”让学生思考并尝试解答。
2.生活实例:引入学生熟悉的交通信号灯(红绿灯),提问:“为什么交通信号灯采用三角形形状?”引导学生观察三角形的特征,为新课学习打下基础。
(二)学习障碍
在学习本节课之前,学生已经掌握了三角形的基本概念、分类以及角的度量等前置知识。然而,可能存在以下学习障碍:
1.对三角形内角和的理解不够深刻,难以将其与实际图形联系起来;
2.对三角形外角的概念和性质认识模糊,容易与内角混淆;

苏科版数学七年级下册认识三角形

苏科版数学七年级下册认识三角形
拿出长度分别为3cm、 4cm 、5cm、 6cm和 9cm的木条,任意用三根首尾相 接搭三角形。
探究交流
根据:两点之间线段最短!
A
若把A、B看作定点,
c
b 可得AC+BC>AB;
同理:AC+ AB >BC;
B
a
C AB +BC>AC。
三角形的任意两边之和大于第三边。
A
探究交流
a
b
Bc
C
任意两边之和大于第三边。
才艺展示
1、如图是用三根细棍组成的图形, 其中符合三角形概念的图形是
(D )
A
B
C
D
才艺展示
2、三条线段的长度分别为: (1)3、8、10 (2)5、2、7 (3)5、5、11 (4)13、12、20
能组成三角形的有(B )组。 A、1 B、2 C、3 D、4 点拨: 比较较小的两边之和与最长边的大 小即可.
才艺展示
3、有3、5、7、10的四根木条,要 摆出一个三角形,有(B)种摆法。
A、1 B、2 C、3 D、4
小结思考
本节课你有什么收获?
1. 学习了三角形的概念,及三角形的基 本要素,重点研究了三角形3边间的关系.
2. 从三角形3边关系的研究中可知:三 角形的3边长度相互制约----三角形的 任意两边之和大于第三边.
A
C
B
DE
探究交流 三角形按角分有几种分法?
(1)
(2)
(3)
所有内角都是锐角的三角形————锐角三角形 有一个内角是直角的三角形————直角三角形
有一个内角是钝角的三角形————钝角三角形
探究交流
将下列三角形按角分类

《三角形的内角和》优质ppt课件

《三角形的内角和》优质ppt课件

角之比为1:2:3,求这个三角形
的最大内角。
02
题目3:判断下列各组角能否
构成一个三角形的内角,并说
明理由。
03
A. 30°, 40°, 110°
04
B. 60°, 60°, 60°
05
C. 20°, 50°, 120°
06
学生自主思考、提问及讨论环节
01
02
03
问题1
三角形的内角和为什么是 180°?
应用举例
例1
计算五边形的内角和。

五边形可以划分为3个三角形,因此五边形的内角和 = 3 × 180° = 540°。
例2
计算正六边形的内角和。

正六边形可以划分为4个三角形,因此正六边形的内角 和 = 4 × 180° = 720°。
例3
已知一个多边形的内角和为1080°,求这个多边形的边 数。
有助于培养逻辑思维和空间想象能力
预习下一讲内容:《全等三角形》
了解全等三角形的定 义和性质
通过实例和练习加深 对全等三角形相关知 识的理解和应用
掌握全等三角形的判 定方法
谢谢您聆听
THANKS
《三角形的内角和》优质ppt 课件
CONTENTS
• 三角形基本概念与性质 • 三角形内角和定理推导 • 三角形内角和定理应用举例 • 拓展:多边形内角和计算方法
探讨 • 练习题与课堂互动环节 • 课程小结与预习提示
01
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
已知三角形一个内角及相邻两边,求另一 个内角的大小。
已知三角形三边长度,利用余弦定理求任 一内角的大小。

北师大数学七年级下册第四章三角形及其性质(基础)

北师大数学七年级下册第四章三角形及其性质(基础)

三角形及其性质(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法.2. 理解三角形内角和定理的证明方法;3. 掌握并会把三角形按边和角分类4. 掌握并会应用三角形三边之间的关系.5. 理解三角形的高、中线、角平分线的概念,学会它们的画法.【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点. (2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.要点二、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题: ①在三角形中已知任意两个角的度数可以求出第三个角的度数; ②已知三角形三个内角的关系,可以求出其内角的度数; ③求一个三角形中各角之间的关系. 要点三、三角形的分类 1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ③等边三角形:三边都相等的三角形. 要点四、三角形的三边关系定理:三角形任意两边之和大于第三边. 推论:三角形任意两边之差小于第三边. 要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. (3)证明线段之间的不等关系.要点五、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°. 【答案与解析】解:已知:如图,已知△ABC ,求证:∠A+∠B+∠C =180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .因为AB ∥CD (已作),所以∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等). 又∠ACB+∠1+∠2=180°(平角定义), 所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .因为DF ∥AC (已作),所以∠1=∠C (两直线平行,同位角相等), ∠2=∠DEC (两直线平行,内错角相等).因为DE∥AB(已作).所以∠3=∠B,∠DEC=∠A(两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型二、三角形的分类3.一个三角形的三个内角分别是75°、30°、75°,这个三角形是()A 锐角三角形B 等腰三角形C 等腰锐角三角形【答案】C举一反三【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形A 锐角B 直角C 钝角 D无法判断【答案】C【解析】利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.类型三、三角形的三边关系4. (四川南充)三根木条的长度如图所示,能组成三角形的是()【思路点拨】三角形三边关系的性质,即三角形的任意两边之和大于第三边,任意两边之差小于第三边.注意这里有“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般取“差”的绝对值.【答案】D【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D选项中,2cm+3cm>4cm.故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能构成三角形,不大于则不能构成三角形.举一反三:【变式】判(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【答案】B.解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B .5.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三:【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对. 类型四、三角形中重要线段6. (2016春•江苏月考)在△ABC 中,画出边AC 上的高,下面4幅图中画法正确的是( )A .B .C .D .【答案】C ;【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部. 举一反三:【变式】如图所示,已知△ABC ,试画出△ABC 各边上的高.【答案】解:所画三角形的高如图所示.7.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比 △ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD -(AC+CD+AD )=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC -AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1【巩固练习】一、选择题1.一位同学用三根木棒拼成如图所示的图形,其中符合三角形概念的是()2.如图所示的图形中,三角形的个数共有()A.1个B.2个C.3个D.4个3.(2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.已知三角形两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为第三边的是()A.13 cm B.6 cm C.5 cm D.4 cm5.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A.5m B.15m C.20m D.28m6.三角形的角平分线、中线和高都是()A.直线B.线段C.射线D.以上答案都不对7.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部8.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都有可能9.若△ABC的∠A=60°,且∠B:∠C=2:1,那么∠B的度数为() A.40°B.80°C.60°D.120°二、填空题10.(2015•东莞)如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是.11.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________cm.12. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.13. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则________=_______=12________;CF是△ABC的高,则∠________=∠________=90°,CF________AB.14.如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.15.在△ABC中,(1)若∠A:∠B:∠C=1:2:3,则∠A=_______,∠B=_______,∠C=_______,此三角形为_______三角形;(2)若∠A大于∠B+∠C,则此三角形为________三角形.三、解答题16.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.17.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?18.(2016春•江苏月考)如图,AD是△ABC的高,BE是△ABC的内角平分线,BE、AD相交于点F,已知∠BAD=40°,求∠BFD的度数.19.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D;2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】A.4. 【答案】B;【解析】根据三角形的三边关系进行判定.5. 【答案】D;【解析】由三角形三边关系定理可知.只有C选项中3+4>5.故选C (2)画图分析,不难判断出选C.(3)因为第三边满足:|另两边之差|<第三边<另两边之和,故16-12<AB<16+12 即4<AB<28故选D.6.【答案】B;7.【答案】C;【解析】三角形的三条高线的交点与三条角平分线的交点一定都在三角形内部,但三角形的三条高线的交点不确定:当三角形为锐角三角形时,则交点一定在三角形的内部;当三角形为钝角三角形时,交点一定在三角形的外部.8.【答案】C;【解析】两个三角形等底同高,面积相等9.【答案】B;【解析】根据三角形内角和180°,以及已知条件可以计算得出∠B的度数为120°二、填空题10.【答案】4.【解析】∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为4.11.【答案】5 cm或7 cm;12.【答案】15cm或18cm;【解析】按腰的不同取值分类讨论.13.【答案】BAD CAD BAC;AE CE AC;AFC BFC ⊥14.【答案】15cm2,30cm2;【解析】△ABC的面积是△ABE面积的2倍.15.【答案】(1)30°,60°,90°;直角(2)钝角三、解答题16.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k不满足三角形三边关系.所以不能围成三角形.17.【解析】解:AD、AF分别是△ABC,△ABE的角平分线.BE、DE分别是△ABC,△ADC的中线,AG是△ABC,△ABD,△ACD,△ABG,△ACG,△ADG的高.18.【解析】解:∵AD⊥BC,∠BAD=40°,∴∠ABD=90°﹣40°=50°.∵BE是△ABC的内角平分线,∴∠ABF=∠ABD=25°,∴∠BFD=∠BAD+∠ABF=40°+25°=65°.19.【解析】解:如图。

七年级下册三角形知识点

七年级下册三角形知识点

七年级下册三角形知识点三角形是平面几何中研究的重点和核心概念之一。

在初中阶段,学生也会对三角形进行详细学习,并涉及到一些重要的知识点。

下面,本文将介绍七年级下册的三角形知识点,并做详细阐述。

一、基础知识点1. 定义:三角形是由三条线段组成的图形,其中任意两条线段都能够连接起来,形成一个角。

2. 分类:按照内角和边长的不同,三角形可以分为等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等不同类型。

3. 性质:三角形有许多特殊的性质,如角内平分线相交于一点、三角形内部角度的和等于180度、等边三角形的三角角度都为60度等重要性质,这些性质是我们学习和理解三角形的基础。

二、三角形的周长和面积1. 周长:三角形的周长是三边长度之和,即C=a+b+c。

2. 面积:三角形的面积大小可以用海龙公式(即:S=sqrt(p*(p-a)*(p-b)*(p-c)),其中p=(a+b+c)/2)进行求解,也可以用底边高公式(即:S=1/2*b*h)进行求解。

三、等腰三角形和直角三角形1. 等腰三角形:等腰三角形是指有两条边相等的三角形,它的第三边被称为底边,底边上的高线被称为高。

等腰三角形有许多重要的性质,如:等腰三角形的高线、中线和角平分线重合、等腰三角形的底角和顶角相等等。

2. 直角三角形:直角三角形是指一个角为90度的三角形。

它的斜边被称为斜边,两条直角边被称为直角边。

直角三角形中,直角边上的高被称为垂线,可以用勾股定理(即:a²+b²=c²)进行计算斜边长度,还可以用正弦定理、余弦定理进行计算。

四、相似三角形1. 定义:相似三角形是指具有相同形状(角度相等)、但是大小不同的三角形。

2. 判定:判断两个三角形是否相似,可以根据它们的角度相等或者它们的对应边成比例判断(即:A1/A2=B1/B2=C1/C2)。

3. 性质:相似三角形也有一些重要性质,如对应角相等、对应线段成比例等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形是平面解析几何中一种基本的几何图形,本章我们将对三角形的构成和性质进行探究和研究,由此获得的知识和经验,是认识其他图形的基础.本节主要针对构成三角形的边角之间的关系进行讲解,通过训练,让同学们更好的掌握三角形的相关概念.知识点1:三角形的概念(1)三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形的边、角:组成三角形的三条线段叫做三角形的边,每两边所组成的角叫做三角形的内角,简称角.(3)三角形的表示方法:三角形用符号“∆”表示,三角形ABC可记作“∆ABC”或“∆BCA”或“∆ACB”.(4)三角形的外角:三角形的内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,一个三角形的每个顶点上各有两个外角,这两个外角是对顶角.注意:三角形的外角必须是由“内角的一边与另一边的反向延长线”所组成.三角形的概念和性质内容分析模块一:三角形的有关概念知识精讲知识结构知识点2:三角形中的主要线段(1)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线;(2)三角形的中线:连结三角形的一个顶点和它的对边中点的线段叫做三角形的中线;(3)三角形的高:从三角形的三个顶点向它的对边(或其延长线)引垂线,顶点和垂足之间的线段叫做三角形的高;(4)一个三角形有三条角平分线,三条中线,三条高.注意:①三角形的角平分线、中线、高各有三条,并且各自交于一点;②三角形的角平分线、中线都在三角形内部,而高线可以在内部(锐角三角形),可以在外部(钝角三角形),也可以在三角形的边上(直角三角形);③三角形的角平分线、中线、高线都是线段.知识点3:三角形三条线段之间的关系任意两边之和大于第三边,任意两边之差小于第三边.知识点4:三角形的分类按角分:锐角三角形、直角三角形和钝角三角形;按边分:不等边三角形和等腰三角形.例题解析【例1】下列说法正确的是()A.三角形的高、中线是线段,角的平分线是射线B.三角形的三条高线中,至少有一条在三角形的内部C.钝角三角形的三条角平分线在三角形的外部D.在三角形中,联结一个顶点和它对边中点的直线叫做三角形的中线【例2】下列说法中错误的是()A.三角形的三条角平分线相交于三角形内一点2/ 15B.三角形三条中线相交于三角形内一点C.三角形三条高所在的直线相交于三角形内一点D.等边三角形三边的垂直平分线相交于三角形内一点【例3】下列命题正确的是()A.三角形的中线就是过顶点平分对边的直线B.三角形的高就是顶点到对边的距离C.三角形的角平分线就是三角形内角的角平分线D.三角形的三条中线必相交于一点【例4】现有两根木棒,它们的长分别是30cm,40cm,若要钉成一个三角形木架,则在下列四根木棒中应选取()A.10cm B.40cm C.70cm D.100cm【例5】三角形的三边为3、1-2a、8,求a的取值范围.【难度】★★【答案】【解析】【例6】已知一个三角形中两条边长分别为a、b,且a>b,求这个三角形周长L的取值范围.+++--的值.【例7】设a、b、c是△ABC三边,化简a b c a b c【例8】等腰三角形中两边为3厘米,4厘米,求该三角形的周长.【例9】等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个等腰三角形底边的长.【例10】不等边三角形的最长边为9,最短边为4,若第三边长为整数,求第三边的长.【例11】不等边三角形ABC的两边高分别为4和12,若第三条高的长也是整数,求第三边高的长度.【例12】已知一个三角形的周长为12,求这个三角形的最长边的取值范围.【例13】等腰三角形的周长为8,各边长为整数,求该等腰三角形的腰长.AB D Ecab4/ 15E DCBA【例14】 周长为30,各边长互不相等且都是整数的三角形共有多少个?【例15】 三角形不等式是指一个三角形的两边长度之和大于第三边的长度.在下图中,E位于线段CA 上,D 位于线段BE 上. (1)证明:AB +AE >DB +DE ; (2)证明:AB +AC >DB +DC ;(3)AB +BC +CA 与2(DA +DB +DC )哪一个更大?证明你的结论; (4)AB +BC +CA 与DA +DB +DC 哪一个更大?证明你的结论.三角形角与角的关系:① 三角形内角和定理:三角形的内角和等于180︒ ② 三角形的外角性质: <a >三角形的外角和等于360︒<b >三角形的一个外角等于与它不相邻的两个内角的和 <c >三角形的一个外角大于任何一个与它不相邻的内角 三角形具有稳定性,而四边形不具有稳定性.模块二:三角形的角的关系知识精讲6 / 15【例16】 在一个三角形中,下列说法中错误的是()A . 至少有两个锐角B . 最多能有两个钝角C . 至多有一个直角D . 最多能有三个锐角【例17】 填空:(1) △ABC 中,∠C =90°,∠A =50°,则∠B =________; (2) 在△ABC 中,若∠A :∠B :∠C =1:2:3,则∠A +∠B =_______.【例18】 (1)一个三角形中,若其中一个内角等于另外两个内角的和,那么这个三角形一定是_________;(2)任意一个三角形至少有________个锐角.【例19】 △ABC 中,∠A -∠B =2∠B -∠C =20°,求∠A 、∠B 和∠C .【例20】 在△ABC 中∠ABC :∠C :∠BAC =1:2:5,BD ⊥AC 于D ,求∠ABD 的度数.例题解析ABCDFEDPCA【例21】 △ABC 中,∠A 是最小角,∠B 是最大角,且有5∠A =2∠B ,若∠B 的最大值是m °,最小值是n °,求m +n 的值.【例22】 如图,在三角形ABC 中,∠B =∠C ,ED ⊥BC 于D ,DF ⊥AC 于F ,∠AED =148°,求∠EDF 的度数.【例23】 已知点D 是△ABC 内一点,试说明D A ∠>∠.【例24】 在△ABC 中,三个内角的度数均为整数,且∠A <∠B <∠C ,7∠A =4∠C , 求∠B 和∠C 的度数.【例25】 若三角形三个内角∠A 、∠B 和∠C 的关系是3A B ∠>∠,2C B ∠<∠,试按角的分类判断这个三角形的形状.【例26】 四边形ABCD 两组对边AD ,BC 与AB ,DC 延长线分别交于点E ,F ,∠AEB 、∠AFD 的平分线交于点P .∠A =64°,∠BCD =136°,则下列结论中正确的是( ) ①∠EPF =100°; ②∠ADC +∠ABC =160°; ③∠PEB +∠PFC +∠EPF =136°; ④∠PEB +∠PFC =136°.A .①②③B .②③④C .①③④D .①②③④21ABC DEFA BCD8 / 15CDM BA ENDCB A【例27】 在五角星ABCDE 中,求∠A +∠B +∠C +∠D +∠E .【例28】 平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC =24°,∠ADC =42°. (1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小;(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2), 求∠ANC 的度数.图1 图2ABCDE【例29】 (1)如图1△ABC 中,∠ABC 和∠ACB 的角平分线相交于点P ,则有:________BPC A ∠=∠;(2)如图2:△ABC 中,∠ABC 的外角角平分线和∠ACB 的外角角平分线相交于点P , 则有:________BPC A ∠=∠;(3)如图3:△ABC 中,∠ABC 和∠ACB 的外角角平分线相交于点P ,则有:________BPC A ∠=∠.A B CP图1ABCP 图2ABCP图310 / 15【例30】 如图1,A 、B 为直线a 上两点,A 在B 的左侧,C 为直线b 上的另一点,且a ⊥b ,垂足为o ,CD ∥a ,CD =2,OC =2. (1)求△BCD 的面积;(2)如图2,若∠BCO =∠BAC ,作AQ 平分∠BAC 交直线b 于P ,交BC 于Q . 求证:∠CPQ =∠CQP ;(3)如图3,若∠ADC =∠DAC ,点B 在直线a 上O 的右侧运动,∠ACB 的平分线交直线AD 于E ,DF ∥AC 交直线b 于F ,FM 平分∠DFC 交DE 于M ,2BCF DMFE∠-∠∠的值是否发生变化?证明你的结论.bBC D Oa图1 b图2O ABCDE Fb aM图3DAB CO P Qa【习题1】 已知在三角形ABC 中,1122A B C ∠=∠=∠,则_______B ∠=.【习题2】 下列长度的三条线段能组成三角形的是()A .1cm ,2cm ,3.5cmB .4cm ,5cm ,9cmC .5cm ,8cm ,15cmD .6cm ,8cm ,9cm【习题3】 (1)在ABC ∆中,AB =3,BC =7,则AC 的取值范围是_________________;(2)已知三角形两边的长分别为1和2,如果第三边为整数,那么第三边长为________.【习题4】 如图,在△ABC 中,90C ∠=。

,EF //AB ,150∠=。

,则B ∠的度数为()A .50。

B .60。

C .30。

D .40。

【习题5】 如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD等于( ) A .100°B .120°C .130°D .150°【习题6】 若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为()随堂检测ABCD1ABCE F12 / 15321EGFDC BAA .32.5°B .57.5°C .65°或57.5°D .32.5°或57.5.【习题7】 已知ABC △的一个外角为50°则ABC △一定是() A .锐角三角形 B .钝角三角形C .直角三角形D .钝角三角形或锐角三角形【习题8】 如图, Rt ABC △中, 90ACB =∠°,DE 过点C ,且DE AB ∥,若 55ACD =∠°, 则∠B 的度数是( )A .35°B .45°C .55°D .65°【习题9】 已知周长小于15的三角形三边长都是质数,且其中一边的长为3,这样的三角形有多少个?【习题10】 锐角三角形三个角的度数都是正整数,最小角的度数是最大角的度数的14, 求所有满足此条件的锐角三角形三个角的度数.【习题11】 如图,已知∠3=∠1+∠2,求证:∠A +∠B +∠C +∠D =180°.ABCDE【作业1】 如果△ABC 中,AB =5,BC =10,则AC 的取值范围是_________.【作业2】 判断题:(1)三角形的三条高一定交于一点()(2)三角形的三条中线一定交于三角形内一点( ) (3)三角形的三条角平分线一定交于三角内一点()【作业3】 (1)如果△ABC 中,∠ACB =900,CD 是AB 边上的高,则与∠A 相等的角是__________;(2)如果△ABC 的一个外角等于1500,且∠B =∠C ,则∠A =_______.【作业4】 如图,已知ABC ACB ∠∠和的平分线BD 、CE 相交于点50O A ∠=︒,,则_______BOC ∠=.【作业5】 (1)若三角形三条边的长分别是7,10,x ,求x 的范围; (2)若三边分别为2,x -1,3,求x 的范围.课后作业A B CD OE14 / 15T ED GHCBA F【作业6】 如图,已知//DE BC CD ACB ∠,是的平分线,7050B ACB ∠=︒∠=︒,,求EDC ∠和BDC ∠的度数.【作业7】 在ABC ∆中,AD 是高,AE BF 、是角平分线,且相交于点O ,5070BAC C ∠=︒∠=︒,,求DAC BOA ∠∠、的度数.【作业8】 如图,在△ABC 中,BD ,BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H .下列结论: ①∠DBE =∠F ;②2∠BEF =∠BAF +∠C ;③∠F =12(∠BAC -∠C ); ④∠BGH =∠ABE +∠C ,其中正确的是()A .①②③B .①③④C .①②③D .①②③④【作业9】 已知三角形的三条边长均为整数,其中有一条边长为4,但不是最短边,这样的三角形有多少个?ABCD E【作业10】 如图,(1) 求∠A +∠B +∠C +∠D +∠E 的度数;(2) 若∠CGE = ,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.EDCB AαGFEDCBA(1)(2)。

相关文档
最新文档