整式加减法
《整式》整式的加减

合并同类项
在处理函数表达式时,需要合并同 类项,以简化表达式。
化简二次根式
对于包含二次根式的函数表达式, 需要利用化简二次根式的方法,将 表达式转化为更简单的形式。
03
整式加减的注意事项
确定符号
确定符号
01
在进行整式加减时,首先要确定每个项的符号,以便正确进行
运算。
括号内的项要一起加减
02
在处理括号时,需要将括号内的每一项都按照运算顺序进行加
减。
先化简,再加减
03
为了使运算更加简便,可以先对每个项进行化简,例如合并同
类项、提取公因式等,然后再进行加减运算。
符号运算规则
同号相加
同号是指相同的符号,如两个正 数或两个负数相加。同号相加时
,只需要将系数相加即可。
异号相加
异号是指不同的符号,如一个正 数和一个负数相加。异号相加时 ,需要先取绝对值较大的数的符 号作为结果的符号,然后将绝对
掌握有理数的加减法规则
有理数的加减法包括同号有理数相加、异号有理数相加、有理数的减法等,相加时需要将 绝对值相加,符号相同的数相加结果仍为同号有理数,异号有理数相加时需要取绝对值较 大的有理数的符号。
运用有理数的加减法解决实际问题
有理数的加减法可以用于解决一些实际问题,例如计算数值、解方程等。
THANK YOU
抽象思维
整式的加减涉及到抽象的数学概念,教师需要培养学生的抽象思维 能力,让学生能够将具体问题抽象成数学模型。
批判性思维
教师需要引导学生对解题方法和答案进行批判性思考,鼓励学生提 出疑问和不同的观点,培养学生的批判性思维能力。
06
整式加减的进一步学习建议
学习因式分解
整式的加减法运算

整式的加减法运算整式是由常数、变量及它们的乘积组成的代数式。
整式的加减法运算是我们初中数学中的基础知识,掌握好整式的加减法运算对于我们解决复杂的数学问题至关重要。
在本文中,我将通过举例、分析和说明的方式,向中学生及其父母介绍整式的加减法运算。
一、整式的加法运算整式的加法运算是指将两个或多个整式相加的过程。
在进行整式的加法运算时,我们需要注意以下几点:1. 同类项的合并同类项是指含有相同字母的变量,并且这些变量的指数也相同。
在进行整式的加法运算时,我们需要将同类项合并。
例如,将3x² + 2x + 5和5x² - 3x + 2这两个整式相加,首先将同类项合并,得到(3x² + 5x²) + (2x - 3x) + (5 + 2) = 8x² - x + 7。
2. 系数的运算在合并同类项时,我们需要对系数进行运算。
系数是变量前面的数字,可以是正数、负数或零。
在进行系数的运算时,我们需要注意正数与正数相加、负数与负数相加、正数与负数相加的规律。
例如,将2x + 3和-4x - 2相加,首先对系数进行运算,得到(2x - 4x) + (3 - 2) = -2x + 1。
二、整式的减法运算整式的减法运算是指将一个整式减去另一个整式的过程。
在进行整式的减法运算时,我们需要注意以下几点:1. 减法的转化整式的减法可以转化为加法运算。
例如,将3x² - 2x + 5减去2x² + 3x - 1,可以将减法转化为加法,即3x² - 2x + 5 + (-2x² - 3x + 1)。
2. 同类项的合并在进行整式的减法运算时,同样需要将同类项合并。
例如,将3x² - 2x + 5 + (-2x² - 3x + 1)中的同类项合并,得到(3x² - 2x²) + (-2x - 3x) + (5 + 1) = x² - 5x + 6。
整式的加减法

01
02
03
同类项合并
在进行整式加减法时,应 将同类项进行合并,即相 同变量和指数的项相加或 相减。
变量与常数分离
在加减过程中,应将含有 变量的项与常数项分开处 理,便于后续的简化和计 算。
保持运算顺序
在进行复杂的整式加减运 算时,应按照运算的优先 级进行,确保运算结果的 准确性。
02
整式加减法的计算方法
时间、速度、距离关系
整式的加减法可以用于处理与时间、速度、距离相关的问 题,通过构建相应的数学表达式,运用整式加减法解得问 题的答案。
财务管理与统计
在财务和统计领域,整式的加减法可用于处理复杂的财务 数据,如计算总收入、总支出、净利润等,以及对统计数 据进行加减运算,得到所需指标。
在数学竞赛中的应用
和推理。
合并同类项
在代数式中,通过整式的加减法 可以合并同类项,进一步简化表 达式,使其更易于理解和操作。
求解方程
在解代数方程时,整式的加减法 也扮演着重要角色,通过对等式 两边进行相应的加减操作,逐步 化简方程,最终求得未知数的解
。
在解决实际问题中的应用
长度、面积、体积计算
在实际问题中,常常需要计算长度、面积、体积等物理量 ,通过整式的加减法可以对这些量进行精确的计算和比较 。
非同类项在加减法中不能 直接进行合并,它们会作 为独立的项保留在整式中 。
示例
2x^2y + 3xy^2 不能合并 ,结果为 2x^2y + 3xy^2 。
整式加减法的计算步骤
1. 确定同类项:首先,要确定整式中的 同类项,即找出字母部分及字母的指数 都相同的项。
通过以上步骤,我们可以完成整式的加 减法计算。
整式的加减法运算

整式的加减法运算整式是指由数字、字母和加减乘除符号组成的表达式,其中字母表示数,整式的加减法运算主要是对整式中的相同项进行合并和整理。
下面将分为两个部分,分别介绍整式的加法运算和减法运算。
一、整式的加法运算整式的加法运算是指将两个或多个整式相加得到一个简化的整式。
在加法运算中,我们首先需要对整式中的相同项进行合并。
相同项是指具有相同字母和相同幂次的项。
具体的步骤如下:1. 将所有的整式按照相同的字母和幂次进行分类,将相同的项放在一起。
2. 对于每一组相同项,将系数相加得到合并后的系数,并保留相同的字母和幂次。
3. 将合并后的每一组项按照字母和幂次的顺序排列。
4. 最后将合并后的项按照加号连接起来并进行简化。
举例说明:假设有两个整式:3a^2b-2ab^2和2ab^2+5a^2b-4ab。
我们按照上述步骤进行计算。
首先,按照相同的字母和幂次进行分类:3a^2b、5a^2b:系数3和5相加得到8;字母和幂次不变,为a^2b。
-2ab^2、2ab^2:系数-2和2相加得到0;字母和幂次不变,为ab^2。
-4ab:和其他项没有相同的字母和幂次,无需合并。
然后,将合并后的每一组项按照字母和幂次的顺序排列:8a^2b、0ab^2、-4ab。
最后,将合并后的项按照加号连接起来并进行简化:8a^2b+0ab^2-4ab。
因为0ab^2的系数为0,所以可以省略该项,简化后的结果为:8a^2b-4ab。
二、整式的减法运算整式的减法运算是指将一个整式减去另一个整式得到一个简化的整式。
在减法运算中,我们可以通过将减数取相反数,再进行整式的加法运算,从而将减法运算转化为加法运算。
具体的步骤如下:1. 将减数的每一项取相反数,得到相反数式。
2. 将相反数式与被减数进行整式的加法运算。
3. 对加法运算得到的整式进行简化。
举例说明:假设有两个整式:4x^2-3xy和2x^2+xy+3ab。
我们按照上述步骤进行计算。
首先,将减数的每一项取相反数:相反数式为:-2x^2-xy-3ab。
整式加法和减法

在去括号时,应注意保持括号内整式的正负号不变,遵循去括号的 规则。
合并同类项时注意符号
在合并同类项时,应注意保持同类项的符号一致,避免因符号错误 导致结果错误。
简化表达式的注意事项
1 2
合并同类项
在整式加减过程中,应尽量合并同类项,简化整 式的形式。
化简到最简形式
在完成整式加减后,应将结果化简到最简形式, 确保结果的简洁明了。
在日常生活中的应用
整式加减法在日常生活中也有广泛的应用。例如,在购物 时计算找零、在计算时间和速度等方面都需要使用整式加 减法。
例如,在购物时,收银员需要使用整式加减法计算顾客应 该找回的零钱;在计算时间和速度时,也需要使用整式加 减法进行计算。
05
整式加减法的注意事 项
运算顺序的注意事项
先乘除后加减
整式减法的运算规则
减去一个数等于加上这个数的相反数 :a-b=a+(-b)。
减去整式等于加上这个整式的相反数 :a-b=(a+(-b))。
03
整式的混合运算
整式的加减混合运算
整式的加减混合运算是指在一个数学 表达式中同时包含加法、减法和乘法 、除法等运算。
在进行整式的加减混合运算时,需要 注意括号的作用,括号内的运算需要 优先进行。
整式的乘除混合运算的顺序是先进行乘除运算,再进行 加减运算,即遵循“先乘除后加减”的原则。
整式的乘除混合运算可以通过化简表达式、利用分配律 等方法简化计算过程。
整式的幂的混合运算
整式的幂的混合运算是指在一个数学表达式中同时包 含幂运算和加法、减法、乘法、除法等运算。
输标02入题
整式的幂的混合运算的顺序是先进行乘方和开方运算 ,再进行乘除运算,最后进行加减运算,即遵循“先 乘方和开方后乘除再加减”的原则。
整式的加减法

整式的加减法整式是指由字母与数字按照乘法原则连接在一起的代数式。
这种乘法连接的方式使得整式在进行加减法运算时,需要满足特定的规则和步骤。
本文将以整式的加减法为主题,详细介绍整式加减法的运算规则和注意事项。
一、整式的基本概念在讨论整式的加减法之前,先来了解一下整式的基本概念。
1. 字母部分:整式中的字母部分通常表示未知数或变量,用来代表一类数。
例如,3x表示3与未知数x的乘积。
2. 系数:整式中字母部分前面的数字称为系数,它表示字母部分的倍数。
例如,在3x中,3就是x的系数。
3. 幂:字母部分上方的小数字称为幂,表示字母的指数。
例如,在x²中,2就是x的幂。
4. 项:整式由多项式组成,每一项包括一个系数和一个幂。
例如,在3x²中,3x²就是一项。
二、整式的加法整式的加法遵循以下两个步骤:1. 将相同字母部分的项合并:首先将整式中相同字母部分的项进行合并,即将系数相加。
例如,将3x² + 2x²合并为5x²。
2. 将不同字母部分的项合并:如果整式中存在不同字母部分的项,直接将它们列在一起。
例如,将5x² + 3xy合并为5x² + 3xy。
举例说明:将4x² + 3xy² + 2x² + 5xy进行加法运算。
首先合并相同字母部分的项,得到(4x² + 2x²) + (3xy² + 5xy) = 6x² +8xy²。
然后将不同字母部分的项合并,最终结果为6x² + 8xy²。
三、整式的减法整式的减法也遵循同样的步骤,与加法相似。
1. 将相同字母部分的项合并:将减号前的整式中相同字母部分的项进行合并,即将系数相加,但是要注意减去的数要变为相反数。
例如,将3x² - 2x²合并为1x²或简化为x²。
七年级上册数学整式的加减法

七年级上册数学整式的加减法整式的加减法(人教版七年级上册数学)一、整式的相关概念。
1. 单项式。
- 定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如,3x,-5,a都是单项式。
- 系数:单项式中的数字因数叫做这个单项式的系数。
例如在单项式3x中,系数是3;在单项式-5中,系数是-5。
- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如,单项式3x^2的次数是2,单项式- 2xy的次数是2(x的次数是1,y的次数是1,1 + 1=2)。
2. 多项式。
- 定义:几个单项式的和叫做多项式。
例如2x+3y,x^2 - 2x+1都是多项式。
- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
例如在多项式x^2 - 2x + 1中,x^2、-2x、1都是它的项,1是常数项。
- 次数:多项式里次数最高项的次数,叫做这个多项式的次数。
例如多项式x^2 - 2x+1的次数是2,因为x^2的次数最高为2。
3. 整式:单项式与多项式统称为整式。
二、整式的加减法。
1. 同类项。
- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如3x和5x是同类项,2y^2和-3y^2是同类项,4和-7是同类项。
2. 合并同类项。
- 法则:合并同类项时,把同类项的系数相加,字母和字母的指数不变。
例如,计算3x+5x=(3 + 5)x=8x;2y^2-3y^2=(2 - 3)y^2=-y^2。
3. 去括号法则。
- 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例如+(2x+3y)=2x + 3y。
- 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例如-(2x+3y)=-2x-3y。
4. 整式加减法的步骤。
- 去括号(如果有括号的话)。
- 找出同类项。
- 合并同类项。
例如:计算(3x^2+2x - 1)-(2x^2 - 3x+2)- 去括号得:3x^2+2x - 1 - 2x^2+3x - 2- 找出同类项:3x^2与-2x^2是同类项,2x与3x是同类项,-1与-2是同类项。
整式的加减

整式的加减概念总汇1、整式加减的有关概念(1)同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
几个常数项也是同类项。
如: 6x 2y 2和-4x 2y 2就是同类项,-3和5也是同类项;但b a 24与23ab 就不是同类项,因为相同字母的指数不相同。
(2)合并同类项:把多项式中的同类项合并成一项,即把同类项的系数相加,字母和字母的指数不变。
如:6x 2y 2+(-4x 2y 2)=2x 2y 2说明:①只有同类项才可合并,不是同类项的不能合并;②合并同类项,只合并系数,字母与字母的指数不变;③合并同类项后若其系数是带分数,要把它化成假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0。
(3)去括号法则:括号前面是正号,把括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,把括号和括号前的负号去掉,括号里的各项都要改变符号。
如:A +(5A +3B )—(A —2B )=A +5A +3B -A +2B =5A +5B 。
说明:去括号法则相当于乘法分配律的应用,如:A +(5A +3B )—(A —2B )=A +1×(5A +3B )+(-1)×(A -2B )=A +5A +3B +(-1)A +(-1)×(-2B )=A +5A +3B -A +2B =5A +5B 。
如果括号前面有数字因数,就按乘法分配律去括号。
如: 21(3a 2-2ab +4b 2)-2(43a 2-ab -3b 2) =23a 2-ab +2b 2-23a 2+2ab +6b 2=ab +8b 2 (4)添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。
说明:去括号与添括号是互逆的过程,它们的依据是乘法分配律的顺逆运用。
可把+(a -b )看作(+1)(a -b ),把-(a -b )看作(-1)(a -b )则有+(a -b )=a -b , -(a -b )= -a +b ,这样乘法分配律的一个应用便是去括号;添括号可理解为乘法分配律的逆用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100×2+252×2
100×(-2)+252×(-2)
思考:
有理数可以进行加减运算,那么整式能否可以加减运算呢?怎样化简呢?
(1)师生以问答的形式完成问题1。
(2)要求学生独立完成问题2,师鼓励。
通过回忆乘法分配律及应用有理数的运算律计算100×2+252×2,100×(-2)+252×(-2),为下面类比数的运算律探究合并同类项法则打下基础。
问题(2)
当R=时,3xRY与
-x2Y是同类项
问题(3)
合并同类项:
①4y2-4y2
②a+7a-5a
③-3x2Y+2x2Y
④ab3-1/5ab3
(1)学生独立完成
(2)老师讲解示范
本次活动教师应重点关注:
(1)学生对同类项的正确判别(当字母不止一个时,与字母顺序无关)
(2)合并同类项时,不要漏项
(3)注重在学习的过程中找规律。
A、4a+b=4ab
B、6xy2-6y2x=0
C、6×2-4×2=2
D、3×2+2×3=5×5
学生独立完成,师给予肯定。
帮助学生进一步掌握新知。
在交流中完善语言的准确性和严密性,培养学生的语言表达能力和使用数学语言的习惯。
活动5:
课件展示 :
问题:通过本节课的学习,你收获了什么?
学生畅谈学过过程的收获与体会,教师总结。
(4)关注学生并及时给予鼓励和肯定。
巩固同类项概念,合并同类项概念,合并同类项法则,让学生进一步感受化简过程的理论根据(运算律)。
活动4:
课件展示 :
1、下列各项不是同类项的是( )
A、-3x2y与2x2y
B、-2x2y与3xy2
C、-5x2y与3yx2
D、3mn2与2mn2
2、合并同类项正确的是( )
活动2:
课件展示:
问题(1)
青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,在西宁到拉萨路段,列车通过非冻土地段所需要时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需t小时,则这段铁路的全长是多少千米?
学生思考并回答问题,可得到式子100t+252t。
本次活动教师应重点关注:(1)学生对本课知识点的总结是否全面、准确。(2)学生的语言表达是否清晰。
由学生总结本节课的内容,逐步提高学生的归纳总结能力和语言表达能力。
(2)师鼓励同学们说出化简的理由及理论根据。
(3)在此基础上,以学生已有的关于数的运算律为基础,开展探究。
(4)观察多项式各项的特点,得出同类项概念,合并同类项概念。
(5)类比数的运算,探究得出合并同类项法则。本次活动教师应重点关注:
(1)学生在活动中,探究化简方法时是否能积极思考,主动参与;是否能说出化简方法的理论依据。
列整式表示实际问题中的数量关系,以具体生活情景为背景,有效地吸引学生的注意力,增强好奇心以及求知欲。
问题(2)
类比数的运算试化简100t+252t的依据是什么?
探究:
填空:
100t-252t=
3x2+2x2=
3ab2+4ab2=
思考(3)
上述运算有什么共同特点?你能从中得出什么规律?
(1)在学生尝试独立完成的基础上,分组讨论。
活动2:探究同类项概念和合并同类项法则
在以具体问题为背景,列式表示事物之间的数量关系的基础上,通过探究形如式100t+252t的化简,引出同类项和合并同类项概念的探讨,类比数的运算律探究合并同类项法则。
活动3:认识同类项并能用合并同类项法则进行简单计算
能够准确识别同类项,掌握合并同类项的法则,并运用法则进行计算。
此问题为本节的核心内容,让学生在探究的过程中体会用字母表示数的意义,发展类比能力和抽象概括能力,同时在交流讨论的过程中体会交流的必要性。
活动3:
课件展示 :
问题(1)
判断下列各组中的两项是否是同类项:
①53和35
②x3与53
③3xy与3x
④-5ab3与3ab3
⑤-5m2n3与2n3m2
⑥πx2和x2
(2)学生对概念及法则的理解情况。
(3)学生是否能清晰地表述自己的想法。
(4)同类项的定义,重点强调所含字母相同,相同字母的指数相同;说明几个常数项也是同类项这一规定的合理性;合并同类项后所得项的系数是合并前同类项各项的系数的和,字母部分不变。
通过列式问题的化简,引出同类项概念,合并同类项概念。
在此基础上,类比数的运算律通过探究得出合并同类项法则。
情感态度
1、通过参与同类项,合并同类项法则的数学探究活动,提高对数学学习的好奇心与求知欲。
2、在小组讨论交流中体会出与别人分享的重要性。
重点
合并同类项法则
难点
对同类项的概念的理解,合并同类项法则的探究
教学流程安排
活动流程图
活动内容和目的
活动1:课前回顾
回忆乘法分配律及运用有理数的运算律计算100×2+252×2、100×(-2)+252×(-2),为下面类比数的运算律探究合并同类项法则打下基础。
活动4:巩固练习
帮助学生进一步掌握新知,在交流中完善语言的准确性和严密性,培养学生的语言表达能力和使用数学语言的习惯。
活动5:谈收获与体会
计
问题与情境
师生行为
设计意图
活动1
课件展示 :
问题(1):
什么是乘法分配律?用字母式子如何表示?
2.2《整式的加减》教学设计(第1课时)
教
学
目
标
知识技能
1、理解同类项的概念
2、掌握合并同类项的法则,以进行简单的同类项的合并。
数学思考
通过类比数的运算律得出合并同类项的法则,发展类比的数学思想方法。
解决问题
1、在经历从具体问题中抽象出同类项,合并同类项法则的过程中,发展抽象概括能力。
2、通过认识同类项并合并同类项,发展学生探究能力。