重庆市巫山中学2020学年高二数学下学期第一次月考试题 理(无答案)
重庆巫峡中学2020-2021学年高二数学理联考试卷含解析

重庆巫峡中学2020-2021学年高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知等差数列{a n}的公差d=2,a3=5,数列{b n},b n=,则数列{b n}的前10项的和为()A.B.C.D.参考答案:A【考点】8E:数列的求和.【分析】利用等差数列的通项公式、“裂项求和”方法即可得出.【解答】解:等差数列{a n}的公差d=2,a3=5,∴a1+2×2=5,解得a1=1.∴a n=1+2(n﹣1)=2n﹣1.b n===,则数列{b n}的前10项的和=+…+==.故选:A.2. 如表是一位母亲给儿子作的成长记录:根据以上样本数据,她建立了身高y(cm)与年龄x(周岁)的线性回归方程为=7.19x+73.93,给出下列结论:①y与x具有正的线性相关关系;②回归直线过样本的中心点(42,117.1);③儿子10岁时的身高是145.83cm;④儿子年龄增加1周岁,身高约增加7.19cm.其中,正确结论的个数是()A.1 B.2 C.3 D.4参考答案:B【考点】命题的真假判断与应用.【分析】根据回归方程的定义和性质分别进行判断即可.【解答】解:由线性回归方程为=7.19x+73.93可得直线的斜率k=7.19>0,则y与x具有正的线性相关关系,故①正确,∵=(3+4+5+6+7+8+9)=6,=(94.8+104.2+108.7+117.8+124.3+130.8+139.1)=117.1,即样本中心为(6,117.1),故②错误;当x=10时,=7.19×10+73.93=145.83cm,即儿子10岁时的身高大约是145.83cm,不一定一定是145.83cm,故③错误,儿子年龄增加1周岁,身高约增加7.19cm,故④正确,故正确的是①④,故选:B【点评】本题主要考查命题的真假判断,涉及线性回归方程的性质,难度不大.3. 复数的共轭复数是( )A. B. C. D.参考答案:B4. 直线过点(﹣3,﹣2)且在两坐标轴上的截距相等,则该直线方程为()A.2x﹣3y=0 B.x+y+5=0C.2x﹣3y=0或x+y+5=0 D.x+y+5=0或x﹣y+1=0参考答案:C【考点】直线的截距式方程.【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(﹣3,﹣2)代入所设的方程得:a=﹣5,则所求直线的方程为x+y=﹣5即x+y+5=0;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(﹣3,﹣2)代入所求的方程得:k=,则所求直线的方程为y=x即2x﹣3y=0.综上,所求直线的方程为:2x﹣3y=0或x+y+5=0.故选:C5. 已知全集,,,则为()A. B. C. D.参考答案:D略6. 设集合.若,则实数的取值范围是_____________。
巫山县高中2018-2019学年高二下学期第一次月考试卷数学

巫山县高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.91522. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2)3. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 、b 不都能被5整除D .a 不能被5整除4. 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .i ≤21B .i ≤11C .i ≥21D .i ≥115. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα-+ D .2sin cos 1αα-+6. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 7. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .48. 过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB|=10,则AB 的中点到y 轴的距离等于( ) A .1 B .2 C .3 D .4 9. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件10.已知实数x ,y 满足,则z=2x+y 的最大值为( )A .﹣2B .﹣1C .0D .411.从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 12.抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .3二、填空题13.下列函数中,①;②y=;③y=log 2x+log x 2(x >0且x ≠1);④y=3x +3﹣x ;⑤;⑥;⑦y=log 2x 2+2最小值为2的函数是 (只填序号)14.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.15.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .5-BC .6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.16.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .17.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)x+-=垂直的直线的倾斜角为___________.18.(文科)与直线10三、解答题19.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.20.求下列各式的值(不使用计算器):(1);(2)lg2+lg5﹣log21+log39.21.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O 为AD的中点,且CD⊥A1O(Ⅰ)求证:A1O⊥平面ABCD;(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由.22.已知S n为等差数列{a n}的前n项和,且a4=7,S4=16.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.23.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.24.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.25.关于x的不等式a2x+b2(1﹣x)≥[ax+b(1﹣x)]2(1)当a=1,b=0时解不等式;(2)a,b∈R,a≠b解不等式.26.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.巫山县高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x, 结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C .2. 【答案】D【解析】解:令x=0,则函数f (0)=a 0+3=1+1=2. ∴函数f (x )=a x+1的图象必过定点(0,2).故选:D .【点评】本题考查了指数函数的性质和a 0=1(a >0且a ≠1),属于基础题.3. 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证. 命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除”的否定是“a ,b 都不能被5整除”. 故选:B .4. 【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1 终值为10、步长为1故经过10次循环才能算出S=的值,故i ≤10,应不满足条件,继续循环 ∴当i ≥11,应满足条件,退出循环 填入“i ≥11”. 故选D .5. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.6. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a b a b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=,∴1ab =,∴log 1a b =-,故选B.7. 【答案】C【解析】解:双曲线4x 2+ty 2﹣4t=0可化为:∴∴双曲线4x 2+ty 2﹣4t=0的虚轴长等于故选C .8. 【答案】D【解析】解:抛物线y 2=4x 焦点(1,0),准线为 l :x=﹣1,设AB 的中点为E ,过 A 、E 、B 分别作准线的垂线, 垂足分别为 C 、G 、D ,EF 交纵轴于点H ,如图所示:则由EG 为直角梯形的中位线知,EG====5,∴EH=EG ﹣1=4, 则AB 的中点到y 轴的距离等于4.故选D .【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想.9.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.10.【答案】D【解析】解:画出满足条件的平面区域,如图示:,将z=2x+y转化为:y=﹣2x+z,由图象得:y=﹣2x+z过(1,2)时,z最大,Z最大值=4,故选:D.【点评】本题考查了简单的线性规划问题,考查了数形结合思想,是一道基础题.11.【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=310. 12.【答案】A【解析】解:由,得3x2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.二、填空题13.【答案】①③④⑥【解析】解:①∵x与同号,故=|x|+||,由|x|>0,||>0∴=|x|+||≥2=≥2,故正确;②y==+,由>0,>0,∴y=+≥2=2,故正确;③当<x<1时,log2x<0时,y=log2x+log x2≤﹣2,故错误;④由3x>0,3﹣x>0,∴y=3x+3﹣x≥2=2,故正确;⑤当x<0时,≤﹣6,故错误;⑥∵>0,>0,则≥=2,故正确;⑦∵x2>0,故y=log2x2∈(﹣∞,+∞),故y=log2x2+2∈(﹣∞,+∞),故错误;故答案为:①③④⑥【点评】本题主要考查了基本不等式在求解函数的最值中的应用,解题的关键是基本不等式的应用条件的判断14.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内15.【答案】B【解析】16.【答案】[1,5)∪(5,+∞).【解析】解:整理直线方程得y﹣1=kx,∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y≥1即是y2≥1得到m≥1∵椭圆方程中,m≠5m的范围是[1,5)∪(5,+∞)故答案为[1,5)∪(5,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.17.【答案】15【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种 故答案为:15.【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.18.【答案】3π 【解析】3π. 考点:直线方程与倾斜角.三、解答题19.【答案】【解析】解:(Ⅰ)由题意可知:X ~B (9,p ),故EX=9p .在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:.通讯器械正常工作的概率P ′=;(Ⅱ)当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作.①若前9个元素有4个正常工作,则它的概率为:.此时后两个元件都必须正常工作,它的概率为: p 2;②若前9个元素有5个正常工作,则它的概率为:.此时后两个元件至少有一个正常工作,它的概率为:;③若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P ″=p 2++,可得P ″﹣P ′=p 2+﹣,==.故当p=时,P″=P′,即增加2个元件,不改变通讯器械的有效率;当0<p时,P″<P′,即增加2个元件,通讯器械的有效率降低;当p时,P″>P′,即增加2个元件,通讯器械的有效率提高.【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目.20.【答案】【解析】解:(1)=4+1﹣﹣=1;(2)lg2+lg5﹣log21+log39=1﹣0+2=3.【点评】本题考查对数的运算法则的应用,有理指数幂的化简求值,考查计算能力.21.【答案】【解析】满分(13分).(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,∴A1O==,…(2分)∴+AD2=AA12,∴A1O⊥AD.…(3分)又A1O⊥CD,且CD∩AD=D,∴A1O⊥平面ABCD.…(5分)(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),则A(0,﹣1,0),A(0,0,),…(6分)1设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),∵=,=(1,m+1,0),且取z=1,得=.…(8分)又A1O⊥平面ABCD,A1O⊂平面A1ADD1∴平面A1ADD1⊥平面ABCD.又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,∴CD⊥平面A1ADD1.不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)由题意得==,…(12分)解得m=1或m=﹣3(舍去).∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.22.【答案】【解析】解:(1)设等差数列{a n}的公差为d,依题意得…(2分)解得:a1=1,d=2a n=2n﹣1…(2)由①得…(7分)∴…(11分)∴…(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题.23.【答案】【解析】解:(Ⅰ)证明:正方形ABCD中,CD BA,正方形ABEF中,EF BA.…∴EF CD,∴四边形EFDC为平行四边形,∴CE∥DF.…又DF⊂平面ADF,CE⊄平面ADF,∴CE∥平面ADF.…(Ⅱ)解:∵BE=BC=2,CE=,∴CE2=BC2+BE2.∴△BCE为直角三角形,BE⊥BC,…又BE⊥BA,BC∩BA=B,BC、BA⊂平面ABCD,∴BE⊥平面ABCD.…以B为原点,、、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2).设K(0,0,m),平面BDF的一个法向量为=(x,y,z).由,,得可取=(1,﹣1,1),…又=(0,﹣2,m),于是sinφ==,∵30°≤φ≤45°,∴,即…结合0<m<2,解得0,即BK的取值范围为(0,4﹣].…【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.24.【答案】【解析】解:(1)∵f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12,∴a﹣b=2,a2﹣b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x﹣2x),当x∈[1,2]时,4x﹣2x∈[2,12],故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.则4x﹣2x=m有两个解,令t=2x,则t>0,则t2﹣t=m有两个正解;则,解得:m∈(﹣,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.25.【答案】【解析】解:(1)当a=1、b=0时,原不等式化为x≥x2,(2分)即x(x﹣1)≤0;…(4分)解得0≤x≤1,∴原不等式的解集为{x|0≤x≤1};…(6分)(2)∵a2x+b2(1﹣x)≥[ax+b(1﹣x)]2,∴(a﹣b)2x≥(a﹣b)2x2,(10分)又∵a≠b,∴(a﹣b)2>0,∴x≥x2;即x(x﹣1)≤0,…(12分)解得0≤x≤1;∴不等式的解集为{x|0≤x≤1}.…(14分)【点评】本题考查了不等式的解法与应用问题,解题时应对不等式进行化简,再解不等式,是基础题.26.【答案】【解析】解:(Ⅰ)证明:因为A1A=A1C,且O为AC的中点,所以A1O⊥AC.又由题意可知,平面AA1C1C⊥平面ABC,交线为AC,且A1O⊂平面AA1C1C,所以A1O⊥平面ABC.(Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系.由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴,所以得:则有:.设平面AA1B的一个法向量为n=(x,y,z),则有,令y=1,得所以..因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.(Ⅲ)设,即,得所以,得,令OE∥平面A1AB,得,即﹣1+λ+2λ﹣λ=0,得,即存在这样的点E,E为BC1的中点.【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力。
【Ks5u名校】重庆市巫山中学2020-2021学年高二下学期第一次月考理综试题 扫描版含答案

巫山中学高2022级高二(下)第一次月考 理综试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
可能用到的相对原子质量:H —1 C —12 O —16 第I 卷一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列叙述不正确的是( )A .将R 型肺炎双球菌+DNA 酶混合高温加热,再加入含有S 型菌的DNA 培育基中培育,无S 型菌产生;B .蓝藻遗传物质是DNA ,该生物细胞内有碱基和核苷酸的种类分别为5种、8种;C .某DNA 分子共a 对碱基,其中C=m个,则该DNA 分子复制3次,需要T=7(a/2-m) 个D .某信使RNA 中U G C A ++=0.8,则转录形成它模板DNA 分子中CA GT ++的值为12.在人垂体细胞内生长激素蛋白质基因表达过程中,细胞内伴随发生的变化,最可能是下图中( )3.假设将含有一对同源染色体的精原细胞的DNA 分子用15N 标记,并供应14N 的原料。
该细胞进行减数分裂产生的4个精细胞中,含15N 标记的DNA 的精子所占的比例是 A .0 B.25% C.50% D.100% 4.下列生物技术或生理过程中没有发生基因重组是 ( )5.下图表示一项重要生物技术的关键步骤,X 是获得外源基因并能够表达的细胞。
下列有关说法不正确的是 ( )A .X 是能合成胰岛素的细菌细胞B .质粒具有标记基因和限制酶切点C .基因与运载体的重组只需要DNA 连接酶D .该细菌的性状被定向改造 6.下列关于人类遗传病的叙述,错误的是 ( )A .单基因突变可以导致遗传病B .染色体结构的转变可以导致遗传病C .近亲婚配可增加隐性遗传病的发病风险D .不携带遗传病基因的个体不行能患遗传病 7.下列有关化学用语正确的是( )A .-OH 的电子式:B .丁烷是键线式:C .乙烯的结构简式:CH 2=CH 2D .最能反映甲烷真实结构的模型是: 8.下列各项性质,属于C 2H 6、C 2H 4、C 2H 2共性的是( )A .常温常压下是无色无味气体B .在通常状况下,密度比空气小C .能使酸性KMnO 4溶液褪色D .在确定条件下能发生加聚反应 9.关于1—溴丙烷和2—丙醇分别发生消去反应的有关说法不正确的是( ) A .碳氢键断裂的位置不相同B .反应条件相同C .反应产生的气体经净化处理后,均能使酸性高锰酸钾溶液褪色D .产物相同10.下列试验装置能达到试验目的,且试验装置无明显错误的是(夹持仪器未画出)A .A 装置用于检验乙醇发生消去反应的产物B .B 装置可用于分别乙醇和丙三醇形成的混合物C .C 装置用于试验室制硝基苯D.D装置可证明酸性:盐酸>碳酸>苯酚11.下列物质间的转化涉及的反应类型和反应条件都正确的是()选项反应类型反应条件A ○1取代反应氢氧化钠的乙醇溶液、加热B ○2消去反应浓硫酸、加热至170℃C ○3加成反应催化剂、加热D ○5取代反应Cu或Ag作催化剂、加热12.有机物中由于基团间的相互影响,基团化学性质的活泼性也会发生变化。
重庆巫峡中学高三数学理月考试卷含解析

重庆巫峡中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若,定义一种向量积:,已知,且点在函数的图象上运动,点在函数的图象上运动,且点和点满足:(其中O为坐标原点),则函数的最大值及最小正周期分别为()A. B. C. D.参考答案:D9、从椭圆上一点向轴作垂线,垂足恰为左焦点,是椭圆与轴正半轴的交点,是椭圆与轴正半轴的交点,且(是坐标原点),则该椭圆的离心率是()(A)(B)(C)(D)参考答案:C3. 在中,已知D是AB边上一点,若=2,=,则=( )A. B. C. - D. -参考答案:A4. 已知:tan,则等于()A.3 B.-3 C.2 D.-2参考答案:A5. 已知语句p:函数y=f(x)的导函数是常数函数;语句q:函数y=f(x)是一次函数,则语句p是语句q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件参考答案:B【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由一次函数的定义域为R可知函数y=f(x)的导函数是常数函数,函数y=f(x)不一定是一次函数.【解答】解:“函数y=f(x)是一次函数”?“函数y=f(x)的导函数是常数函数”,反之取f(x)=2x,(x>0),f′(x)=2为常数函数,但是f(x)不是一次函数.6. 下列函数中,在其定义域中,既是奇函数又是减函数的是()A. B. C. D.参考答案:C略7. 能够把圆的周长和面积同时分为相等的两部分的函数称之为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是()参考答案:D8. 如图,点在以为直径的圆上,其中,过向点处的切线作垂线,垂足为,则的最大值是()A.2 B.1 C.0 D.-1参考答案:B9. 已知直角中,,则实数的值为()A. B. C. D. 或参考答案:D10. 函数f(x)是定义在R上的奇函数,,当x<0时,,则实数m=A. -1B.0C.1D.2参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 在△ABC中,角A,B,C的对边分别为a,b,c,若满足2bcosA=2c﹣a,则角B的大小为.参考答案:【考点】正弦定理.【分析】由已知及余弦定理可得c 2+a 2﹣b 2=,进而利用余弦定理可求cosB=,结合范围B ∈(0,π),即可得解B 的值.【解答】解:∵2bcosA=2c ﹣a ,∴cosA==,整理可得:c 2+a2﹣b2=,∴cosB===,∵B∈(0,π),∴B=.故答案为:.12. 已知向量=(1,x),=(1,x﹣1),若(﹣2)⊥,则|﹣2|= .参考答案:【考点】9R:平面向量数量积的运算.【分析】根据题意,由向量的坐标运算可得﹣2=(﹣1,2﹣x),进而由向量垂直的性质可得(﹣2)?=﹣1+x(2﹣x)=0,解可得x的值,即可得﹣2的坐标,由向量模的公式计算可得答案.【解答】解:根据题意,向量=(1,x),=(1,x﹣1),则﹣2=(﹣1,2﹣x),若(﹣2)⊥,则(﹣2)?=﹣1+x(2﹣x)=0,解可得x=1,则﹣2=(﹣1,2﹣x)=(﹣1,1);故|﹣2|==;故答案为:.【点评】本题考查向量的数量积运算,关键是求出﹣2的坐标.13. 已知函数f (x )=|x+﹣ax ﹣b|(a ,b∈R),当x∈[,2]时,设f (x )的最大值为M (a ,b ),则M (a ,b )的最小值为.参考答案:【考点】函数的最值及其几何意义.【分析】由题意可得a≤0,b≤0,f (x )可取得最大值,即有f (x)=x+﹣ax ﹣b ,x∈[,2],求出导数和极值点,计算端点处的函数值,比较可得最大值M(a ,b ),即可得到所求最小值. 【解答】解:由题意可得a≤0,b≤0,f (x )可取得最大值, 即有f (x )=x+﹣ax ﹣b ,x∈[,2],f′(x )=1﹣﹣a=, 由f′(x )=0可得x=(负的舍去),且为极小值点,则f ()=﹣a ﹣b ,f (2)=﹣2a ﹣b ,由f ()﹣f (2)=a <0,即有f (2)取得最大值, 即有M (a ,b )=﹣2a ﹣b , 则a≤0,b≤0时,M (a ,b )≥. 可得最小值为. 故答案为:.14. 设平面向量a =(1,2),b =(-2,y),若a∥b,则|3a +b|=________.参考答案:15. 某流程框图如图所示,则输出的s 的值是 ;参考答案:24【考点】程序框图.【分析】由图知,每次进入循环体后,新的s 值是原来的s 乘以k 得到的,故由此运算规律进行计算,经过4次运算后输出的结果即可.【解答】解:由图知s 的运算规则是:s←ks,故 第一次进入循环体后s=1,k=2, 第二次进入循环体后s=2,k=3,第三次进入循环体后s=6,k=4, 第四次进入循环体后s=24,k=5, 由于k=5>4,退出循环.故该程序运行后输出的结果是:24. 故答案为:24. 16. 在平面直角坐标系中,直线与圆相交于两点,且弦的长为,则_________参考答案:-517. 若的展开式的常数项为84,则的值为 .参考答案:三、解答题:本大题共5小题,共72分。
高二数学第二学期理科第一次月考(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!第二学期第一次月考高二数学理科试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,仅有一项符合题目要求)1. 已知集合P={x|1≤x≤3},Q={x|(x-1)2≤4},则P Q=()A.[-1,3] B . [1,3] C. [1,2] D. (],3-∞2. 已知,则()A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2)3.下列说法正确的是()A.“sinα=”是“cos2α=”的必要不充分条件B.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”C.已知命题p:∃x∈R,使2x>3x;命题q:∀x∈(0,+∞),都有<,则p∧(¬q)是真命题D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分层抽样4.已知函数f(x)的定义域为[﹣1,4],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.x ﹣1 0 2 3 4f(x) 1 2 0 2 0当1<a<2时,函数y=f(x)﹣a的零点的个数为()A.2 B.3 C.4 D.55. 如图,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A. B.C. D.6.函数f(x)=sinx•ln(x2+1)的部分图象可能是()A. B.C. D.7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.18B.16C. D.18.如果函数f (x )为奇函数,当x<0时,f (x )= ln(-x)+3x,则曲线在点(1,-3)处的切线方程为 ( ).32(1) .32(1) .34(1) .34(1)A y x B y x C y x D y x +=--+=-+=--=+9. 已知圆C :(x ﹣3)2+(y ﹣4)2=1和两点A (﹣m ,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB=90°,则m 的最大值为( ) A .7B .6C .5D .410.如图,四棱锥P ﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD ,△PAB 和△PAD 都是等边三角形,则异面直线CD 与PB 所成角的大小为( ) A .45° B .75° C .60° D .90° 11.已知椭圆E :+=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x ﹣4y=0交椭圆E 于A ,B 两点,若|AF|+|BF|=4,点M 到直线l 的距离不小于,则椭圆E 的离心率的取值范围是( ) A .(0,] B .(0,] C .[,1) D .[,1)12. 设函数f (x )在(m ,n )上的导函数为g (x ),x ∈(m ,n ),若g (x )的导函数小于零恒成立,则称函数f (x )在(m ,n )上为“凸函数”.已知当a ≤2时,3211()62f x x ax x =-+,在x ∈(﹣1,2)上为“凸函数”,则函数f (x )在(﹣1,2)上结论正确的是( ) A .有极大值,没有极小值 B .没有极大值,有极小值C .既有极大值,也有极小值D .既无极大值,也没有极小值二、填空题(本大题共4小题,每小题5分,共20分). 13.设向量(,1)a m =,(1,2)b =,且222a b a b +=+,则m=________. 14.函数2cos 2y x =的图象可由sin 2cos 2y x x =+的图象至少向左平移_______个单位长度得到.15.若函数2()f x x x a =-()在 2x =处取得极小值,则a =________. 16. 设函数()f x 的导函数是'()f x ,且'1()2() () ,2f x f x x R f e ⎛⎫>∈=⎪⎝⎭(e 是自然对数的底数),则不等式2()f lnx x <的解集为___________.三.解答题(本大题共6小题,共70分;说明:17-21共5小题,每题12分,第22题10分). 17. 已知数列{a n }(n ∈N *)的前n 项的S n =n 2. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,记数列{b n }的前n 项和为T n ,求使成立的最小正整数n 的值.18.设函数f (x )=lnx ﹣x+1. (Ⅰ)分析f (x )的单调性; (Ⅱ)证明:当x ∈(1,+∞)时,1<<x.19.如图,△ABC 和△BCD 所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E 、F 分别为AC 、DC 的中点.(Ⅰ)求证:EF ⊥BC ;(Ⅱ)求二面角E ﹣BF ﹣C 的正弦值.20.已知椭圆E :+=1(a >b >0)的离心率为,F 是椭圆的焦点,点A (0,﹣2),直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.21.已知函数2()1xe f x x mx =-+.(Ⅰ)若()2,2m ∈-,求函数()y f x =的单调区间;(Ⅱ)若10,2m ⎛⎤∈ ⎥⎝⎦,则当[]0,1x m ∈+时,函数()y f x =的图象是否总在直线y x =上方?请写出判断过程.22.(选修4-4坐标系与参数方程)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.高二第一次月考理科数学参考答案一、BDCCC DBBBD BA 二、13. -2 ; 14 . 8π; 15. 2 ; 16. ()0,e .三、 17.解:(Ⅰ)∵S n =n 2,当n ≥2时,S n ﹣1=(n ﹣1)2∴相减得a n =S n ﹣S n ﹣1=2n ﹣1又a 1=S 1=1符合上式∴数列{a n },的通项公式a n =2n ﹣1 (II )由(I )知∴T n =b 1+b 2+b 3++b n ==又∵∴∴成立的最小正整数n 的值为518.解:(Ⅰ)由f (x )=lnx ﹣x+1,有'1()(0)xf x x x-=>,则()f x 在(0,1)上递增,在(1,+∞)递减; (Ⅱ)证明:当x ∈(1,+∞)时,1<<x ,即为lnx <x ﹣1<xlnx .结合(Ⅰ)知,当1x >时'()0f x <恒成立,即()f x 在(1,+∞)递减,可得f (x )<f (1)=0,即有lnx <x ﹣1;设F (x )=xlnx ﹣x+1,x >1,F′(x )=1+lnx ﹣1=lnx ,当x >1时,F′(x )>0,可得F (x )递增,即有F (x )>F (1)=0, 即有xlnx >x ﹣1,则原不等式成立; 19.解:(Ⅰ)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系,易得B (0,0,0),A (0,﹣1,),D (,﹣1,0),C (0,2,0),因而E (0,,),F (,,0),所以=(,0,﹣),=(0,2,0),因此•=0,所以EF ⊥BC .(Ⅱ)在图中,设平面BFC 的一个法向量=(0,0,1),平面BEF 的法向量=(x ,y ,z ),又=(,,0),=(0,,),由得其中一个=(1,﹣,1),设二面角E ﹣BF ﹣C 的大小为θ,由题意知θ为锐角,则 cosθ=|cos <,>|=||=,因此sinθ==,即所求二面角正弦值为.20.解:(Ⅰ) 设F (c ,0),由条件知,得又,所以a=2,b 2=a 2﹣c 2=1,故E 的方程.….(6分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y=kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y=kx ﹣2代入,得(1+4k 2)x 2﹣16kx+12=0, 当△=16(4k 2﹣3)>0,即时,从而又点O 到直线PQ 的距离,所以△OPQ 的面积=,设,则t >0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y=x ﹣2或y=﹣x ﹣2.…(12分)21. 解:(Ⅰ)易知()2,2m ∈-时,函数的定义域为R ,()()()2'2222(1)2(1)(1)()11x xx e x mx x m e e x x m f x xmx xmx -+-----==-+-+,①若11,m +=即0m =,则'()0f x ≥,此时()f x 在R 上递增;②11,m +>即02m <<,则当(),1x ∈-∞和()1,x m ∈++∞时,'()0f x >,()f x 递增;当()1,1x m ∈+时,'()0f x <,()f x 递减;综上,当0m =时,()f x 的递增区间为(),-∞+∞;当02m <<时,()f x 的递增区间为(),1-∞和()1,m ++∞,()f x 的减区间为()1,1m +(Ⅱ)当10,2m ⎛⎤∈ ⎥⎝⎦时,由(Ⅰ)知()f x 在()0,1上单调递增,在()1,1m +上单调递减.令()g x x =,①当[]0,1x ∈时min max ()(0)1,()1,f x f g x ===这时函数()f x 的图象总在直线()g x 上方. ②当[]1,1x m ∈+时,函数()f x 单调递减,所以1min()(1)2m e f x f m m +=+=+,()g x 的最大值为1m +.下面(1)f m +判断与1m +的大小,即判断xe 与(1)x x +的大小,其中311,.2x m ⎛⎤=+∈ ⎥⎝⎦解法一:令()(1)xm x e x x =-+,则'()21xm x e x =--,令'()()h x m x =,则'()2xh x e =-.因为311,.2x m ⎛⎤=+∈ ⎥⎝⎦所以'()20x h x e =->,所以'()m x 单调递增.又因为'(1)30m e =-<,3'23()402m e =->,所以存在031,2x ⎛⎤∈ ⎥⎝⎦,使得0'00()210.x m x e x =---所以()m x 在()01,x 上单调递减,在03,2x ⎛⎫ ⎪⎝⎭上单调递增,所以022200000000()()21 1.x m x m x e x x x x x x x ≥=--=+--=-++因为当031,2x ⎛⎤∈ ⎥⎝⎦时,2000()10,m x x x =-++>所以(1)x e x x >+,即(1)1f m m +>+,所以函数()f x 的图象总在直线y x =上方.解法二:判断xe 与(1)x x +的大小可以转化为比较x 与[]ln (1)x x +的大小.令[]()ln (1)x x x x ϕ=-+,则2'21()x x x x x ϕ--=+,令2()1,u x x x =--当31,2x ⎛⎤∈ ⎥⎝⎦时,易知()u x 递增,所以31()()024u x u ≤=-<,所以当31,2x ⎛⎤∈ ⎥⎝⎦时,'()0x ϕ<,()x ϕ递减,所以3315()()ln0224x ϕϕ≥=->.所以[]ln (1)x x x >+,所以(1)xe x x >+,所以(1)1f m m +>+,所以函数()f x 的图象总在直线y x =上方. 22.解:(1)曲线C 1的参数方程为(α为参数),移项后两边平方可得+y 2=cos 2α+sin 2α=1,即有椭圆C 1:+y 2=1; 曲线C 2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y ﹣4=0,即有C 2的直角坐标方程为直线x+y ﹣4=0; (2)由题意可得当直线x+y ﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).。
重庆一中2019-2020学年高二(下)第一次月考数学试卷(理科)(4月份)(含答案解析)

重庆一中2019-2020学年高二(下)第一次月考数学试卷(理科)(4月份)一、单项选择题(本大题共12小题,共60.0分)1.复数Z=2+4i1+i(i为虚数单位)在复平面内对应点的坐标是()A. (1,3)B. (−1,3)C. (3,−1)D. (2,4)2.用数学归纳法证明1+2+3+...+n2=n4+n22,则当n=k+1时,左端应在n=k基础上加上()A. k2+1B. (k+1)2C. (k+1)4+(k+1)22D. (k2+1)+(k2+2)+...+(k+1)23.10个三好学生名额,分给甲、乙、丙三个班,每班至少一名,共有()种方法.A. 24B. 48C. 36D. 724.从7名同学(其中4男3女)中选出4名参加环保知识竞赛,若这4人中必须有男生又有女生,则不同选法的种数为()A. 34B. 31C. 28D. 255.由数列1,10,100,1000,…猜测该数列的第n项可能是()A. 10nB. 10n−1C. 10n+1D. 11n6.若X~N(5,15),则()A. E(X)=1且D(X)=45B. E(X)=15且D(X)=1C. E(X)=1且D(X)=15D. E(X)=45且D(X)=17.(x2+3x−y)5的展开式中,x5y2的系数为()A. −90B. −30C. 30D. 908.已知点F1、F2分别是双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点,点P是双曲线C上异于F1、F2的另外一点,且△PF1F2是顶角为120°的等腰三角形,则该双曲线的离心率为()A. √3+1B. √3−12C. √2+12D. √3+129. 设A ,B 为两个事件,已知P(A)=23,P(AB)=13,则P(B|A)=( )A. 12B. 13C. 29D. 2310. 有两种交通工具,甲乙两人各从中随意挑选一种,则甲乙两人所挑到的交通工具不同的概率是( )A. 12B. 13C. 14D. 无法确定11. 从2个不同的红球、2个不同的黄球、2个不同的蓝球共六个球中任取2个,放入红、黄、蓝色的三个袋子中,每个袋子至多放入一个球,且球色与袋色不同,那么不同的放法有( )A. 36种B. 42种C. 72种D. 46种12. 设函数f(x)=e x (3x −4)−ax +2a ,若存在唯一的整数t ,使得f(t)<0,则实数a 的取值范围是( )A. [2,e]B. [32e ,1]C. [2,e)D. [32e ,34]二、填空题(本大题共4小题,共20.0分)13. 已知复数z =1−2i ,则复数1z 的模为__________.14. 在四棱柱ABCD −A 1B 1C 1D 1中,AB =BC =1,AA 1=3,直线AD 1,DC 1所成角的正弦值为______ . 15. 在(3x 13+x 12)n 的二项展开式中各项系数之和为t ,其二项式系数之和为h ,若ℎ+t =272,则其二项展开式中x 2项的系数为______. 16. 已知抛物线y 2=4x 的准线与双曲线x 2a 2−y 2b 2=1的两条渐近线分别交于A ,B 两点,且|AB|=2√3,则双曲线的离心率e 为______ . 三、解答题(本大题共6小题,共70.0分)17. 某校为举办甲、乙两项不同活动,分别设计了相应的活动方案;方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为p0.假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1.试比较p0与p1的大小.(结论不要求证明)18.已知有3位女生,4位男生.(1)这7人站成一排,要求3位女生两两不相邻,求有多少种不同的站法;(2)从这7人中选3人参加科技比赛,且至少有1位女生入选,求有多少种不同的选法.,E(ξ)=1,求D(ξ)的值.19.随机变量ξ的取值为0,1,2.若P(ξ=0)=1520.如图,在四棱锥S−ABCD中,底面ABCD为菱形,∠BAD=60°,E、P、Q分别是棱AD、SC、AB的中点,且SE⊥平面ABCD,SE=AD=2.(1)求证:PQ//平面SAD;(2)求直线SA与平面SEQ所成的角的余弦值.21.设A点是椭圆E:x2a2+y2b2=1(a>b>0)上一点,F1,F2是椭圆E的左、右焦点,且∠AF1F2=15°,∠AF2F1=75°,且|F1F2|=2√6.(1)求椭圆E的方程;(2)若点M(32,32)是椭圆E上一点,N是M关于原点O的对称点,过M的任意直线(但该直线不过原点O)与椭圆E交于另一点Q,求△MQN的面积的最大值.a(x−1)2−lnx,其中a∈R.22.已知函数f(x)=x−12(Ⅰ)若x=2是f(x)的极值点,求a的值;(Ⅱ)若∀x>0,f(x)≥1恒成立,求a的取值范围.【答案与解析】1.答案:A解析:解:复数Z=2+4i1+i =(2+4i)(1−i)(1+i)(1−i)=(1+2i)(1−i)=3+i在复平面内对应点的坐标是(3,1).故选:A.利用复数的运算法则、几何意义即可得出.本题考查了复数的运算法则、几何意义,属于基础题.2.答案:D解析:本题主要考查了数学归纳法.分析出n=k和n=k+1时等式的左端,进而得出结论解:当n=k时,等式左端=1+2+⋯+k2,当n=k+1时,等式左端=1+2+⋯+k2+(k2+1)+(k2+2)+⋯+(k+1)2,增加的项为(k2+1)+(k2+2)+⋯+(k+1)2,故选D.3.答案:C解析:本题主要考查隔板法的运用,等价转化是解题的关键.10个名额排成一排,每班至少要1名,就有9个空然后插入2个板子把他们隔开,从9个里选2个即可答案.解:10个名额排成一排,每班至少要1名,就有9个空然后插入2个板子把他们隔开,从9个里选2个,就是C92=36,故选C.4.答案:A解析:解:分3步来计算,①从7人中,任取4人参加环保知识竞赛,分析可得,这是组合问题,共C74=35种情况;②选出的4人都为男生时,有1种情况,因女生只有3人,故不会都是女生,③根据排除法,可得符合题意的选法共35−1=34种;故选:A.根据题意,选用排除法;分3步,①计算从7人中,任取4人参加环保知识竞赛,②计算选出的全部为男生或女生的情况数目,③由事件间的关系,计算可得答案.本题考查组合数公式的运用,解本题采用了正难则反的原则进行解题.5.答案:B解析:给出的几项都是10的方幂,幂指数比项数少1.所以该数列的第n项可能是10n−1.6.答案:A解析:解:∵X~N(5,15),∴E(X)=5×15=1,D(X)=5×15×(1−15)=45.故选:A.根据二项分布的性质计算.本题考查了二项分布的性质,属于基础题.7.答案:D解析:解:(x2+3x−y)5的展开式中通项公式:T r+1=∁5r(−y)5−r(x2+3x)r,令5−r=2,解得r=3.∴(x2+3x)3=x6+3(x2)2⋅3x+3(x2)×(3x)2+(3x)3,∴x5y2的系数=∁53×9=90.故选:D.(x2+3x−y)5的展开式中通项公式:T r+1=∁5r(−y)5−r(x2+3x)r,令5−r=2,解得r=3.展开(x2+3x)3,进而得出.本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.8.答案:D解析:解:设P在双曲线线的左支上,且|PF1|=|F1F2|=2c,∠PF1F2=120°,可得|PF2|=√4c2+4c2−2⋅2c⋅2c⋅(−12)=2√3c,由双曲线的定义可得2a=2√3c−2c,即有e=ca =√3−1=1+√32.故选:D.设P在双曲线的左支上,|PF1|=|F1F2|=2c,∠PF1F2=120°,运用余弦定理可得|PF2|,再由双曲线的定义和离心率公式计算可得所求值.本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用余弦定理和双曲线的定义是解题的关键.9.答案:A解析:解:由条件概率的计算公式,可得P(B|A)=P(AB)P(A)=12.故选:A.由条件概率的计算公式P(B|A)=P(AB)P(A)=12,根据题意,代入数据计算可得答案.本题考查条件概率的计算公式,是基础题;需要牢记条件概率的公式.10.答案:A解析:本题主要考查概率的应用,属于基础题.解:有题意得,∴根据古典概率的特点,甲乙两人各从中随意挑选一种,则甲乙两人所挑到的交通工具不同的概率是12,故选A.11.答案:B解析:本题考查了排列组合的综合应用,分取得的两球同色和两球不同色两种情况讨论即可得出结果.解:当取得的两球同色时,有C31A22=6种情况;当取得的两球不同色时,先取不同色,有C32C21C21种情况;然后,以取得红黄为例,若红球放入黄袋,黄球就有红、蓝两袋选择;若红球放入蓝带袋,黄球就只能选择红袋,所以共有3种可能,所以当取得的两球不同色时,有C32C21C21×3=36种情况,故不同的放法共有6+36=42种,故选B.12.答案:C解析:本题考查导数和极值,考查了数形结合和转化的思想,设g(x)=e x(3x−4),y=ax−2a,将条件转化为存在唯一的整数x0使得点(x0,g(x0))在直线y=ax−2a的下方,对g(x)求导,求出g(x)的最小值,进一步验证即可.解:设g(x)=e x(3x−4),y=ax−2a,由题意知,存在唯一的整数x0使得点(x0,g(x0))在直线y= ax−2a的下方,∵g′(x)=e x(3x−4)+3e x=e x(3x−1),∴当x<1时,g′(x)<0;3时,g′(x)>0.当x>13∴当x=1时,g(x)取最小值−3e13.3当x=0时,g(0)=−4;当x=1时,g(1)=−e<0;当x =2时,g(2)=2e 2>0.直线y =ax −2a 恒过定点(2,0)且斜率为a ,故−a >g(1)=−e 且g(0)=−4≥−2a ,解得2≤a <e . 答案:C13.答案:√55解析:本题考查复数模的计算,属于基础题. 利用|1z |=1|z|求解即可. 解:∵复数z =1−2i , ∴|1z |=1|z|=√12+(−2)2=√55, 故答案为√55.14.答案:√1910解析:解:取四棱柱ABCD −A 1B 1C 1D 1为直棱柱, 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 建立空间直角坐标系, ∵AB =BC =1,AA 1=3,∴A(1,0,0),D 1(0,0,3),D(0,0,0),C 1(0,1,3), AD 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,3),DC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,3), 设直线AD 1,DC 1所成角为θ, cosθ=|AD 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅DC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|DC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=|9|√10⋅√10=910,∴sinθ=√1−(910)2=√1910. ∴直线AD 1,DC 1所成角的正弦值为√1910.故答案为:√1910.取四棱柱ABCD −A 1B 1C 1D 1为直棱柱,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出直线AD 1,DC 1所成角的正弦值.本题考查两直线所成角的正弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.15.答案:1解析:解:令二项式中的x为1得到各项系数之和t=4n又各项二项式系数之和ℎ=2n∵t+ℎ=272,∴4n+2n=272,解得n=4,所以(3x13+x12)n=(3x13+x12)4,它的展开式的通项为C4K34−K x4−k3+k2,二项展开式中x2项时k=4,二项展开式中x2项的系数为:1;故答案为:1.给二项式中的x赋值1求出展开式的各项系数的和t;利用二项式系数和公式求出h,代入已知的等式,解方程求出n的值,得到表达式,求出二项式中x2项的系数即可.本题考查解决展开式的各项系数和问题常用的方法是赋值法、考查二项式系数的性质:二项式系数和为2n.16.答案:2解析:求出y2=4x的准线l:x=−1,由抛物线y2=4x的准线与双曲线x2a2−y2b2=1的两条渐近线分别交于A,B两点,且|AB|=2√3,从而得出A、B的坐标,将A点坐标代入双曲线渐近线方程结合a,b,c的关系式得出出a,c的关系,即可求得离心率.本题考查双曲线的性质和应用,考查学生的计算能力,属于中档题.解:∵y2=4x的准线l:x=−1,∵抛物线y2=4x的准线与双曲线x2a2−y2b2=1的两条渐近线分别交于A,B两点,且|AB|=2√3,∴A(−1,√3),B(−1,−√3),将A 点坐标代入双曲线渐近线方程得b a =√3,∴b 2=3a 2,又 b 2=c 2−a 2∴3a 2=c 2−a 2,即4a 2=c 2,∴e =c a =2.则双曲线的离心率e 为2.故答案为:2.17.答案:解:(Ⅰ)设“该校男生支持方案一”为事件A ,“该校女生支持方案一”为事件B , 则P(A)=200200+400=13,P(B)=300300+100=34;(Ⅱ)由(Ⅰ)知,P(A)=13,P(B)=34,设“这3人中恰有2人支持方案一”为事件C ,则P(C)=C 22(13)2(1−34)+C 21⋅13⋅(1−13)⋅34=1336; (Ⅲ)p 0>p 1.解析:本题考查古典概型及相互独立事件同时发生的概率求法,考查计算能力及推理能力,属于基础题.(Ⅰ)根据古典概型的概率公式直接求解即可;(Ⅱ)结合(Ⅰ)及相互独立事件同时发生的概率直接求解即可;(Ⅲ)直接写出结论即可.18.答案:解:(1)根据题意,分2步进行分析:①,将4名男生全排列,有A 44种排法,排好后有5个空位;②,在5个空位中任选3个,安排3位女生,有A 53种情况,则有A 44·A 53=1440种排法;(2)根据题意,用间接法分析:在7人中任选3人,有C 73种选法,其中没有女生即全部为男生的选法有C 43种,则至少有1位女生入选的选法有C 73−C 43=31种.解析:本题考查排列、组合的应用,注意常见问题的处理方法,属于基础题.(1)根据题意,分2步进行分析:①,将4名男生全排列,分析排好后的空位,②,在5个空位中任选3个,安排3位女生,由分步计数原理计算可得答案;(2)根据题意,用间接法分析:先计算在7人中任选3人的选法,再计算其中没有女生即全部为男生的选法,分析可得答案.19.答案:解:设P(ξ=1)=a ,P(ξ=2)=b , 则{15+a +b =1,a +2b =1,解得{a =35,b =15, 所以D(ξ)=15+35×0+15×1=25.解析:本题综合考查了分布列的性质以及期望、方差的计算公式.根据已知条件结合分布列的性质和期望的计算公式列方程组求出P(ξ=1),P(ξ=2),结合方差的计算公式即可求解.20.答案:(1)证明:取SD 中点F ,连结AF ,PF .∵P 、F 分别是棱SC 、SD 的中点,∴FP//CD ,且FP =12CD ,∵在菱形ABCD 中,Q 是AB 的中点,∴AQ//CD ,且AQ =12CD ,即FP//AQ 且FP =AQ ,∴AQPF 为平行四边形,则PQ//AF ,∵PQ ⊄平面SAD ,AF ⊂平面SAD ,∴PQ//平面SAD .(2)解:设AC 与EQ 交于点O ,连接OS ,∵SE ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC⊥SE,在菱形ABCD中,AC⊥BD,又EQ//BD,∴AC⊥EQ,∵SE∩EQ=E,∴AC⊥平面SEQ,∴∠OSA是直线SA与平面SEQ所成的角,又∵∠BAD=60°,SE=AD=2,∴SA=√5,OA=√32,OS=√172,.解析:本题主要考查线面、面面垂直与平行的性质、直线与平面所成的角,考查了空间想象能力与逻辑推理能力,是中档题.(1)取SD中点SD,连结AF,PF,证明四边形AQPF为平行四边形,即可得证PQ//平面SAD;(2)设AC与EQ交于点O,连接OS,易得AC⊥面SEQ,所以∠OSA是直线SA与平面SEQ所成的角,由此能求出直线SA与平面SEQ所成的角的余弦值.21.答案:解:(1)由题c=√6,Rt△F1AF2中,则|AF2|=2√6sin15°=3−√3,|AF1|=2√6sin75°=3+√3,∴|AF1|+|AF2|=2a=6,则a=3,b2=a2−c2=3,∴椭圆方程为:x29+y23=1;(2)设椭圆上动点Q(3cosθ,√3sinθ)到直线MN:y=x的距离为d=√3sinθ|√2=√6sin(θ−π3),∴d max=√6,∴△MQN的面积的最大值S△MQN=12×|MN|×d=3√3,∴△MQN的面积的最大值3√3.解析:(1)根据几何关系求得|AF1|+|AF2|=2a=6,即可求得a,c=√6,即可求得b的值,即可求得椭圆方程;(2)方法一:设切线方程,代入椭圆方程,利用△=0,即可求得m的值,即可求得d max=√6,即可求得△MQN的面积的最大值;方法二:设Q点坐标,根据点到直线的距离公式及辅助角公式,根据正弦函数的性质,即可求得d max=√6,即可求得△MQN的面积的最大值.本题考查椭圆的标准方程及定义,直线与椭圆的位置关系,考查转化思想,属于中档题.22.答案:解:(1)f/(x)=1−a(x−1)−1x,因为x=2是f(x)的极值点,所以f′(2)=0,即1−a(2−1)−12=0解得a=12;(2)依题意x−12a(x−1)2−lnx≥1,即a(x−1)2≤2(x−1−lnx),x>0,①当x=1时,a(x−1)2≤2(x−1−lnx)恒成立,a∈R;②当x>0且x≠1时,由a(x−1)2≤2(x−1−lnx),得a≤2(x−1−lnx)(x−1)2,设g(x)=x−1−lnx,x>0,g′(x)=1−1x,当0<x<1时,g′(x)<0,当x>1时g′(x)>0,所以∀x>0,g(x)≥g(1)=0,所以,当x>0且x≠1时,2(x−1−lnx)(x−1)2>0,从而a≤0,综上所述,a的取值范围为(−∞,0].解析:(1)求导数f′(x),由题意可得f′(2)=0,解出可得a值;(2)f(x)≥1,即a(x−1)2≤2(x−1−lnx),x>0,按x=1,x>0且x≠1两种情况进行讨论:①当x=1时,由恒成立易求此时a的范围;②当x>0且x≠1时,分离出参数a,构造函数利用导数求函数的最值即可;本题考查利用导数研究函数的极值、闭区间上函数的最值,考查分类讨论思想,函数恒成立问题往往转化为函数最值问题解决.。
重庆市巫山中学2020学年高二数学上学期第一次月考试题 文(无答案)
巫山中学高2020级高二上学期第一次月考数学试题(文史类)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}|24A x x =<<,{}|(1)(3)0A x x x =--<,则A B =I ( ) (A )(13),(B )(14),(C )(23),(D )(24),2.在等差数列{}n a 中,21=a ,1053=+a a ,则7a = (A )5(B )8(C )10(D )143. 为了调查城市PM2.5的情况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为( ) (A )3(B )4(C )5(D )64. 设R c b a ∈,,,且b a >,则下列不等式成立的是 ( )(A )bc ac >(B )b a 11< (C )22b a > (D )33b a > 5. 要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 4y x =的图象( )(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位6.某几何体的三视图如图所示,则该几何体的表面积是( )(A )44π (B )48π(C )1163π (D )1283π7. 在区间[]2,0上随机地取一个数x ,则事件“1log 121≤≤-x ”发生的概率为( ) (A )34(B )23(C )13(D )148.已知非零向量b a ,满足a b 4=,且()b a a +⊥2则a 与b 的夹角为( )(A )3π (B )2π (C )32π (D )65π 9.设等比数列{}n a 的前n 项和为n S ,若15,342==S S ,则6S =( )(A )31 (B )32 (C )63 (D )6410.设n m ,是两条不同的直线,βα,是两个不同的平面,下面说法正确的是( )(A )若α//,n n m ⊥,则α⊥m (B )若αββ⊥,//m ,则α⊥m (C )若αββ⊥⊥⊥n n m ,,,则α⊥m (D )若αββ⊥⊥⊥,,n n m ,则α⊥m 11.设函数()()()x x x f --+=1ln 1ln ,则()x f 是( )(A )奇函数,且在()1,0上是增函数 (B )奇函数,且在()1,0上是减函数 (C )偶函数,且在()1,0上是增函数(D )偶函数,且在()1,0上是减函数12. 已知各项都为正数的等比数列{}n a 满足5672a a a +=,若存在两项n m a a ,, 使得18a a a n m =,则nm 91+的最小值为( ) (A )617(B ) 38(C )2(D )514 二、填空题:本大题共4小题,每小题5分,共20分. 13. 执行右图的程序框图,若输入的x 的值为1,则输出 的y 的值是 .14. 若x ,y 满足约束条件131y x x y y -⎧⎪+⎨⎪⎩≤≤≥,,,则3z x y =+的最大值为 .15.ABC ∆的内角C B A ,,的对边分别为c b a ,,, 已知4,6,2ππ===C B b ,则ABC ∆的面积为16. 已知函数()xxee xf -+=(其中e 是自然对数的底数),若关于x 的不等式()1-+≤-m e x mf x 在()+∞,0上恒成立,则实数m 三、解答题:本大题共6小题,共70分. 17.(本小题满分10分)如图,在直三棱柱111C B A ABC -中, AC BC =,点D 是AB (I )求证: 11//CDA BC 平面(II )求证:平面1CDA 11A ABB 平面⊥18.(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团 未参加书法社团参加演讲社团 85 未参加演讲社团2 30(I )从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(II )在既参加书法社团又参加演讲社团的8名同学中,有5名男同学12345A A A A A ,,,,,3名女同学123B B B ,,. 现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.18、(本题满分12分)袋中装有3个红球和2个黑球,一次取3个球。
重庆巫山县高级中学高二数学文月考试题含解析
重庆巫山县高级中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设A、B、C、D是空间不共面的四个点,且满足·=0,·=0,·=0,则△BCD的形状是()A.钝角三角形 B.直角三角形 C.锐角三角形D.无法确定参考答案:C略2. 设,则()A.没有极大值,也没有极小值 B.没有极大值,有极小值C.没有极小值,有极大值 D.有极大值,也有极小值参考答案:A略3. 已知函数,则实数等于()A. B. C.2 D.9参考答案:C4. 已知等比数列中,公比为,且,则A. 100 B. 90 C. 120 D. 30参考答案:B5. ( )。
A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件。
参考答案:A略6. 设是一个离散型随机变量,其分布列如下表,则的等于A.1B.C.D.参考答案:C本题主要考查离散型随机变量的性质,意在考查学生对基本概念的理解运用.根据离散型随机变量的性质可得:,即,解得,而时,舍去,故.故选C.7. 已知双曲线(a >0, b >0)的离心率为e ∈,则它的两条渐近线所成的角中以实轴为平分线的角的大小为( )A .B .C .D .参考答案:C8. 下列求导运算正确的是 ( )A .B .C . D.参考答案: B 略9. 已知圆O 为坐标原点,则以OC 为直径的圆的方程( )A. B. C.D.参考答案:C 【分析】先求出圆心和半径,即得圆的方程. 【详解】由题得OC 中点坐标为(3,4), 圆的半径为,所以圆的方程为.故选:C【点睛】本题主要考查圆的方程的求法,意在考查学生对该知识的理解掌握水平和分析推理能力. 10. 函数f (x )=ln(x 2-2x -8)的单调递增区间是 A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)参考答案:D二、 填空题:本大题共7小题,每小题4分,共28分11. 已知球的表面积为4π,则其半径为 .参考答案:1考点: 球的体积和表面积.专题: 计算题;空间位置关系与距离.分析: 一个球的表面积为4π,由球的表面积的计算公式能求出这个球的半径. 解答: 解:设这个球的半径这R ,则 ∵一个球的表面积为4π, ∴4πR 2=4π,解得R=1, 故答案为:112. 已知曲线,其中;过定点参考答案:略13. 下列说法:(1)命题“”的否定是“”;(2)关于的不等式恒成立,则的取值范围是;(3)对于函数,则有当时,,使得函数在上有三个零点;(4)已知,且是常数,又的最小值是,则7.其中正确的个数是。
重庆市2024-2025学年高二上学期第1次月考数学试题(无答案)
重庆2024-2025学年度上期高二年级数学月考测试题(时间:120分钟 满分:150分)一、单选题(本题共8题小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.若,则a 的值为( )A .或1或2B .或1C .或2D .22.已知复数z 满足(i 为虚数单位),则z 的虚部为( )A .B .C .D .3.已知向量,满足,,则在方向上的投影向量为( )A .2B .C .D .4.已知点P 在椭圆上,点,分别为椭圆C 的左、右焦点,满足,的面积为12,椭圆C 的焦距为8,则椭圆C 的标准方程为( )A .B .C .D .5.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .B .C .D .6.已知圆与直线,过l 上任意一点P 向圆C 引切线,切点为A 和B ,若线段ABm 的值为( )A BCD7.已知两个不同的圆,均过定点,且圆,均与x 轴、y 轴相切,则圆与圆的半径之积为( )A .B .C .D .{}221,3,a a +∈1-1-1-2024(1i)iz +⋅=1212-12ii 12-a b||1b = a b ⊥ 2a b - b 2a2b- 2-2222:1(0)x y C a b a b+=>>1F 2F 12PF PF ⊥12PF F △2218824x y +=2217612x y +=2214024x y +=2212812x y +=243aπ273aπ283aπ2163a π22:20C x x y -+=:2(0)l y mx m m =+>1C 2C (,)A a b 1C 2C 1C 2C 22a b+2||ab 222a b +||ab8.已知直线与圆交于A,B两点,过A,B分别作x轴的垂线,垂足分别为C,D两点,若,则m为()A.B.CD二、多选题(本题共3小题,每小题6分,共18分。
高二数学第一次月考试卷及答案
高二数学月考试卷答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某公共汽车上有15位乘客,沿途5个车站,乘客下车的可能方式有() A.515种B.155种C.50种D.50625种【解析】每位乘客都有5种不同的下车方式,根据分步乘法计数原理,共有515种可能的下车方式,故选A.【答案】A2.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有() A.6种B.12种C.18种D.24种【解析】种植黄瓜有3种不同的种法,其余两块地从余下的3种蔬菜中选一种种植有3×2=6种不同种法.由分步乘法计数原理知共有3×6=18种不同的种植方法.故选C.【答案】C3.(1-x)6展开式中x的奇次项系数和为()A.32B.-32C.0D.-64【解析】(1-x)6=1-C16x+C26x2-C36x3+C46x4-C56x5+C66x6,所以x的奇次项系数和为-C16-C36-C56=-32,故选B.【答案】B4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是()A.0.04B.0.16C.0.24D.0.96【解析】三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.【答案】D5.正态分布密度函数为f(x)=122πe-x-128,x∈R,则其标准差为()A.1B.2C.4D.8【解析】根据f(x)=1σ2πe-x-μ22σ2,对比f(x)=122πe-x-128知σ=2.【答案】B6.随机变量X的分布列如下表,则E(5X+4)等于()X024P0.30.20.5A.16B.11C.2.2D.2.3【解析】由表格可求E(X)=0×0.3+2×0.2+4×0.5=2.4,故E(5X+4)=5E(X)+4=5×2.4+4=16.故选A.【答案】A7.三名教师教六个班的数学,则每人教两个班,分配方案共有()A.18种B.24种C.45种D.90种【解析】不妨设三名教师为甲、乙、丙.先从6个班中任取两个班分配甲,再从剩余4个班中,任取2个班分配给乙,最后两个班分给丙.由乘法计数原理得分配方案共C26·C24·C22=90(种).【答案】D8.在(x2+3x+2)5的展开式中x的系数为()A.140B.240C.360D.800【解析】由(x2+3x+2)5=(x+1)5(x+2)5,知(x+1)5的展开式中x的系数为C45,常数项为1,(x+2)5的展开式中x的系数为C45·24,常数项为25.因此原式中x的系数为C45·25+C45·24=240.【答案】B9.设随机变量ξ~B(n,p),若E(ξ)=2.4,D(ξ)=1.44,则参数n,p 的值为()【导学号:97270066】A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1【解析】由二项分布的均值与方差性质得=2.4,1-p=1.44,=6,=0.4,故选B.【答案】B10.小明同学在网易上申请了一个电子信箱,密码由4位数字组成,现在小明只记得密码是由2个6,1个3,1个9组成,但忘记了它们的顺序.那么小明试着输入由这样4个数组成的一个密码,则他恰好能输入正确进入邮箱的概率是()A.16B.18C.112D.124【解析】由2个6,1个3,1个9这4个数字一共可以组成A44A22=12种不同的密码顺序,因此小明试着输入由这样4个数组成的一个密码,他恰好能输入正确进入邮箱的概率是P=1 12 .【答案】C11.利用下列盈利表中的数据进行决策,应选择的方案是()自然状况概率方案盈利(万元)S i PiA1A2A3A4S10.255070-2098S20.3065265282S30.45261678-10A.A1B.A2C.A3D.A4【解析】利用方案A 1,期望为50×0.25+65×0.30+26×0.45=43.7;利用方案A 2,期望为70×0.25+26×0.30+16×0.45=32.5;利用方案A 3,期望为-20×0.25+52×0.30+78×0.45=45.7;利用方案A 4,期望为98×0.25+82×0.30-10×0.45=44.6;因为A 3的期望最大,所以应选择的方案是A 3,故选C.【答案】C12.如图12,用五种不同的颜色给图中的A ,B ,C ,D ,E ,F 六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共()A.264种B.360种C.1240种D.1920种【解析】由于A 和E 或F 可以同色,B 和D 或F 可以同色,C 和D 或E 可以同色,所以当五种颜色都选择时,选法有C 13C 12A 55种;当五种颜色选择四种时,选法有C 45C 13×3×A 44种;当五种颜色选择三种时,选法有C 35×2×A 33种,所以不同的涂色方法共C 13C 12A 55+C 45C 13×3×A 44+C 35×2×A 33=1920.故选D.【答案】D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.某科技小组有女同学2名、男同学x 名,现从中选出3名去参加展览.若恰有1名女生入选时的不同选法有20种,则该科技小组中男生的人数为________.【解析】由题意得C12·C2x=20,解得x=5.【答案】514.已知(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(a+a2+a4)·(a1+a3+a5)的值等于________.【解析】令x=1,得a0+a1+a2+a3+a4+a5=0,①再令x=-1,得a0-a1+a2-a3+a4-a5=25=32,②①+②得a0+a2+a4=16,①-②得a1+a3+a5=-16,故(a0+a2+a4)·(a1+a3+a5)的值等于-256.【答案】-25615.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.9的3次方×0.1;③他至少击中目标1次的概率是1-0.1的4次方.其中正确结论的序号是________(写出所有正确结论的序号).解析:②中恰好击中目标3次的概率应为C34×0.93×0.1=0.93×0.4,只有①③正确.答案:①③16.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)=________.【解析】由下图可以看出P(550<X<600)=P(400<X<450)=0.3.【答案】0.3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10x n =C 2xn ,x +1n =113C x -1n,试求x ,n 的值.【解】∵C x n =C n -x n =C 2xn ,∴n -x =2x 或x =2x (舍去),∴n =3x .由C x +1n =113C x -1n ,得n !x +1!n -x -1!=113·n !x -1!n -x +1!,整理得3(x -1)!(n -x +1)!=11(x +1)!(n -x -1)!,3(n -x +1)(n -x )=11(x +1)x .将n =3x 代入,整理得6(2x +1)=11(x +1),∴x =5,n =3x =15.18.18.(本小题满分12分)要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩记录同学甲击中目标的环数为X 1的分布列为X 15678910P 0.030.090.200.310.270.10同学乙击目标的环数X 2的分布列为X 256789P 0.010.050.200.410.33(1)请你评价两位同学的射击水平(用数据作依据);(2)如果其它班参加选手成绩都在9环左右,本班应派哪一位选手参赛,如果其它班参赛选手的成绩都在7环左右呢?(1)利用期望和方差公式求出两变量的期望和方差;(2)根据第(1)问的结论选择水平高的选手解:(1)EX 1=,EX 2==8DX 1=1.50DX 2=0.8两位同学射击平均中靶环数是相等的,同学甲的方差DX1大于同学乙的方差DX2,因此同学乙发挥的更稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巫山中学2020级高二下第一次月考数学(理)试题
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.集合⎭⎬⎫⎩⎨⎧>+-=031x x x P ,{}
24x y x Q -==,则=Q P I ( ) A .]2,1( B .]2,1[ C .(,3)(1,)-∞-+∞U D .)2,1[
2.在比赛中,如果运动员A 胜运动员B 的概率是23,那么在五次比赛中运动员A 恰有三次获
胜的概率是( )
A.40243
B. 110243
C. 80243
D.20243
3.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4,则公差d 等于( )
A .1
B .35
C .2-
D .3
4.投掷一枚均匀硬币和一枚均匀骰子各一次, 记“硬币正面向上”为事件A , “骰子向上的点数是3”为事件B ,则事件A B ⋃发生的概率是( )
A.512
B.12
C.712
D.34
5.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p ,则P(-1<ξ<0)等于( )
A.12p B .1-p C .1-2p D.12-p
6.某中学高二年级共有6个班,现从外地转入4名学生,要安排到该年级的两个班级,且每班安排两名,则不同的安排方案种数为( )
A.
B. C. D. 7.设(35n x x
展开式的各项系数的和为M ,二项式系数的和为N ,992M N -=,则展开式中2x 项的系数为( )
A. 250
B. –250
C. 150
D. –150
8.有两排座位,前排11个座位,后排12个座位,现安排2人就坐,规定前排中间的3个座位不能坐,并且这两人不左右相邻,那么不同的排法种数是( )
A. 346
B. 234
C. 350
D. 363
9.已知离散型随机变量ξξ 10 20 30
P 0.6 a 14-a 2
则D(3ξ-3)等于( )
A .42
B .135
C .402
D .405
10.如图,四棱锥ABCD P -中,ο90=∠=∠BAD ABC ,AD BC 2=, PAB ∆和PAD
∆都是等边三角形,则异面直线CD 与PB 所成角的大小
为( )
A .ο90
B .ο75
C .ο
60
D .ο45
11.已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若QF PF 3=,则QF =( )
A . 25
B . 38
C . 3
D . 6
12.在密码理论中,“一次一密” 的密码体系是理论上安全性最高的.我国首艘航空母舰——“辽宁舰”在执行某项特殊任务时使用四个不同的口令,,,a b c d ,每次只能使用其中的一种,且每次都是从上次未使用的三个口令中等可能地随机选用一种.设第1次使用a 口令,那么第5次也使用a 口令的概率是( )
A .1
243 B .61243 C .1108 D .727
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)
13.一个四棱锥的底面是正方形,其正视图和侧视图均为如图所示的等腰三角形, 则该四棱锥的侧面积为 ▲
14.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,
且321π
=∠PF F ,椭圆的离心率为1e ,双曲线的离心率2e ,则=+222131e e ▲ .
15.某种产品的加工需要 A, B, C , D, E 五道工艺,其中A 必须在D 的前面完成(不一定相邻),
其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间, B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 ▲ 种. (用数字作答)
16.欧阳修《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,
徐以杓酌油沥之,自钱孔入,而钱不湿”。
可见“行行出状元”,
卖油翁的技艺让人叹为观止,如右图铜钱是直径为4cm 的圆形,
正中间有边长为1cm 的正方形孔,若随机向铜钱上滴一滴油
(油滴是直径为0.2cm 的球),记“油滴不出边界”为事件A ,
“油滴整体正好落入孔中”为事件B 。
则()P B A = __▲___(不作近似值计算)。
三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)
17.(本小题满分12分)
NBA 职业联赛的总决赛在热火、马刺两队之间角逐,采用七场四胜制,即有一队胜四场,则
此队获胜,且比赛结束.在每场比赛中,热火队获胜的概率是23,马刺队获胜的概率是13,根
据以往资料统计,每场比赛组织者可获门票收入为30万元,两队决出胜负后,问:
(1)组织者在总决赛中获门票收入为120万元的概率是多少?
(2)组织者在总决赛中获门票收入不低于180万元的概率是多少?
18.(本小题满分12分),
若向量)(),cos ,cos ,cos ,0a x x b x x ωωωωω==>r r ,
()12f x a b =-r r g ,且()f x 的周期是π,设ABC ∆三个角,,C A B 的对边分别为,,a b c
(1)求ω的值;
(2
)若1(),sin 3sin 2c f C B A ===,求,a b 的值。
19. (本小题满分12分)
2020年,高校自主招生成为优秀考生的重要选择。
甲、乙、丙三位同学彼此独立地从
A B C D E 、、、、五所高校中,任选2所高校参加考试(并且只能选2所高校),但同学甲特别喜欢A 高校,他除选A 校外,在B C D E 、、、中再随机选一所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可
(1)求甲同学未选中B 高校且乙、丙都选中B 高校的概率;
(2)记ξ为甲、乙、丙三名同学中参加B 校自主招生考试的人数,求ξ的分布列及数学期望。
20.(本小题满分12分)
如图,在四棱锥P ABCD -中,底面ABCD 为菱形,
60BAD ∠=o
,2PA PD AD ===,点M 在线段PC 上,,N 为AD 的中点.
(1)求证:BC ⊥平面PNB
(2)若平面PAD ⊥平面ABCD ,M 是线段PC 上一点,且二面角M BN D --为60o , 试确定M 的位置。
21.(本小题满分12分)
已知椭圆C:22221(0)x y a b a b +=>>离心率
22e =22. (1)求椭圆C 的标准方程;
(2) 如图,椭圆左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别与y 轴交于M ,N 两点.试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.
22.(本小题满分10分) 已知函数212)(--+=x x x f .
(1)解不等式0)(≥x f ;
(2)若x R ∃∈,使得a x x f +≤)(,求实数a 的取值范围.。