现代信号处理-课后思考题(2015)

合集下载

现代数字信号处理课后习题解答

现代数字信号处理课后习题解答

现代数字信号处理课后习题解答习题二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。

证明:(,)(,)(,,,)xi j i j i jijijijR t t E x x x x p x x t t dx dx==(,)[(),()](),()(,,,)()(,,,)(,)(,)i j i j j i i j i j j i i j i jx i j i x j x i x j x i j i j i ji j i x j x x x i j i j i j x i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dx x x x m x m m m p x x t t dx dx R t t m m m m m m R t t m m =--=--=--+=--+=- 2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x ym m m =+和222w x y σσσ=+。

证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明:①当0τ=时,2(0),(0)x x x x R D C σ==;②当τ=∞时,2(),()0x x x R m C ∞=∞=。

《数字信号处理》复习思考题、习题(二)答案.doc

《数字信号处理》复习思考题、习题(二)答案.doc

一、思考题1、C2、C3、D4、A5、D6、B7、D8、B9、C 10、A 11、C 12、C 13、A 14、A 15、B 16、C 17、A 18、C二、概念填空题1、(1)付氏级数(2) hd (n)(理想的单位脉冲响应)(3) R N(n)(N点矩形窗或N点矩形序列)(4) h (n)(单位脉冲响应)(5)吉布斯(6)波动(不平稳)(7)衰减(最小衰减)2、(8)(9)三角窗、汉宁窗、哈明窗、布莱克曼窗(10)过渡带(11)衰减3、(12)时(13) h (n)(数字滤波器单位脉冲响应)(14) h a(t)(模拟滤波器冲激响应)(15)频谱混叠(16 )折叠频率(兀/T)4、(17)偶对称(奇对称)(18)奇对称(偶对称)(19)〃二堕二1! (20)线性相位特性25、(21)时(22)窗函数(23)有限长(24)逼近6、(25)某种优化逼近方法(26)逼近(27)频率响应(28)最优三、判断说明题1、判断:正确简述:按照频率采样滤波器结构的推导,上述说法是正确的,这正是频率采样结构的一个优点。

但对于不同的频响形状,N个并联一阶节的支路增益H (k)不同。

2、判断:一致简述:由于对模拟滤波器而言,因果稳定系统传递函数H a(s)的极点均在S平面的左半平面,只要转换关系满足使S平面的左半平面转换到Z平面的单位圆内,就保证了转换后数字滤波器系统函数H (z) 的极点全部在Z平面的单位圆内,从而保证了系统的因果稳定性。

3、判断:不对简述:正确的表述应为:IIR滤波器只能采用递归型结构实现;FIR 滤波器一般采用非递归型结构实现,但也可使结构中含有递归支路。

就是说滤波器结构与特性没有必然的联系。

4、判断:一致简述:由于对模拟域而言,其频率轴就是S平面的虚轴j。

轴,而对数字域来说,其频率轴是z平面的单位圆,因此两者是一致的。

四、计算应用题1、解:1)容易将H (z)写成级联型的标准形式如下:)二(2 + 3广)(3-2广 + 广)H(Z一(4 —广)(1 + 0.9广—0.81厂2)0.5+ 3-2广+疽—— ________ z ______ * ___________________________________1 + 0.9/—0.81厂2显见,该系统的级联结构由一个直接II型一阶节和一个直接II型二阶节级联而成,因此容易画出该系统的级联型结构图如图A-1所示。

【南邮】现代信号处理试卷2015

【南邮】现代信号处理试卷2015

【南邮】现代信号处理试卷2015南京邮电大学2015年硕士研究生《现代信号处理》试卷(张玲华老师)一、填空题(16*1)1.Yule-Walker方程的快速解法是利用了实数据的自相关矩阵的以下性质:、、和。

2.信号处理领域常用的三种人工神经网络是:、、。

3.小波变换中,尺度因子较大时,时间分辨率较(高/低),可再作(低频/高频)分析。

4.人工神经网络中,多层前向网络的BP算法是(有师/无师)学习。

5.高阶谱是的傅里叶变换。

6.随机序列的功率谱越宽,自相关函数下降越(快/慢)。

7.如果平稳随机过程是各态遍历的,可以用代替。

8.方差σ2的白噪声过程,其自相关函数为、功率谱为。

9.常用的4种数据加窗方法是自相关法、协方差法、前窗法和后窗法,Burg算法采用的是。

二、是非题(8*1)1.白噪声一定服从高斯分布。

2.LMS自适应算法中,在满足收敛条件的情况下,选择步长要兼顾收敛速度和方向。

3.卡尔曼滤波器适用于平稳随机过程或非平稳随机过程。

4.Bartlett法是对周期图法谱估计的改进,通过分段、平均减小谱估计的方差,同时提高谱估计的谱分辨率。

5.递归最小二乘(RLS)算法比LMS算法的收敛速度快,所以RLS算法的运算量小。

6.对短数据进行功率谱估计,Burg算法的谱分辨率比Levinson算法高。

7.传统IIR滤波器是Laguerre横向滤波器α=0的特例。

8.小波母函数在时域和频域都应该是紧支撑的。

三、简答题(3*6)1.在多速率信号处理中,通常在抽取器之前加滤波器,在内插器之后加滤波器,为什么?2.试说明小波变换和短时傅氏变换的异同。

3. 在LMS 算法中,造成失调的原因是什么?四、画图说明题(2*4)1. 请画出自适应滤波器应用与系统辨识的的系统结构图。

2. 请画出4个神经元组成的简单Hopfield 神经网络拓扑结构。

五、综合题(5*10)1. 设白噪声信号w(n)的方差为1,均值为0,让w(n)激励一个AR(2)系统,该系统的各阶反射系数a i 1 =0.5,a i 2 =?0.4。

东南大学 考博 信号与信息处理 《现代数字信号处理》第5章习题答案

东南大学 考博 信号与信息处理 《现代数字信号处理》第5章习题答案
(c) 若用周期图平滑法,为获得与(b)中的 Bartlett 法差不多的分辨率,要用多少时滞的自相 关值?若要求估计的方差与四分段的 Bartlett 估计的方差不相上下,需要多长的数据?
《现代数字信号处理》习题参考答案
解:(a)
级联的系统函数是:
H
(
Z
)
=
1
+
aZ
−1
1 +
0.99Z
−2
×
1

法的品质因子是 QB
=
1 VB
=
K

因此,若要 QB Qper ≥ 5 ,必须要求 K ≥ 5 。由于 M = 178 (对 Δf = 0.005 ),因此必须使 数点数满足: N = KM ≥ 5×178 = 890 点。
5.4 设随机过程 x(n) 是单位方差白噪声 w(n) 激励如下的系统而产生的。
《现代数字信号处理》习题参考答案
第五章习题参考答案
5.1 给定随机过程 x(n)的 N=10000 个样本点,要计算其周期图,但由于存储单元有限,你最 多只能计算 1024 点的 DFT,试说明如何利用这 10000 个样本值计算其周期图,并使其 分辨率为:
Δω = 0.89 2π 10000
解:(提示:试分析时间抽取 FFT 算法是如何工作的)
( ) [ ] 因此在 0,π 区间内,功率谱 Px e jω 每针对 Px ( z) 的一对共轭复极点及其镜像共轭对都有
一个峰值,位置对应于极点的相角。共有两个峰值,其频率满足:
2 cosω1 =
a 0.98
; 2 cosω2
=
−a 0.99
因此:
ω1 = cos−1 2

现代信号处理6_滤波器组基础3_2015资料

现代信号处理6_滤波器组基础3_2015资料

强制F(z)=0,去除了混叠失真,但还会存在幅度和相位失真
T
(z)
1 2
H0
(z)G0
(z)
H1(z)G1(z)
如果T(z)是全通滤波器,则去除了整个滤波器组的幅度失真; 如果T(z)具有线性相位,则去除了整个滤波器组的相位失真。
^
T (z) czk x(n) cx(n k)
理想重构条件
T
T
(z)
1 2
现代信号处理 (Modern Signal Processing)
张新峰 2015 综合楼802室 67391587-802 课件:mdspbjut2013@ key:2013_bjut_mdsp
主要内容
• 两通道滤波器组各信号之间的关系 • 标准正交镜像滤波器组 • 共轭正交镜像滤波器组 • 共轭正交镜像虑波器的设计 • 仿酉滤波器组 • 两通道仿酉滤波器组的Lattice结构(自学) • 线性相位准确重建两通道滤波器组
P(z)
P(z)
T (z) 1/ 2[P(z) P(z)]
理想重构条件
T
(z)
1 2
H0
(z)G0
(z)
H1(z)G1(z)
cz k
F(z)
1 2
H0
(z)G0
(z)
H1(z)G1(z)
0
Gm
G0 (z) G0 (z)
GG11((zz)), Hm
H0(z)
H
0
(
z
)
H1(z) H1(z)
T (z)
cz l
G0
G1(
( z
z )
) 1 z(kl) c
1 z(kl c
H1(z) ) H 0 ( z)

现代数字信号处理1-6章习题答案

现代数字信号处理1-6章习题答案

第一章),(服从正态分布,即之间的唯一性定理知:由特征函数与分布函数)()()()()()(的特征函数则),,,(此外,)(的特征函数为:)()()()()。

概率密度函数为:,(服从正态分布,即、证明:∑∑∑∑∑∑∑=-=-===-=⎥⎦⎤⎢⎣⎡---=-x T x x T T T x x TT T T T xT x N xT T x X xT x x xNx x B B B m N X B B B B m j B B B m j B f f t t t t t t t m j t f X m X m X x p m N X X~]21exp[]21exp[]21exp[21exp 21~1211212ξξμμμμμμμμξπξ[]相互独立。

与)()()()(),(的联合概率密度函数为,),(的协方差为,的协方差为设、证明:Y X Y p X p Y Y X X Y X R Y X R Y X p Y X Y X E R Y X Cov Y X T X T X Y X M N T XY TXY M N Y XY X T YXNN NN∴=⎭⎬⎫⎩⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=∴⎥⎥⎦⎤⎢⎢⎣⎡===∑∑∑∑∑∑∑∑++⨯⨯2121exp 2121exp 2100][221212212ππ 。

且,则,,则要使))((则,为常量。

,其中设、证明:∑==-==∴====+-=----==+=x Tx x xx ee x T ee TTx x xx T x x ee T x x x Cov m m R R m xa a a aa R aa m m R a m x a m x E R ee E a a m x),(ˆ00min ][][ˆ3φ∆=-=--T Hy)-)(E[( )]ˆ(ˆ[:6.1x Hy x x x x x E T)(、解][2][][T T T yy HE yx E xy E dHd +--=φ为随机误差。

现代信号处理思考题(含答案)

现代信号处理思考题(含答案)

现代信号处理思考题(含答案)第一章绪论1、试举例说明信号与信息这两个概念的区别与联系。

信息反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。

信号是传载信息的物理量是信息的表现形式,如文字、语言、图像等。

如人们常用qq 聊天,即是用文字形式的信号将所要表达的信息传递给别人。

2、什么是信号的正交分解?如何理解正交分解在机械故障诊断中的重要价值?P9 正交函数的定义信号的正交分解如傅里叶变换、小波分解等,即将信号分解成多个独立的相互正交的信号的叠加。

从而将信号独立的分解到不同空间中去,通常指滤波器频域内正交以便于故障分析和故障特征的提取。

傅里叶变换将信号分解成各个正交的傅里叶级数,将信号从时域转换到频域从而得到信号中的各个信号的频率。

正交小波变换能够将任意信号(平稳或非平稳)分解到各自独立的频带中;正交性保证了这些独立频带中状态信息无冗余、无疏漏,排除了干扰,浓缩了了动态分析与监测诊断的信息。

3、为什么要从内积变换的角度来认识常见的几种信号处理方法?如何选择合适的信号处理方法?在信号处理各种运算中内积变换发挥了重要作用。

内积变换可视为信号与基函数关系紧密程度或相似性的一种度量。

对于平稳信号,是利用傅里叶变换将信号从时域变为频域函数实现的方式是信号函数 x( t)与基函数 e i t通过内积运算。

匹配出信号x( t )中圆频率为 w 的正弦波 .而非平稳信号一般会用快速傅里叶变换、离散小波变换、连续小波变换等这些小波变换的内积变换内积运算旨在探求信号x(t )中包含与小波基函数最相关或最相似的分量。

“特征波形基函数信号分解”旨在灵活运用小波基函数a, b (t)去更好地处理信号、提取故障特征。

用特定的基函数分解信号是为了获得具有不同物理意义的分类信息。

不同类型的机械故障会在动态信号中反应出不同的特征波形,如旋转机械失衡振动的波形与正弦波形有关,内燃机爆燃振动波形是具有钟形包络的高频波;齿轮轴承等机械零部件出现剥落。

信号处理-习题(答案)【方案】.doc

信号处理-习题(答案)【方案】.doc

数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。

试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。

解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。

2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。

○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 基于第二代小波变换的信号 处理
与经典小波相比,第二代小波的优势哪些? 图数和小波函数特 性。 简要说明基于第二代小波包分解的滚动轴承 损伤定量识别方法。 为什么要进行冗余第二代小波变换?简述其 工程应用。
第八章 基于EMD的时频分析方法及其应 用
第二章信号的时域分析
1、解释理想滤波器的特点。 2、描述实际滤波器的参数有哪些?其物理含义是什么? 3、图示说明采样定理的基本原理。实际测试时如何确 定采样频率和数据长度? 4、窗函数为什么会导致频谱泄露?试讨论检测两个频 率相近幅度不同的信号 ,选择哪种窗函数比较合适? 5、有量纲指标与无量纲指标各有什么优缺点?试举例 说明。 6、结合你自己的研究方向,谈谈如何应用自相关函数 与互相关函数。
第六章 连续小波变换及其工程应用
连续小波变换和离散小波变换的各有哪些优点和缺点? 以谐波小波变换为例,说明如何实现连续小波变换的 快速算法? 为什么小波分析与分形理论可以相结合构成小波分形 技术?除了谐波小波轴心轨迹的盒维数应用外,请提 出其它的振动信号小波分形应用方法。 自学Laplace小波和Hermitian小波,简要说明其特 点与工程应用价值。
现代信号处理技术及应用
课后思考题
2015年9月
第一章 绪论
试举例说明信号与信息这两个概念的区别与联 系。 什么是信号的正交分解?如何理解正交分解在 机械故障诊断中的重要价值? 为什么要从内积变换的角度来认识常见的几种 信号处理方法?如何选择合适的信号处理方法? 对于基函数的各种性质的物理意义如何理解?
第三章 信号的频域分析
谈谈你对信号频谱的物理本质是如何理解的?结合傅 里叶变换的性质,试举例说明其重要作用。 解释机械信号在离散化过程中产生频率混叠现象及其 原因?在工程实践中如何避免频率混叠现象? 在进行信号频谱分析时,为何要加窗函数?如果要求 频谱分析结果的幅值精度高,泄漏量小,应该选择什 么窗函数?为什么? 什么是倒频谱?倒频谱的量纲单位是什么?你如何利 用倒频谱原理将时域中两个卷积信号转换为倒频域中 相应的两个线性相加的倒频谱? 请说明旋转机械故障诊断中二维全息谱的原理。工频 全息谱椭圆较扁说明转子系统存在什么状态现象?
请结合时频平面划分的不同,对比说明短时傅里叶 变换与小波变换时频分辨率的区别? 解释尺度函数和小波函数的功能,并给出小波分解 三层和小波包分解三层的频带划分示意图。 解释什么是小波基函数的双尺度关系?为什么小波 变换能够对信号进行时间—尺度(时—频)分析? 简述Mallat塔形算法的基本原理和特点。 简述小波包频带能量监测的基本原理。
为什么在EMD分解时会出现端点效应?试 给出三种消除或减弱端点效应的措施。 瞬时频率的定义和物理意义是什么?如何理 由瞬时频率进行转子摩擦故障的诊断? 与小波分解相比较,试说明EMD方法的完 备性和正交性。
第四章 循环平稳信号分析
给出循环平稳信号的定义,并解释机械设备循 环平稳信号的特点。 为什么齿轮、轴承等机械设备在故障发生时, 其振动信号往往具有循环平稳性? 对于时间序列 为整数, 试给出其循环自相关函数的算法步骤。 如何通过循环谱识别调幅信号的调制频率和载 波频率?
第五章 非平稳信号处理方法
相关文档
最新文档