圆中与最值有关的压轴题
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
2020年深圳中考压轴题圆题型汇总(托勒密定理等圆中难题秘诀)

2020年深圳中考压轴题圆题型汇总(托勒密定理等圆中难题秘诀)中考专项练——圆一、圆中等积式证明(三角形相似)在圆中,我们常常需要证明一些等积式,其中一种常见的方法是利用三角形相似。
例如,我们可以证明在同一圆周上的两个弧所对应的圆心角相等,即 $\angle AOB = \angle COD$,其中 $AB$ 和 $CD$ 分别是这两个弧所对应的弦。
我们可以通过证明 $\triangle AOB \sim \triangle COD$ 来得到这个结论。
圆中的相似模型】在圆中,我们还可以利用相似模型来解决问题。
例如,我们可以利用相似模型证明切线与半径垂直,即 $\angle AOB = 90^\circ$,其中$OA$ 是圆的半径,$AB$ 是与圆相切的切线。
切线定理】切线定理是圆中一个重要的定理,用于描述切线与圆的关系。
根据切线定理,切线与圆的切点处的切线段长度相等。
例如,如果 $AB$ 和 $CD$ 是与圆相切的两条切线,它们的切点为 $P$,那么 $AP=PD$ 和 $BP=PC$。
中点弧模型】中点弧模型是圆中一个常见的模型,用于求解圆中线段的长度。
例如,如果 $AB$ 是圆中一条弦,$M$ 是 $AB$ 的中点,$OM$ 是圆的半径,那么 $AB=2OM$。
例题】例如,如果 $AB$ 是圆中一条直径,$C$ 是圆上一点,$CD$ 是过 $C$ 的切线,交直径 $AB$ 于 $E$,那么 $CE=DE$。
二、圆中线段和差比值问题利用三角形全等进行截长补短】在圆中,我们常常需要解决线段和差比值的问题。
例如,如果 $AB$ 和 $CD$ 是圆中两条相交的弦,交点为 $E$,那么$\dfrac{AE}{EB}=\dfrac{CD}{DB}$。
我们可以利用三角形全等来证明这个结论。
托密勒定理】托密勒定理是圆中一个重要的定理,用于描述线段和差的比值。
根据托密勒定理,如果 $AB$ 和 $CD$ 是圆中两条相交的弦,交点为 $E$,那么$\dfrac{AE}{EB}\cdot\dfrac{CD}{AD}=\dfrac{CE}{ED}$。
人教中考数学压轴题专题复习——圆的综合的综合及详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.【答案】(1)见解析;(2)1010. 【解析】 分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.详解:(1)证明:连接O 、D 与B 、D 两点,∵△BDC 是Rt △,且E 为BC 中点,∴∠EDB=∠EBD .(2分)又∵OD=OB 且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE 是⊙O 的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又∵BD ⊥AC ,∴△ABC 为等腰直角三角形.∴∠C AB=45°.过E 作EH ⊥AC 于H ,设BC=2k ,则EH=22k ,AE=5k , ∴sin ∠CAE=1010EH AE .点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.3.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
人教中考数学圆的综合-经典压轴题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8∵直径AB ⊥弦CD 于点E∴AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB ∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE= 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.2.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
(1)如图1,在平面直角坐标系中,已知点A 、B 的坐标分别为A (6,0)、B (0,2),点C (x ,y )在线段AB 上,计算(x+y )的最大值。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例 1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B 重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
(三)动线(定点)位置需变换线段变换的方法:(1)等值变换:翻折、平移;(2)比例变换:三角、相似。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等).doc

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间 ,线段最短;②[定点到定线]:点线之间 ,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间 ,垂线段最短;⑤[定点到定圆]:点圆之间 ,点心线截距最短(长);⑥[定线到定圆]:线圆之间 ,心垂线截距最短;⑦[定圆到定圆]:圆圆之间 ,连心线截距最短(长)。
余不赘述 ,下面仅举一例证明:[定点到定圆]:点圆之间 ,点心线截距最短(长)。
已知⊙O半径为r ,AO=d ,P是⊙O上一点 ,求AP的最大值和最小值。
证明:由“两点之间 ,线段最短”得AP≤AO+PO ,AO≤AP+PO ,得d-r≤AP ≤d+r ,AP最小时点P在B处 ,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边” ,其实质也是由“两点之间 ,线段最短”推得)。
上面几种是解决相关问题的基本图形 ,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式 ,如圆与线这些图形不是直接给出 ,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中 ,圆的半径为6 ,∠B=30° ,AC是⊙O的切线 ,则CD的最小值是。
简析:由∠B=30°知弧AD一定 ,所以D是定点 ,C是直线AC上的动点 ,即为求定点D到定线AC的最短路径 ,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2. ,如图 ,在△ABC中 ,∠ACB=90° ,AB=5 ,BC=3 ,P是AB边上的动点(不与点B重合) ,将△BCP沿CP所在的直线翻折 ,得到△B′CP ,连接B′A ,则B′A长度的最小值是。
中考压轴题突破:几何最值问题大全专题(将军饮马、造桥选址、胡不归、阿波罗尼斯圆)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC例5.如图,在锐角△ABC 交BC于点D,M、N分别是是。
【平移变换类】典型问题:“造桥选址”例6.如图,m、n是小河两岸,河宽20米,A、B是河旁两个村庄,要在河上造一座桥,要使A、B之间的路径最短应该如何选址(桥须与河岸垂直)?例7.如图,CD是直线y=x上的一条定长的动线段,且CD=2,点A (4,0),连接AC、AD,设C点横坐标为m,求m为何值时,△ACD 的周长最小,并求出这个最小值。
解析:两条动线段AC、AD居于动点所在直线的两侧,不符合基本图形中定形(点线圆)应在动点轨迹的两侧。
首先把AC沿直线CD翻折至另一侧,如下图:【三角变换类】典型问题:“胡不归”例8.如图,A地在公路BC旁的沙漠里,A到BC的距离AH=2√3,AB=2√19,在公路BC上行进的速度是在沙漠里行驶速度的2倍。
某人在B地工作,A地家中父亲病危,他急着沿直线BA赶路,谁知最终没能见到父亲最后一面,其父离世之时思念儿子,连连问:“胡不归,胡不归……!”(怎么还不回来),这真是一个悲伤的故事,也是因为不懂数学而导致的。
那么,从B至A怎样行进才能最快到达?2【解法大一统】万法归宗:路径成最短,折线到直线。
专题 最值模型之阿氏圆模型(学生版)
专题28最值模型之阿氏圆模型最值问题在中考数学常以压轴题的形式考查,“阿氏圆”又称“阿波罗尼斯圆”,主要考查转化与化归等的数学思想。
在各类考试中都以高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的阿氏圆问题进行梳理及对应试题分析,方便掌握。
【模型背景】已知平面上两点A 、B ,则所有满足PA =k ·PB (k ≠1)的点P 的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
【模型解读】如图1所示,⊙O 的半径为r ,点A 、B 都在⊙O 外,P 为⊙O 上一动点,已知r =k ·OB ,连接PA 、PB ,则当“PA +k ·PB ”的值最小时,P 点的位置如何确定?如图2,在线段OB 上截取OC 使OC =k ·r ,则可说明△BPO 与△PCO 相似,即k ·PB =PC 。
故本题求“PA +k ·PB ”的最小值可以转化为“PA +PC ”的最小值,其中与A 与C 为定点,P A 、P 、C 三点共线时,“PA +PC ”值最小。
如图3所示:注意区分胡不归模型和阿氏圆模型:在前面的“胡不归”问题中,我们见识了“k ·PA +PB ”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【最值原理】两点之间线段最短及垂线段最短解题。
例1.(2023·山东·九年级专题练习)如图,在Rt ABC 中,90ACB ∠=︒,4CB =,6CA =,圆C 半径为2,P 为圆上一动点,连接,2,1A A P P P P B B +最小值__________.13BP AP +最小值__________.,例3.(2023·广东·九年级专题练习)如图,菱形ABCD的边长为2,锐角大小为60︒,A与BC相切于点E,在A上任取一点P,则32PB PD+的最小值为___________.例4.(2023·湖北武汉·九年级校考阶段练习)如图,在边长为例5.(2023·浙江·一模)问题提出:如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+13BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将13BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有13== CD CP CP CB又∵∠PCD=∠△∽△∴13=PDBP∴PD=13BP∴AP+13BP=AP+PD∴当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+13BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则12AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图4,在扇形COD中,O为圆心,∠COD=120°,OC=4.OA=2,OB=3,点P是CD上一点,求2PA+PB例6.(2022·湖北·九年级专题练习)(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +4PC +的最小值,12PD PC -的最大值.(2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,求23PD PC +的最小值,23PD PC -的最大值,23+PC PD 的最小值.(3)如图3,已知菱形ABCD 的边长为4,=60B ∠︒,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值和12PD PC -的最大值.6+PC PD 的最小值例7.(2022·湖北武汉·模拟预测)【新知探究】新定义:平面内两定点A ,B ,所有满足PA PB=k (k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”,【问题解决】如图,在△ABC 中,CB =4,AB =2AC ,则△ABC 面积的最大值为_____.轴交于课后专项训练=A.62B.43.(2022·湖北·九年级专题练习)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣12PC的最大值为_____.内切于的取值范围为5.(2023·湖南·九年级专题练习)如图,边长为最小值为.6.(2023上·四川成都·九年级校考期中)如图,已知EC AE=,G是射线CN上的动点,同时在:2:1为.若点H运动轨迹与射线7.(2023·广西·南宁市一模)如图,在平面直角坐标系中,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是AOB外部的第一象限内一动点,且∠BPA=135°,则2PD+PC的最小值是_____.9.(2023秋·浙江温州·九年级校考期末)如图,在边长为分别是11.(2022·江苏·苏州九年级阶段练习)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+12CG的最小值为_____.12.(2023·四川成都·九年级专题练习)在ABC中,AB=9,BC=8,∠ABC=60°,⊙A的半径为6,P是A上一动点,连接PB,PC,则32PC PB+的最小值_____________PB的最小值_______=6014.(2023·黑龙江哈尔滨·模拟预测)已知:(1)初步思考:如图1,在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC =(2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC+的最小值.(3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值.图1图2图3的三个顶点的距离分别为(1)如图2,在55⨯的网格中,每个小正方形的边长均为1,点A ,B 、C 、D 、E 均在小正方形的格点上,则点D 是ABC 关于点______的勾股点;若点F 在格点上,且点E 是ABF △关于点F 的勾股点,请在方格纸中画出ABF △;(2)如图3,菱形ABCD 中,AC 与BD 交于点O ,点E 是平面内一点,且点O 是ABE 关于点E 的勾股点.D17.(2023·重庆大渡口·九年级统考阶段练习)如图线为x轴、y轴,建立如图所示的平面直角坐标系,连接并与矩形的两边交于点E和点F已知平面上两点)的点的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称第1步:一般将含有k 的线段PB 两端点分别与圆心O 相连,即连接OB 、OP ;第2步:在OB 上取点C ,使得2OP OC OB =⋅,即OC OP OP OB=,构造母子型相似OCP △∽OPB △(图2);第3步:连接AC ,与圆O 的交点即为点P (图3).【问题解决】如图,O 与y 轴、x 轴的正半轴分别相交于点M 、点N ,O 半径为,点()0,2A ,点3,02B ⎛⎫ ⎪⎝⎭,点的任意一点,为半径画圆,交。
中考压轴题突破:几何最值问题大全
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
专题圆中的定值问题最值问题相交圆问题与真题训练中考数学考前30天迅速提分复习方案解析版
中考数学考前30天迅速提分复习方案(全国通用)专题2.8圆中的定值问题、最值问题、相交圆问题与真题训练题型一:圆中的定值问题一.解答题(共6小题)1.(2022•长安区一模)在如图1所示的平面直角坐标系中,O为原点,⊙C的圆心坐标为(﹣2,﹣2),半径为.直线y=﹣x+2与x轴,y轴分别交于点A,B,点P在线段AB上运动(包括端点).(1)直线CO与AB的夹角是90°;(2)当△POA是等腰三角形时,求点P的坐标;(3)当直线PO与⊙C相切时,求∠POA的度数;(4)如图2,直线PO与⊙C相交于点E,F,M为线段EF的中点,当点P在线段AB上运动时,点M也相应运动,请直接写出点M所经过路径的长度.【分析】(1)通过求解点的坐标,角的关系即可得到结果;(2)当△POA是等腰三角形时有三种情况,将每种情况的条件表示出来即可求解;(3)将求∠POA分解为求∠POD,利用对顶角相等,转化为求∠COK,利用正弦定理即可求解;(4)点M存在的范围在与直线PO与⊙C相交,所以可以将相切的情况求解出来,同时要理解点M的运动路径是以Q为圆心的一段弧,将弧度求出来之后,利用弦长公式即可得到结果.【解答】解:(1)如图1,延长CO交AB于D,过点C作CG⊥x轴于点G,∵函数y=﹣x+2图象与x轴交于点A,与y轴交于点B,∴x=0时,y=2,y=0时,x=2,∴A(2,0),B(0,2),∴AO=BO=2,又∵∠AOB=90°,∴∠DAO=45°,∵C(﹣2,﹣2),∴∠COG=45°,∠AOD=45°,∴∠ODA=90°,(2)要使△POA为等腰三角形,①当OP=OA时,P的坐标为(0,2),②当OP=PA时,由∠OAB=45°得:点P恰好是AB的中点,∴点P的坐标为(1,1),③当AP=AO时,则:AP=2,如图2,过点P作PH⊥OA交OA于点H,连接OP,在Rt△APH中,则:PH=AH=,∴OH=2﹣,∴点P的坐标为(2﹣,),(3)如图3,当直线PO与⊙C相切时,设右边的切点为K,连接CK,则CK⊥OK,由点C的坐标为(﹣2,﹣2),可得:CO=,∵sin∠COK===,∴∠POD=30°,∵∠AOD=45°,∴∠POA=75°,同理可求得∠POA的另一个值为15°.(4)由(3)可得:点M的运动路线是以点Q为圆心(Q为OC与⊙C的交点),为半径的一段圆弧,∴⊙C和⊙Q是两个等圆,∴∠LQK=120°,∴点M所过路径为的长度:=.【点评】本题考查了等腰三角形的性质,直角三角形的性质,弧长公式,圆的动点问题,直线与圆的位置关系等知识点,解题的关键是分清情况,利用已知条件将所求量表示清楚,明确运动途径的形状,属于中考压轴题.2.(2021•宁波模拟)如图①,点M是正方形ABCD的对角线AC上的一点,射线DM与△AMB的外接圆的另一个交点为N,与射线CB相交于点P.(1)当点N与点B重合时,的值为;(2)如图②,当MN是△AMB外接圆的直径时,求的值:(3)若△PNC为等腰三角形,求的值.【分析】(1)当N与B重合时,点D、M、B共线,根据正方形的性质即可得出结论;(2)连接BN、AN,根据SAS证△DCM≌△BCM,得出∠DMC=∠CMB,推出∠CBM=∠CMB,即CM=CB,根据==tan∠CAB即可得出结论;(3)由PNC为等腰三角形知,只能是NC=NP,过N作NG⊥CD于G点,则NG=CD,设AH =x,则HB=1﹣x,证△ADH∽△BPH,根据线段比例关系得出BP,CP,推出的值即可.【解答】解:(1)当N与B重合时,点D、M、B共线,∵正方形ABCD中,AC=BD,∴AC、BD相交于点M,∴AN=CM=AC,则=,故答案为:;(2)连接BN、AN,∵MN是ABM外接圆直径,∴∠MBA+∠ABN=90°,∵∠ABC=90°即∠CBM+∠MBA=90°,∴∠ABN=∠CBM,∵∠ABN=∠AMN=∠DMC,CD=CB,∠DCM=∠BCM=45°,CM=CM,∴△DCM≌△BCM(SAS),∴∠DMC=∠CMB,∴∠CBM=∠CMB,∴CM=CB,∴==tan∠CAB=;(3)由PNC为直角三角形知,只能是NC=NP,∴N在CP的垂直平分线上,过N作NG⊥CD于G点,则NG=CD,连接AN、MB,作AQ⊥DP于点Q,设CD=CB=1,DP与AB相交于点H,设AH=x,则HB=1﹣x,∵AD∥CP,∴∠ADH=∠P,且∠AHD=∠PHB,∴△ADH∽△BPH,∴=,即=,解得:BP=,∴CP=1+=,由勾股定理得PD=,∵M是AC上的点,∴∠ABM=∠ADM,∵∠ABM=∠ANQ,∴∠ADM=∠ANQ,∴AD=AN,∴DQ=DN=DP=,∵∠ADM=∠P,∴cos∠ADM=cos∠P,即,∴=,整理得x2﹣4x+1=0,解得x=2﹣或x=2+(舍去),∴==2+.【点评】本题主要考查圆的综合知识,熟练掌握正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识是解题的关键.3.(2021•宝安区二模)如图①,已知⊙O是△ABC的外接圆,∠ABC=∠ACB=α(45°<α<90°,D为上一点,连接CD交AB于点E.(1)连接BD,若∠CDB=40°,求α的大小;(2)如图②,若点B恰好是中点,求证:CE2=BE•BA;(3)如图③,将CD分别沿BC、AC翻折得到CM、CN,连接MN,若CD为直径,请问是否为定值,如果是,请求出这个值,如果不是,请说明理由.【分析】(1)由圆周角定理求出∠CAB=∠CDB=40°,由三角形内角和定理可得出答案;(2)证明△BCE∽△BAC,由相似三角形的性质得出,证明CB=CE,则可得出结论;(3)方法一:由折叠的性质可得出∠DCN=2∠DCA,∠DCM=2∠DCB,CN=CD=CM=2r,过点C作CQ⊥MN于点Q,得出MN=2NQ,∠NCQ=∠MCN=α,∠CQN=90°,连接AO并延长交⊙O于点P,连接BP,则∠ABP=90°,证明△ABP≌△NQC(AAS),由全等三角形的性质得出AB=NQ=MN,则可得出答案.方法二:连接OA,OB,证明△CNM∽△OAB,由相似三角形的性质可得出答案.【解答】解:(1)∵=,∴∠CAB=∠CDB=40°,∵∠ABC+∠ACB+∠CAB=180°,∠ABC=∠ACB=α,∴α==70°;(2)证明:∵点B是的中点,∴=,∴∠DCB=∠A,∵∠ABC=∠CBE,∴△BCE∽△BAC,∴,∴BC2=BE•BA,∵∠ACB=∠ACD+∠BCD,∠BEC=∠ACD+∠A,∠BCD=∠A,∴∠ABC=∠ACB=∠BEC,∴CB=CE,∴CE2=BE•BA;(3)是定值.方法一:∵将CD分别沿BC、AC翻折得到CM、CN,∴∠DCN=2∠DCA,∠DCM=2∠DCB,CN=CD=CM=2r,∴∠MCN=2∠ACB=2α,过点C作CQ⊥MN于点Q,则MN=2NQ,∠NCQ=∠MCN=α,∠CQN=90°,连接AO并延长交⊙O于点P,连接BP,则∠ABP=90°,∵,∴∠P=∠ACB=∠NCQ=α,∵AP=CN,∠ABP=90°=∠NQC,∴△ABP≌△NQC(AAS),∴AB=NQ=MN,∴,为定值.方法二:连接OA,OB,则OA=OB=r,CN=MC=CD=2r,∵∠AOB=2∠ACB=∠MCN=2α,,∴△CNM∽△OAB,∴=.【点评】本题是圆的综合题,考查了圆周角定理,折叠的性质,相似三角形的判定和性质,全等三角形的判定与性质,熟练掌握圆的性质是解题的关键.4.(2022•罗湖区模拟)在⊙O中,弦CD平分圆周角∠ACB,连接AB,过点D作DE∥AB交CB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若tan∠CAB=,且B是CE的中点,⊙O的直径是,求DE的长.(3)P是弦AB下方圆上的一个动点,连接AP和BP,过点D作DH⊥BP于点H,请探究点P在运动的过程中,的比值是否改变,若改变,请说明理由;若不变,请直接写出比值.【分析】(1)利用垂径定理即可证得结论;(2)构建直角三角形,利用勾股定理求出线段长度即可求解;(3)利用相似三角形,直角三角形,找到角之间的关系,然后转化为线段的关系进行求解.【解答】证明:(1)如图1,连接OD交AB于点F,连接OA,OB,AD,∵CD平分∠ACB,∴∠ACD=∠BCD,∴=,∴∠AOD=∠BOD,∵OA=OB,∴OD⊥AB,∵AB∥DE,∴OD⊥DE,∴DE是⊙O的切线.解:(2)如图2,连接OC,OD,OE,过点O作OF⊥BC于点F,∴∠BOC=2∠BAC,∵OB=OC,OF⊥BC,∴∠COF=∠∠COB=∠CAB,∴tan∠COF==tan∠CAB=,设CF=x,OF=3x,∵⊙O的直径是,∴OC=,∵OC2=OF2+CF2,∴()2=(3x)2+x2,解得:x=,∴CF=,OF=,∴BC=1,∵B是CE的中点,∴BE=BC=1,∴EF=,∵OE2=OF2+EF2,∴OE2=()2+()2=,∵OD2+DE2=OE2,∴DE===.(3)解法一:如图3,延长BP至Q使得PQ=AP,连接AQ,OC,连接OB,BD,连接OD交AB 于点K,连接HK,∵A,P,B,C四点共圆,∴∠APQ=∠ACB,∵AP=PQ,∴∠Q=∠QAP,∴∠Q=90°﹣∠ACB,∵DE是⊙O的切线,∴OD⊥DE,∵DE∥AB,∴OD⊥AB,∴K是AB的中点,∵DH⊥BH,∴∠BHD=90°,∵∠BKD=90°,∴B,K,H,D四点共圆,∴∠BHK=∠ODB,∵∠BOD=∠ACB,OB=OD,∴∠ODB=90°﹣∠ACB,∴∠ODB=∠Q,∴∠BHK=∠Q,∴AQ∥HK,∴==,∵BQ=BP+QP,QP=AP,∴BQ=BP+AP,∴=.解法二:如图4,在BP上截取BM=AP,连接DM,BD,DP,AD,∵弦CD平分圆周角∠ACB,∴AD=BD,∵=,∴∠PAD=∠PBD=∠MBD,∴△APD≌△BMD(SAS),∴DP=DM,AP=BM,∵DH⊥BP,∴DH为△PDM的中线,∴HP=HM,∴BP=BM+PM=BM+2HM,∵BH=BM+HM,∴==.【点评】本题考查了勾股定理,圆内接四边形,垂径定理等知识点,难度较大,解题的关键是作出辅助线,属于中考压轴题.5.(2021•罗湖区一模)问题:如图1,⊙O中,AB是直径,AC=BC,点D是劣弧BC上任一点.(不与点B、C重合)求证:为定值.思路:和差倍半问题,可采用截长补短法,先证明△ACE≌△BCD.按思路完成下列证明过程.证明:在AD上截取点E.使AE=BD.连接CE.运用:如图2,在平面直角坐标系中,⊙O1与x轴相切于点A(3,0),与轴相交于B、C两点,且BC=8,连接AB,O1B.(1)OB的长为1.(2)如图3,过A、B两点作⊙O2与y轴的负半轴交于点M,与O1B的延长线交于点N,连接AM、MN,当⊙O2的大小变化时,问BM﹣BN的值是否变化,为什么?如果不变,请求出BM ﹣BN的值.【分析】证明:在AD上截取AE=BD,再根据同弧所对的圆周角相等得到∠CAD=∠CBD,然后证明△ACE≌△BCD,然后根据角的等量代换得出∠ECD=90°,进而得出△ECD为等腰直角三角形,用ED表示CD,因为ED=AD﹣BD最后即可得出结论;(1)连接O1A,过O1作O1H⊥BC于点H,根据垂径定理和勾股定理求出O1B的长度,根据切线的性质得出O1A⊥x轴,得到OH=5,进而即可得出结果;(2)在图2中先根据平行和O1A=O1B得出∠ABO1=∠ABO,然后在MB上取一点G,使MG=BN构造全等,证明△AMG≌△ANB,得到AG=AB,然后根据等腰三角形三线合一得出BG=2,再根据等量代换即可得到结论.【解答】证明:如图1,在AD上截AE=BD,∵,∴∠CAD=∠CBD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠ACE=∠BCD,CE=CD,∵AB为直径,∴∠ACB=90°,∴∠ECD=90°,∴△ECD是等腰直角三角形,∴CD=ED,∵ED=AD﹣BD,∴=,即为定值;(1)如图2,连接O1A,过O1作O1H⊥BC于点H,∴CH=BH=4,O1H=3,O1A⊥x轴,∴O1B==5,∴O1A=O1B=5,∴HO=5,∴OB=HO﹣HB=5﹣4=1,故答案为:1;(2)BM﹣BN的值不变,如图2,由(1)得,O1A⊥OA,∵OB⊥AO,∴O1A∥OB,∴∠O1BA=∠OBA,∵O1A=O1B,∴∠O1BA=∠O1AB,∴∠ABO1=∠ABO,如图3,在MB上取一点G,使MG=BN,连接AN,AG,∵∠ABO1=∠ABO,∠ABO1=∠AMN,∴∠ABO=∠AMN,∵∠ABO=∠ANM,∴∠AMN=∠ANM,∴AM=AN,∵,∴∠AMG=∠ANB,在△AMG和△ANB中,,∴△AMG≌△ANB(SAS),∴AG=AB,∵AO⊥BG,∴BG=2BO=2,∴BM﹣BN=BM﹣MG=BG=2,即BM﹣BN的值不变.【点评】本题考查圆的综合题,同弧所对的圆周角相等,两条半径所形成的三角形是等腰三角形,等腰三角形三线合一,垂径定理是解本题的必备知识,利用“截长补短”法证明全等是解本题的关键.6.(2018•荆州)阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是以(0,)为圆心,1个单位长度为半径的圆;(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.【分析】(1)利用两点间的距离公式即可得出结论;(2)利用两点间的距离公式即可得出结论;(3)①先确定出m+n=2k,mn=﹣1,再确定出M(m,﹣),N(n,﹣),进而判断出△AMN是直角三角形,再求出直线AQ的解析式为y=﹣x+,即可得出结论;②先确定出a=mk+,b=nk+,再求出AE=ME=a+=mk+1,AF=NF=b+=nk+1,即可得出结论.【解答】解:(1)设到点A的距离等于线段AB长度的点D坐标为(x,y),∴AD2=x2+(y﹣)2,∵直线y=kx+交y轴于点A,∴A(0,),∵点A关于x轴的对称点为点B,∴B(0,﹣),∴AB=1,∵点D到点A的距离等于线段AB长度,∴x2+(y﹣)2=1,故答案为:以(0,)为圆心,1个单位长度为半径的圆;(2)∵过点B作直线l平行于x轴,∴直线l的解析式为y=﹣,∵C(x,y),A(0,),∴AC2=x2+(y﹣)2,点C到直线l的距离为:(y+),∵动点C(x,y)满足到直线l的距离等于线段CA的长度,∴x2+(y﹣)2=(y+)2,∴动点C轨迹的函数表达式y=x2,(3)①如图,设点E(m,a)点F(n,b),∵动点C的轨迹与直线y=kx+交于E、F两点,∴,∴x2﹣2kx﹣1=0,∴m+n=2k,mn=﹣1,∵过E、F作直线l的垂线,垂足分别是M、N,∴M(m,﹣),N(n,﹣),∵A(0,),∴AM2+AN2=m2+1+n2+1=m2+n2+2=(m+n)2﹣2mn+2=4k2+4,MN2=(m﹣n)2=(m+n)2﹣4mn=4k2+4,∴AM2+AN2=MN2,∴△AMN是直角三角形,MN为斜边,取MN的中点Q,∴点Q是△AMN的外接圆的圆心,∴Q(k,﹣),∵A(0,),∴直线AQ的解析式为y=﹣x+,∵直线EF的解析式为y=kx+,∴AQ⊥EF,∴EF是△AMN外接圆的切线;②证明:∵点E(m,a)点F(n,b)在直线y=kx+上,∴a=mk+,b=nk+,∵ME,NF,EF是△AMN的外接圆的切线,∴AE=ME=a+=mk+1,AF=NF=b+=nk+1,∴+=+====2,即:+为定值,定值为2.【点评】此题是圆的综合题,主要考查了待定系数法,两点间的距离公式,直角三角形的判定和性质,根与系数的关系,圆的切线的判定和性质,利用根与系数的确定出m+n=2k,mn =﹣1是解本题是关键.题型二:圆中最值问题一.解答题(共6小题)1.(2022•碑林区校级三模)问题提出:(1)如图①,已知点C到直线AB的距离是5,以C为圆心、2为半径作圆,则⊙C上一点到直线AB的最小距离为3.问题探究:(2)如图②,已知正方形ABCD的边长为2,E是BC边上的动点,BF⊥AE交CD于点F,垂足为G,连结CG,则求CG的最小值.问题解决:(3)如图③,有一个矩形花坛ABCD,AB=10m,AD=20m,根据设计造型要求,在AB上任取一动点E,连ED,过点A作AF⊥ED,交DE于点F,在FD上截取FP=AF,连接PB、PC;现需在△PBC的区内种植一种黄色花卉,在矩形内的其它区域种植一种红色花卉,已知种植这种黄色花卉每平方米需200元,种植这种红色花卉每平方米需180元,完成这两种花卉的种植至少需花费多少元?(结果保留整数,参考数据:≈1.7)【分析】(1)画图即可判断;(2)取AB的中点O,连接OC,根据题意得:G点的运动轨迹是以AB中点O为圆心,OA为半径的弧,所以OC和OG的长度是定值,因此O、C、G共线时,CG取最小值,根据勾股定理计算即可;(3)以AD为边向上作等边三角形ADJ,以点J为圆心,AJ为半径作圆,在⊙J上取一点T,连接AT,DT,过点J作JQ⊥BC于点Q,过点P作PH⊥BC于点H,求出PH的最小值即可解决问题.【解答】解:(1)过点C作CM⊥AB于点H,则CH=5,以点C为圆心,2为半径作圆,交CH于点P,∴⊙上一点到直线AB的最小距离为PH=CH﹣CP=5﹣2=3;(2)取AB的中点O,连接OC,根据题意得:G点的运动轨迹是以AB中点O为圆心,OA为半径的弧,∴OC、OG为定值,当O、C、G共线时,CG取得最小值,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=2,∵O是AB的中点,∴OB=1,在Rt△OBC中,,∴CG的最小值为;(3)以AD为边向上作等边三角形ADJ,以点J为圆心,AJ为半径作圆,在⊙J上取一点T,连接AT,DT,过点J作JQ⊥BC于点Q,过点P作PH⊥BC于点H,∵AF⊥ED,FP=AF,∴tan∠APF=,∴∠APF=30°,∴∠APD=150°,∵△ADJ为等边三角形,∴∠AJD=60°,∴∠ATD=30°,∴∠APD+∠ATD=180°,∴A、T、D、P四点共圆,∵AB=10m,AD=AJ=DJ=BC=20m,∴JQ=()m,∵PJ+PH≥JQ,∴PH的最小值为﹣20=()m,∴完成这两种花卉的最低种植费用为×180=200PH+36000=200()+36000≈37400(元).【点评】本题考查动点轨迹是圆的动点问题,解题的关键是能够发现动点的轨迹是圆,利用求点到圆上一点距离最小的方法求线段最小值.2.(2021•未央区校级模拟)问题提出(1)如图1,AB为圆O的弦,在圆O上找一点P,使点P到AB的距离最大.问题探究(2)如图2,在扇形AMB中,点M为扇形所在圆的圆心,点P为上任意一点,连接PM,与AB交于点Q,若AB=10,AM=7,求出PQ的最大值.问题解决(3)如图3,小华家有一块扇形AOB的田地,线段OA、线段OB以及分别为扇形AOB的边沿部分.经过市场调查发现,小华爸爸打算在扇形AOB的田地中圈出一片空地用作种植当季蔬菜,具体操作方式如下:在上选取点C,过点C作CM∥OB,CN∥OA,则四边形MONC 为小华爸爸所圈空地.已知:扇形AOB的圆心角∠AOB=60°,OA=OB=90m,且用于修建围挡的线段MC部分与线段CN部分的成本均为30元/米.请你根据以上数据计算:小华爸爸最终所花费的修建费预算最多是多少元?(即求出CM+CN的最大值)(结果保留整数,取=1.73)【分析】(1)根据圆的性质,作弦AB的中垂线求解即可;(2)Q点在AB的中点时,QM最小,则PQ最大,根据勾股定理求解即可;(3)此题求CM+CN的最大值,即求▱OCMN周长的最大值,已知平行四边形对角线的平方和等于平行四边形四条边的平方的和,所以换成求平行四边形对角线的最大值,问题就得以解决.【点评】本题考查了弦所对弧的中点到弦的垂线段距离最大,点到弦之间的距【解答】解:(1)如图1,过点O作OP⊥AB,此时点P处于中心位置,∵在圆内,弦所对弧的中点到弦的垂线段距离最大,∴此时P点到AB的距离最大;(2)如下图,Q点在AB的中点时,QM最小,则PQ最大,∵MA=MB,AQ=BQ,∴QM⊥AM,∵AB=10,AM=7,∴AQ=BQ=5,∴QM===2,∴PQ=PM﹣QM=7﹣2;(3)由题意可知,当点C处于中点时,对角线最长,此时,OC=OA=90,AB⊥OC与点Q,∵CM∥OB,∴∠AMC=60°,∵CN∥OA,∴∠CNB=60°,∴∠CMQ=∠CNQ=60°,∴△CMN为等边三角形,同理证明△OMN也为等边三角形,在Rt△OMQ中,OQ=OC=45,OM=2MQ,OM2=MQ2+OQ2,∴OM=15≈26.01,∴▱OMCN的周长C=OM+ON+NC+MC=4OM=8MQ=208.08≈209(不足1米按照1米计算),∵成本均为30元/米,∴≈7.0=7,则预算最多为:7×30=210(元).离垂线段最短,平行四边形周长的极值,解题关键是把求平行四边形四条边的平方的和,换成求平行四边形对角线的最大值,问题就得以解决.3.(2019•高阳县一模)如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作α;设半圆O的半径为R,AM的长度为m,回答下列问题:探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是+1;如图2,当α=60°时,半圆O与射线AB相切;(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是90°<α≤120°,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)【分析】(1)如图1中,作O′E⊥AB于E,MF⊥O′E于F.则四边形AMFE是矩形,EF=AM=1.如图2中,设切点为F,连接O′F,作O′E⊥OA于E,则四边形O′EAF是矩形,在Rt△O′EM中,由sinα==,推出α=60°.(2)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.列出方程即可解决问题.(3)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.列出方程即可解决问题、(4)当半圆与射线AB相切时,之后开始出现两个交点,此时α=90°;当N′落在AB上时,为半圆与AB有两个交点的最后时刻,此时∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,当半圆弧线与射线AB有两个交点时,α的取值范围是:90°<α≤120°.当N′落在AB上时,阴影部分面积最大,求出此时的面积即可.【解答】解:(1)如图1中,作O′E⊥AB于E,MF⊥O′E于F.则四边形AMFE是矩形,EF =AM=1.想办法求出O′E的长即可.在Rt△MFO′中,∵∠MO′F=30°,MO′=2,∴O′F=O′M•cos30°=,O′E=+1,∴点O′到AB的距离为+1.如图2中,设切点为F,连接O′F,作O′E⊥OA于E,则四边形O′EAF是矩形,∴AE=O′F=2,∵AM=1,∴EM=1,在Rt△O′EM中,cosα==,∴α=60°故答案为+1,60°.(2)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.∵O′P=R,∴R=R+1,∴R=4+2.(3)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.在Rt△O′QM中,O′Q=R•cosα,QP=m,∵O′P=R,∴R•cosα+m=R,∴cosα=.故答案为.(4)如图5中,当半圆与射线AB相切时,之后开始出现两个交点,此时α=90°;当N′落在AB上时,为半圆与AB有两个交点的最后时刻,此时∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,当半圆弧线与射线AB有两个交点时,α的取值范围是:90°<α≤120°故答案为90°<α≤120°;当N′落在AB上时,阴影部分面积最大,所以S=﹣•m•m=﹣m2.【点评】本题考查圆综合题、旋转变换、切线的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形或特殊四边形解决问题,所以中考压轴题.4.(2022•建湖县一模)在平面直角坐标系中,二次函数y=x2+bx+c的图象过点C(0,﹣4)和点D(2,﹣6),与x轴交于点A、B(点A在点B的左边),且点D与点G关于坐标原点对称.(1)求该二次函数解析式,并判断点G是否在此函数的图象上,并说明理由;(2)若点P为此抛物线上一点,它关于x轴,y轴的对称点分别为M,N,问是否存在这样的P点使得M,N恰好都在直线DG上?如存在,求出点P的坐标,如不存在,请说明理由;(3)若第四象限有一动点E,满足BE=OB,过E作EF⊥x轴于点F,设F坐标为(t,0),0<t <4,△BEF的内心为I,连接CI,直接写出CI的最小值.【分析】(1)用待定系数法直接求解即可,将点G代入解析式验证即可;(2)先将DG的解析式求出来,然后将表示出来的点M,N坐标代入解析式求解;(3)先找出△OBI的外接圆,利用BI是角平分线证得全等,求出外接圆的半径,利用三角形三边关系求解即可.【解答】解:(1)∵二次函数y=x2+bx+c的图象过点C(0,﹣4)和点D(2,﹣6),∴,解得,∴y=x2﹣3x﹣4,∵点D与点G关于坐标原点对称,∴G(﹣2,6),把x=﹣2代入y=x2﹣3x﹣4,得:y=(﹣2)2﹣3×(﹣2)﹣4=6,∴G(﹣2,6)在此抛物线上;(2)设直线DG的解析式为y=mx+n,∵D(2,﹣6),G(﹣2,6),∴,解得,∴直线DG的解析式为y=﹣3x,假设此抛物线上存在这样的点P(x,x2﹣3x﹣4),使得它关于x轴,y轴的对称点M,N恰好都在直线DG上,∵M(x,﹣x2+3x+4),N(﹣x,x2﹣3x﹣4),∴x2﹣3x﹣4=3x,解得,故所求点P的坐标为或;(3)如图1,连接BI.OI,EI,作△OBI的外接圆⊙M,连接OM,BM,MI,CM,过点M作MH⊥y轴于点H,∵EF⊥x轴,∴∠BFE=90°,∴∠FBE+∠FEB=90°,∵△BEF的内心为I,∴BI,EI分别平分∠FBE,∠FEB,∴∠IBE=∠FBE,∠IEB=∠FEB,∴∠IBE+∠IEB=(∠FBE+∠FEB)=45°,∴∠BIE=135°,在△BIO和△BIE中,,∴△BIO≌△BIE(SAS),∴∠BIO=∠BIE=135°,∵⊙M是△OBI的外接圆,∴∠OMB=2×(180°﹣∠BIO)=90°,∴OM=BM=OB=2,∴MI=OM=2,∴∠MOB=∠MOH=45°,∵MH⊥y轴,∴∠HOM=∠HMO=45°,∴OH=HM=OM=2,∴CH=OH+OC=2+4=6,∴CM==2,∵CI≥CM﹣MI,∴当且仅当C,M,I三点共线时,CI取得最小值,∴CI的最小值为.【点评】本题考查了二次函数综合,待定系数法,几何变换﹣对折,三角形内心,外接圆,两点之间线段最短,全等三角形的判定和性质等知识点,充分利用三角形内心、合理作出辅助线是解题的关键.5.(2022•雁塔区校级二模)问题提出:(1)如图1,点B、C在⊙O上且BC=2,过点O作OE⊥BC,交BC于点A,交⊙O于点E,连接BE、CE,若∠CBE=30°,则线段AE的长度为.问题探究:(2)如图2,在△ABC中,BC=2,∠BAC=45°,求边AC长度的最大值;问题解决:(3)如图3,某城市拟在河流m、n所夹半岛区域建一个湿地公园,公园的周长由亲水廊桥AB、、CD和绿化带BC四部分构成.其中B、C两定点间的距离为2000米.根据规划要求,A、D两点间的距离为600米,A、D两点到直线BC的距离相等,的中点E到BC的距离比点A到BC的距离多100米;若修建时需保证∠B与∠C的和为120度,请判断这个湿地公园的周长是否存在最大值?若存在,请求出最大值.若不存在,请说明理由.(结果保留π)【分析】(1)利用角度关系直接求解即可;(2)构造外接圆,圆内最长的为直径,即可求解;(3)关键在于构造出两个外接圆,然后利用弦的长度和角度关系将相关量表示出来即可求解.【解答】解:(1)∵BC=2,OE⊥BC,∴AB=AC=1,∵∠CBE=30°,∴tan∠CBE=tan30°==,∴AE=.(2)如图1,构造△ABC的外接圆⊙O,连接OB,OC,∴∠BOC=2∠BAC=90°,∵OB=OC,∴OB==,∴⊙O的直径为,∵AC为弦长,∴AC≤,∴AC的最大值为.(3)如图2,构造△AED的外接圆⊙O,连接OE,AD交AD于点F,连接OA,OD,过点D作DG∥AB交BC于点G,构造△DGC的外接圆⊙M,∵点E为的中点,∴OE⊥AD,∴AF=AD=300,∵的中点E到BC的距离比点A到BC的距离多100米,∴EF=100,设OA=r,则:OF=r﹣100,∵AF2+OF2=OA2,∴3002+(r﹣100)2=r2,解得:r=200,∴sin∠AOF==,∴∠AOF=60°,∴∠AOD=120°,的长度为:=,∵DG∥AB,AD∥BC,∴四边形ABGD为平行四边形,∴DG=AB,∠DGC=∠B,BG=AD,∴CG=BC﹣BG=1400,∵∠B+∠C=120°,∴∠DGC+∠C=120°,∴∠GDC=60°,当D到CG的距离最远时,AB+DC=DG+DC最大,此时有DM⊥CG,∴DG=DC=CG=1400,此时周长最大为:BC+CD++AB=2000+2800+×2π×200=4800+,∴公园周长最大值为4800+米.【点评】本题考查了圆的综合运用,涉及垂径定理,圆周角定理,还有平行四边形等相关知识点,综合性比较强,对解题思维要求较高,属于中考压轴题.6.(2020•奉化区校级模拟)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以原点O为圆心,半径为3的⊙O上,连接OC,过点O作OD⊥OC,OD与⊙O相交于点D (其中点C,O,D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为45°或135°;(2)连接AC,BC,点C在⊙O上运动的过程中,当△ABC的面积最大时,请直接写出△ABC 面积的最大值是9+18.(3)连接AD,当OC∥AD,点C位于第二象限时,①求出点C的坐标;②直线BC是否为⊙O的切线?并说明理由.【分析】(1)易证△OAB为等腰直角三角形,则∠OBA=45°,由OC∥AB,当C点在y轴左侧时,有∠BOC=∠OBA=45°;当C点在y轴右侧时,有∠BOC=180°﹣∠OBA=135°;(2)先由等腰直角三角形的性质得AB=6,再由三角形面积公式得到当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,此时C点到AB 的距离的最大值为CE的长,然后利用等腰直角三角形的性质求出OE,计算△ABC的面积;(3)①过C点作CF⊥x轴于F,先证Rt△OCF∽Rt△AOD,则=,解得CF=,再利用勾股定理计算出OF的长,则可得到C点坐标;②先证∠COF=30°,则可得到BOC=60°,∠AOD=60°,再证△BOC≌△AOD(SAS),得∠BCO=∠ADO=90°,然后由切线的判定定理可确定直线BC为⊙O的切线.【解答】解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=90°+∠OBA=135°;综上所述,∠BOC的度数为45°或135°,故答案为:45°或135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图1:此时C点到AB的距离的最大值为CE的长,∴OE=AB=3,∴CE=OC+OE=3+3,∴△ABC的面积=CE•AB=×(3+3)×6=9+18;即当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18;故答案是:9+18;(3)①过C点作CF⊥x轴于F,如图2:∵OC∥AD,∴∠COF=∠DAO,又∵∠ADO=∠CFO=90°,∴△OCF∽Rt△AOD,∴=,即=,解得:CF=,在Rt△OCF中,OF===,∴C点坐标为(﹣,);②直线BC是⊙O的切线.理由如下:由①得:(﹣,),在Rt△OCF中,OC=3,CF=,∴CF=OC,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADO=90°,∴OC⊥BC,∴直线BC为⊙O的切线.【点评】本题是圆的综合题目,考查了掌握切线的判定定理、平行线的性质、全等三角形的判定与性质、相似三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握切线的判定和直角三角形的性质,证明三角形全等和三角形相似是解题的关键,属于中考常考题型.题型三:相交圆问题一.解答题(共3小题)1.如图1,两半径为r的等圆⊙O1和⊙O2相交于M,N两点,且⊙O2过点O1.过M点作直线AB垂直于MN,分别交⊙O1和⊙O2于A,B两点,连接NA,NB.(1)猜想点O2与⊙O1有什么位置关系,并给出证明;(2)猜想△NAB的形状,并给出证明;(3)如图2,若过M的点所在的直线AB不垂直于MN,且点A,B在点M的两侧,那么(2)中的结论是否成立,若成立请给出证明.【分析】(1)通过证明圆心距等于半径得出点O2在⊙O1上;(2)通过证明AB=BN=AN,从而得到△NAB是等边三角形;(3)根据在同圆中等弧所对的圆周角相等,可求出∠MAN=60°,∠MBN=60度.从而求证得△NAB是等边三角形.【解答】解:(1)O2在⊙O1上,证明:∵⊙O2过点O1,∴O1O2=r,又∵⊙O1的半径也是r,∴点O2在⊙O1上;(2)△NAB是等边三角形,证明:∵MN⊥AB,∴∠NMB=∠NMA=90度,∴BN是⊙O2的直径,AN是⊙O1的直径,即BN=AN=2r,O2在BN上,O1在AN上.连接O1O2,则O1O2是△ABN的中位线.∴AB=2O1O2=2r,∴AB=BN=AN,则△NAB是等边三角形.(3)仍然成立.证明:由(2)得,△NAB是等边三角形,∴在⊙O1中所对的圆周角为60度,在⊙O2中所对的圆周角为60度,∴当点A,B在点M的两侧时,在⊙O1中所对的圆周角∠MAN=60°,在⊙O2中所对的圆周角∠MBN=60°,∴△NAB是等边三角形.(2),(3)是中学生猜想为等腰三角形证明正确给一半分.【点评】本题考查了由两圆相交的位置关系中的特殊情况.当两圆是等圆时会产生一些特殊的情况,比如相等的线段和相等的角.利用这些等量关系求解即可.2.已知半径为R的⊙O′经过半径为r的⊙O的圆心,⊙O与⊙O′交于E、F两点.(1)如图1,连接OO′交⊙O于点C,并延长交⊙O′于点D,过点C作⊙O的切线交⊙O′于A、B两点,求OA•OB的值;(2)若点C为⊙O上一动点.①当点C运动到⊙O′时,如图2,过点C作⊙O的切线交⊙O′,于A、B两点,则OA•OB的值与(1)中的结论相比较有无变化?请说明理由;②当点C运动到⊙O′外时,过点C作⊙O的切线,若能交⊙O′于A、B两点,如图3,则OA•。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学组卷
1
一.选择题(共24小题)
1 .如图,。0的半径为2,弦AB的长为2慑,以AB为直径作。M,点C
是优弧彘上的
一个动点,连结AC、BC分别交。M于点D、E,则线段CD的最大值为( )
A. V3 B, 2 C. 273-2D. 4-2^3
2 .如图,等边AABC边长为2,射线AM〃BC, P是射线AM上一动点(P不与A
点重合),
△APC的外接圆交BP于Q,则AQ
长的最小值为( )
3 .如图,己知。O的直径AB=6,弦CD_LAB于H, 0CY分别切。0、AB、CD于点E、F
、
G,则当。0,的半径取得最大值时,边BC
的长度是( )
4 .如图,ZMAN=45°, B、C为AN上的两点,且AB=BC=2, D为射线AN上的一个动点, 过B
、
C、D三点作OO,则sin/BDC
的最大值为( )
.亚D.皇
2
4
5 .
如
图,正方形ABCD的边长为4,点E是AB上的一点,将4BCE沿CE折
叠至aFCE, 若CF, CE恰好与以正方形ABCD的中心为圆心的。O相
切,则。。的半径为( )
1 B. V2- 1 C. V3- 1 D.爽上1
2
如图,AABC内接于。O,过BC的中点D作直线1〃AC, 1与AB交于点
E,
与。0交
于点G、F,与。O在点A处的切线交于点P,若PE=3, ED=2, EF=3,则
PA
的长度为(
)
eB.遮C而D.V7
如图,在菱形ABCD中,对角线AC、BD交于点O,以OB为直径画圆M,过D作。
M的切线,切点为N,分别交AC、BC于点E、F,已知AE=5, CE=3,则DF
的长是(
)
6.
A.
7.
A.
C. 4.8 D. 5 A. 3 B. 4
8 .如图,线段AB=4, C为线段AB上的一个动点,以AC、BC为边作等边4ACD
和等边
△BCE, 0O外接于ACDE,则OO
半径的最小值为( )
A (T- ----- / B
A. 4 B. C. D. 2
3 2
9 .如图,平面直角坐标系中,分别以点A (2, 3)、点B (3, 4)为圆心,1、3
为半径作
0A. OB, M, N分别是。A、0B上的动点,P为x轴上的动点,则PM「PN
的最小值为
10 .如图,正方形ABCD内接于。O, P为劣弧而上一点,PA交BD于点M, PB交AC于 点 N,
记NPBD=* 若 MNLPB,贝ij 2cos2 - tan。的值( )
11 .如图,以G (0, 1)为圆心,2为半径的圆与x轴交于A、B两点,与y轴交于C、D
两
点,点E为圆G上一动点,CF_LAE于F,当点E从点B出发顺时针运动到点D时,点 F经过的
路径长为( )
12 .如图,0P在第一象限,半径为3.动点A沿着。P运动一周,在点A运动的同时,作 点A
关于原点O的对称点B,再以AB为边作等边三角形△ABC,点C在第二象限,点C 随点A运动所
形成的图形的而枳为( )
A.色⑤B. 27n C.班兀D.a
6 T
13 .如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD ±,将该纸片沿 MN
折
卷,使点D落在边BC上,落点为E, MN与DE相交于点Q.随着点M的移动,点 Q移动路线长
度的最大值是( )
14 .如图,等腰 RtZkABC 和等腰 RtZ\ADE, ZBAC=ZDAE=90% AB=2AD=W^,
直线
BD、CE交于点P, RtaABC固定不动,将4ADE绕点A旋转一周,点P的运动路径长为 ( )
A. 12n B. 8n C. 6R D. 4K
15 .如图,在等腰RL^ABC中,AC=BC=2j¥,点P在以斜边AB为直径的半圆上,M
为
PC的中点.当点P沿半圆从点A运动至点B时,点M
运动的路径长是( )
16 .如图,直线y=2x与双曲线尸四(x>0)交于点A,将直线y=2x向右平移3个单位后, x
与双曲线厂上•(x>0)交于点B,与x轴交于点C.若BCMQA,则k的值为( )
X ,
A. 12 B. 10 C. 8 D. 6
17 .如图,已知。O的半径为5,两弦AB、CD相交于AB中点E,且AB=8, CE: ED=4:
9,则圆心到弦CD
的距离为( )
18 .如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD
边于点F,则里( )
EC
D
19 .如图,以OB为直径的半圆与半圆O交于点P, A、0、C、B在同一条直线上,作AD _LAB
与BP的延长线交于点D,若半圆O的半径为2, ND的余弦值是方程3X2-10X+3=0 的根,则
AB
的长等于( )
A. 2JI6+2B. X^+2C- 8 D. 5 3
20 .如图,I为AABC的内心,ZkABC的外接圆O, O在BC上,AD、BE、CF都经过I
点分别
交。O于点D、E、F, EF交AB于点G,交AC于点H, IM J_BC于M.则下列结 论:
©EF1AD;
②AB-AC - BC=V^AI:
@AD=V2(IM-1-BC); @SABIC: SAEH的值随A
点位置变化而变化.其中正确的是(
)
2
D
A.①②④B.①② C.①②③D.③④
21 .如图,BC是。O的直径,半径为R, A为半圆上一点,I为AABC的内心,延长AI 交BC
于
D点,交。0于点E,作IFJ_BC,连接AO, BL下列结论:©AB+AC=BC+2IF; @4ZAIB -
ZBOA=360°;③EB=EI:④为定值,其中正确的结论有( )
A.①③④B.①②③C.①②③④D.①②④
22 .如图,已知 OP 平分NAOB, ZAOB=60% PC_LOA 于点 C, PDLOB 于点 D, EP〃OA,
交OB于点E,且EP=6.若点F是OP的中点,则CF的长是( )
A. 6 B. 3^2 C. 2V3 D・ 373
23 .如图,ZkABC中,CA=CB, AB=6, CD=4, E是高线CD的中点,以CE为半径OC.G
是0c上一动点,P是AG中点,则DP的最大值为( )
24 .如图,直线1与半径为3的相切于点A, P是。0上的一个动点(不与点A重合), 过点P
作PB_L1,垂足为B.连结PA,设PA=m, PB=n,则m-n的最大值是( )
E
B
O
C