边坡工程地质问题
例析边坡工程地质条件及稳定性

例析边坡工程地质条件及稳定性前言:边坡稳定性问题是一项复杂的系统工程问题,它涉工程地质学、岩体力学和计算科学等多种学科交叉,一直是岩土工程的一个重要研究内容[1]。
土质边坡开挖引起土体卸荷,引起应力重分布和应力集中,坡体为适应这种变化,将发生不同形式的变形与破坏,出现滑坡等灾害情况。
因此,为最大限度减少因边坡失稳导致的重大人员伤亡、巨大经济损失、工程建设受阻等事件的的发生,需要对边坡的稳定性做出正确的预测和评价,并提出相关建议和工程处理措施。
本文结合某市地区边坡实际情况,对该边坡所处的地形地貌、地层岩性、裂隙发育特征、水文条件等影响边坡稳定性的主要工程地质要素進行系统分析,采用瑞典条分法对边坡稳定性进行定量分析,可以为类似土质边坡稳定性分析评价和治理提供借鉴。
1.工程地质条件1.1 工程概况某市地区边坡呈近北东(NE40°)走向,倾向近东向(E100°),边坡宽约50m,高3~15m,总长约540m(见图1)。
1.2 地形地貌边坡地貌类型为丘陵区,危险边坡地形呈东北高西南低,东部比较陡峭,西部较为平缓。
东区边坡的下部坡脚为出露的岩石,西部坡脚为土坡。
1.3 地层岩性根据详细勘察报告,危险边坡发育地层主要为石炭系砂岩、泥质粉砂岩风化层,岩石节理裂隙发育。
①植物土层黄褐色,松散,稍湿,主要为粉土、粉质粘土组成,局部含较多砂粒,局部含少量的植物根茎及有机质,主要分布于边坡表层。
图1 边坡平面图②全风化砂岩层黄褐色,风化剧烈,岩芯呈坚硬土状,含较多砂砾,遇水软化溃散,局部含有黑色的全风化泥质粉砂岩及煤屑。
③强风化岩层该层依据岩性的不同分为两个亚层即强风化砂岩层、强风化泥质粉砂岩层。
强风化砂岩:黄褐色,风化强烈,岩芯呈半岩半土状,局部土夹碎块状,局部夹泥质粉砂岩风化残余,局部含中风化岩块,遇水软化溃散,岩石节理裂隙发育。
该层分布广泛,厚度变化较大,总体较厚,主要位于边坡的中心位置。
强风化泥质粉砂岩:黑色,局部紫红色,风化强烈,岩芯呈半岩半土状,土夹碎块状,局部见有煤屑,局部含中风化岩块,岩芯遇水软化。
边坡工程施工难点

边坡工程施工难点及应对策略随着我国基础设施建设的快速发展,边坡工程在公路、铁路、水利、城市建设等领域中占据着重要地位。
边坡工程的安全稳定对于整个项目的顺利进行及人民群众的生命财产安全具有重要意义。
然而,边坡工程施工过程中存在诸多难点,亟待我们深入研究和探讨。
本文主要分析了边坡工程施工的难点及应对策略。
一、边坡工程施工难点1.地质条件复杂边坡工程所处的地质条件往往复杂多样,各地质层之间的物理性质、力学性质差异较大,给施工带来了极大的挑战。
此外,地质勘探的局限性导致施工过程中可能会遇到未预见的地质问题,如地下溶洞、断层、软弱夹层等,严重影响工程进度和质量。
2.施工环境恶劣边坡工程施工往往位于高山、峡谷、河流等地形地貌复杂区域,施工环境恶劣。
一方面,交通不便、物资供应困难,给施工带来诸多不便;另一方面,施工场地狭小,不利于大型机械设备的作业,且容易引发安全事故。
3.工程量大,施工周期长边坡工程通常涉及大量的土石方开挖、支护、排水等施工内容,工程量大。
同时,受天气、地质等因素影响,施工周期往往较长,给工程造价和进度带来压力。
4.施工技术要求高边坡工程施工涉及多种专业技术,如岩土工程、建筑工程、水利工程等。
施工过程中需采用一系列先进的技术和工艺,如锚杆锚索施工、喷锚支护、排水工程等。
对施工人员的技术水平要求较高,施工现场管理及协调难度大。
5.安全风险较大边坡工程施工过程中,由于地质条件复杂、施工环境恶劣等原因,容易发生坍塌、滑坡、泥石流等安全事故,对施工人员和设备造成严重威胁。
二、边坡工程施工应对策略1.加强地质勘探和研究在施工前,应充分开展地质勘探工作,详细了解地质条件,为施工提供可靠依据。
对勘探过程中发现的问题,及时采取相应的措施予以解决。
此外,加强对地质情况的监测,及时发现潜在的安全隐患,确保施工安全。
2.优化施工方案针对不同的地质条件、施工环境等因素,制定合理的施工方案。
在施工过程中,根据实际情况调整施工策略,确保施工进度和质量。
8 边坡工程地质问题

Ⅰ、名词解释(5道)1、岩质边坡得变形:就是指边坡岩体只发生局部位移或破裂,没有发生显著得滑移或滚动,不致引起边坡整体失稳得现象。
P1702、松动:边坡边坡形成初始阶段,坡体表部往往出现一系列与坡向近于平行得陡倾角张开裂隙,被这种裂隙切割得岩体便向临空方向松开、移动、P1703.边坡卸荷带:发育有松动裂隙得坡体部位、P1704。
剥落:边坡岩体在长期风化作用下,表层岩体破坏成岩屑与小块岩石,并不断向坡下滚落,最后堆积在坡脚,而边坡岩体基本上就是稳定得。
P1715。
蠕动:边坡岩体在重力作用下长期缓慢得变形。
P1716、表层破坏:岩质边坡得表层破坏主要就是地表应力释放、物理风化等原因引起得,其破坏深度一般为几cm~几m,主要表现为松动与剥落。
P1717。
深层蠕动:主要发育在边坡下部或坡体内部,按其形成机制特点,深层蠕动有软弱基座蠕动与坡体蠕动两类。
P1718.松驰张裂:指边坡岩体由卸荷回弹而出现得张开裂隙得现象。
9。
倾倒:也称崩塌落石。
P17310。
顺层边坡:发育在单斜岩层地区得天然斜坡或人工边坡,坡面与层面一致,被称为顺层边坡、P174Ⅱ、单项选择题(在下列各题中选最佳答案,将其代码填在括号中)(18道)1.松动裂隙,张开程度及分布密度由坡面向深处()。
P170A。
减小B.增大C。
不变D、先增大后减小2、当( )时风化剥落可能引起崩塌。
P171A。
在软硬互层边坡上B、岩层倾向与坡向相同C、岩层倾向与坡向相反D。
岩层倾角与坡脚相差很大3。
下列边坡最易发生蠕动变形得就是()。
P171A。
页岩B.砂岩C。
灰岩D、花岗岩4、下列能产生剪切裂隙得就是( )。
A.松弛张裂B.卸荷裂隙C。
滑坡后壁D。
边坡坡脚5.边坡格构加固起到了( )作用。
P185A.提高抗滑力B.减小下滑力C.传力结构D、美观6、土质边坡发生表层滑塌得主要因素就是( )。
P169A。
日照 B.地下水C、人类耕作D、地震7、当边坡(),且层间接触面得倾向与边坡方向一致,有时由于水得下渗使接触面润滑,造成上部土质边坡沿接触面滑走得破坏。
《边坡工程地质问题》课件

根据稳定性分析结果,采取了适当的失稳治理措施,如填充、支撑、加固等,有效地提高了边坡的稳定性。
感谢观看
THANKS
土壤改良
通过添加有机肥料、土壤改良剂等手段,改善土壤的结构和肥力,提高土壤的保水能力和透气性,促进植物的生长和生态恢复。
生态护坡
利用天然石料、木材护底,种植护岸植物等手段,构建生态护坡,提高边坡的抗冲刷能力和稳定性,促进生态环境的恢复和保护。
05
边坡工程地质问题的案例分析
总结词
高速公路边坡滑坡
详细描述
风险识别
利用概率统计、模糊数学等方法,对识别的风险进行量化和评估,确定风险的等级和影响范围。
风险评估
根据风险评估结果,制定相应的风险控制和防范措施,如加固、排水、防护等,降低风险对工程安全的影响。
风险控制与防范
01
02
03
04
边坡工程地质问题的治理措施
加固原理
通过增加边坡岩土体的强度和稳定性,提高边坡的抗滑能力和承载能力,从而防止滑坡、崩塌等地质灾害的发生。
水电站库区边坡变形
总结词
边坡变形监测
总结词
边坡治理措施
01
02
03
04
05
06
总结词
详细描述
总结词
详细描述
总结词
详细描述
矿山采空区边坡失稳
某矿山采空区在开采过程中,边坡出现了失稳现象,造成了人员伤亡和财产损失。
边坡稳定性分析
针对该矿山采空区边坡失稳问题,进行了边坡稳定性分析,确定了失稳的原因和影响因素,为后续治理提供了依据。
排水系统设计
根据边坡的实际情况和地质条件,设计合理的排水系统,确保地表水和地下水能够及时排出。
工程地质学-第十一章 边坡的工程地质研究

不发生显著变化,只是岩块之间出现相
对位移或拉裂,从而使岩体出现松动、 架空现象。
图10-7 蠕动变形示意图 (a)脆性岩石的变形
第二节 边坡的变形与分类
㈡ 边坡岩体变形破坏形式
2、蠕动 ⑵ 由塑性岩石构成的岩体
在一定荷载的长期作用下,发生 缓慢的连续弯曲变形,如层状岩石的 非构造弯曲(点头哈腰)。
但是高大树木不离边坡稳定:风力作用下树根上拔边坡土体; 树根生长和腐烂增大地下孔隙,地表水易沿孔隙入渗。
二、影响边坡稳定的因素
第二节 边坡的变形与分类
5、滑坡
⑶ 滑面形成机理
C 滑面受软弱垫层控制
软弱垫层是指在坚硬岩石下部的 力学强度较低的软弱岩石。这样,在 上部坚硬岩石大的自重应力作用下, 可沿此软弱垫层滑动。实际调查发现, 此类滑动可以是突发性的,也可是渐 进性的。
需要指出的是,无论哪种滑面, 不是一次形成的,而是先局部,后逐 渐发展成为贯通性滑动面。
B 按滑坡深度分类:表层滑坡(小于2~3m)、浅层滑坡(小于 3~
10m)、深层滑坡(大于10m)。 C 按滑坡体积大小分类:小型滑坡(小于3万立方)、中型滑坡
(3 ~50万立方)、大型滑坡(50 ~300 万立方)、巨型滑坡(大于300万立方)。 D 按滑动的力学性质分类:推动式滑坡(滑坡体后部先滑动而推 动前部)、牵引式滑坡(滑坡体前部先滑动,引起由下而上依次 下滑)。
该裂隙特征是上宽下 窄,发育深度一般不低于 谷底基岩面标高。边坡愈 高愈陡裂隙愈发育,松弛 张裂带愈宽、愈深。
图10-6 峡谷地区卸荷裂隙发育示意图
第二节 边坡的变形与分类
1、松弛张裂 在河谷底部形成的卸荷裂隙,是由于河床上部卸荷引起。该裂
隙特征是平行于谷底,且越靠近谷底张开越宽,越向深部张开越小。 松弛张裂有时导致倾倒、蠕动等其它变形。
边坡失稳常见原因

边坡失稳常见原因边坡失稳是指边坡由于各种因素引起的土体松动、位移和崩塌等不稳定现象。
常见的边坡失稳原因主要包括地质因素、水文因素、工程因素、地震因素、气候因素等。
一、地质因素:1.构造运动:地壳构造运动会导致地层的抬升、沉降和断裂等,从而引起边坡的形成和失稳。
2.地质构造:岩性和层理的变化、断裂、褶皱和脆性岩层等地质构造特征会影响边坡的稳定性。
3.地质形态:地形起伏、地势陡峭、河流冲刷等地质形态因素会对边坡稳定性产生重要影响。
二、水文因素:1.降雨:降雨是导致边坡失稳的主要水文因素,降雨会引起土体含水量增加,从而降低土体的黏粒结构,导致边坡松动、滑移或崩塌。
2.地下水位:地下水位的升降也会对边坡稳定性产生重要影响。
地下水位上升会增加边坡土体中的孔隙水压力,减小土体的有效应力,导致边坡的失稳。
三、工程因素:1.开挖施工:边坡开挖会改变边坡原有的稳定平衡状态,导致边坡土体受力状态发生变化,从而引发边坡的失稳。
2.填土施工:填土施工过程中产生的压实应力、排水系统变化和土体性质变化等因素会导致边坡的失稳。
3.渗流应力:边坡中的渗流会产生额外的水压力,增加边坡土体的孔隙水压力,减小土体的有效应力,从而引起边坡的失稳。
四、地震因素:地震引起的地面振动会使边坡土体发生强烈震动,进而引起土体的液化、流动和崩塌等失稳现象。
五、气候因素:1.冻融作用:在寒冷地区,土体中的水在冻结和解冻过程中会发生体积膨胀和收缩,导致边坡的破坏和松动。
2.风蚀:风吹沙土会使边坡土体失去颗粒间的内聚力,造成边坡的不稳定性。
3.腐蚀侵蚀:水流、酸性雨水等对边坡的腐蚀作用会引起边坡土壤的流失,从而使边坡变得不稳定。
总之,边坡失稳的原因是多种多样的。
地质、水文、工程、地震和气候因素等都可能对边坡稳定性产生重要影响,工程设计应充分考虑这些因素,采取相应的措施来提高边坡的稳定性,确保工程的安全运行。
边坡工程施工重难点

边坡工程施工重难点随着我国基础设施建设的不断发展,各类边坡工程在公路、铁路、水利、城市建设等领域中占据着重要地位。
边坡工程的安全稳定对于整个工程的安全运行具有重要意义。
然而,边坡工程施工过程中存在诸多重难点问题,亟待我们研究和解决。
本文将从边坡工程施工的特点和难点出发,分析边坡工程施工中应注意的问题,以期为边坡工程施工提供有益的参考。
一、边坡工程施工特点1. 施工环境复杂:边坡工程施工环境多变,地质条件差异较大,施工过程中可能面临岩层稳定性、地下水、气象等多种因素的影响。
2. 施工风险高:边坡工程事故频发,施工过程中可能出现滑坡、坍塌、泥石流等风险,对施工人员和设备安全构成威胁。
3. 施工技术要求高:边坡工程施工涉及地质勘查、岩土工程、力学、材料科学等多个领域,对施工技术要求较高。
4. 施工周期长:边坡工程施工周期较长,受天气、地质等因素影响,施工进度不易控制。
二、边坡工程施工难点1. 地质条件复杂:边坡工程施工过程中,地质条件的复杂性给施工带来了很大困难。
不同地质条件的边坡工程,其稳定性和治理措施均有很大差异。
2. 地下水影响:地下水是边坡工程施工中的一个重要因素。
地下水活动可能导致边坡稳定性降低,给施工带来安全隐患。
3. 岩层稳定性分析:岩层稳定性分析是边坡工程的核心内容。
由于地质条件的复杂性,岩层稳定性分析存在一定难度。
4. 施工工艺选择:边坡工程施工工艺多种多样,如何根据地质条件、工程规模、施工环境等因素选择合适的施工工艺是施工过程中的一个难点。
5. 施工安全控制:边坡工程施工安全控制至关重要。
在施工过程中,如何有效预防安全事故,保障施工人员生命安全和设备完好,是施工难点之一。
三、边坡工程施工应注意的问题1. 加强地质勘查:在进行边坡工程施工前,应充分了解地质条件,为施工提供可靠依据。
2. 做好地下水防治:针对地下水对边坡工程的影响,应采取有效措施进行防治,确保施工安全。
3. 选择合适的施工工艺:根据地质条件、工程规模等因素,合理选择施工工艺,提高施工效率和质量。
边坡工程问题及解决方案

边坡工程问题及解决方案引言:边坡工程是工程建设中常见的一个重要环节,它是指在地质条件复杂、地形陡峭的地区进行工程施工时,为保证工程的稳定和安全性所进行的一种工程施工。
在边坡工程中,存在着许多问题,比如地质条件不稳定、地表水渗透、施工工艺不合理等。
这些问题都将对边坡工程的稳定和安全性造成影响,因此需要我们合理的解决方案来应对这些问题。
问题1:地质条件不稳定地质条件不稳定是边坡工程中常见的一个问题。
在一些地质条件复杂地区,岩层断裂、地层滑动、地震等因素都会导致地质条件的不稳定,从而对边坡工程的稳定性构成威胁。
解决方案:为了应对地质条件不稳定的问题,我们可以采取以下措施:1. 详细的地质勘察:在进行边坡工程前,我们应该进行详细的地质勘察工作,了解边坡工程所处地区的地质情况,从而有针对性的制定相应的施工方案。
2. 采取加固措施:对于地质条件不稳定的地区,我们可以采取加固措施来加强边坡的稳定性,比如加固岩层、注浆加固等。
3. 定期监测:在边坡工程施工后,我们需要对边坡进行定期的监测,及时发现地质条件不稳定的问题,并采取相应的措施来解决。
问题2:地表水渗透地表水渗透是边坡工程中常见的问题,地表水的渗透会导致边坡松动,从而影响边坡的稳定性。
解决方案:为了应对地表水渗透的问题,我们可以采取以下措施:1. 做好排水工作:在边坡工程中,我们应该做好排水工作,及时排除地表水,从而减少地表水对边坡的影响。
2. 采取防渗措施:我们可以在地表水的渗透部位做好防渗工作,比如设置防渗墙、进行防渗处理等。
3. 合理设计施工工艺:在边坡工程的施工过程中,我们应该合理的设计施工工艺,减少地表水对边坡的影响。
问题3:施工工艺不合理在一些边坡工程中,由于施工工艺不合理,会导致边坡工程的稳定性出现问题。
解决方案:为了应对施工工艺不合理的问题,我们可以采取以下措施:1. 严格执行施工规范:在进行边坡工程施工时,我们应该严格执行相关的施工规范,确保施工工艺合理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 边坡工程地质问题本章要点:岩(土)质边坡工程地质问题、岩体稳定的结构分析—赤平极射投影图法学习目标:会分析岩(土)质边坡破坏类型;了解边坡稳定性分析方法边坡是自然或人工形成的斜坡,是人类工程活动中最基本的地质环境之一,也是工程建设中最常见的工程形式。
斜坡的形成,使岩土体内部原有应力状态发生变化,出现坡体应力重新分布,主应力方向改变,应力又产生集中;而且,其应力状态在各种自然营力及工程影响下,随着斜坡演变而又不断变化,使斜坡岩土体发生不同形式的变形与破坏。
不稳定的天然胁迫和人工边坡,在岩土体重力、水及震动力以及其它因素作用下,常常发生危害性的变形与破坏,导致交通中断、江河堵塞,塘库淤填,甚至酿成巨大灾害。
根据组成边坡的主体材料不同,边坡可分为土质边坡和岩质边坡两种,而这两者主体材料的结构、性质差别很大,其存在的工程地质问题也不相同,需要分开进行研究。
边坡的稳定是一个比较复杂的问题,影响边坡稳定性的因素较多,简单归纳起来有边坡体自身材料的物理力学性质、边坡的形状和尺寸、边坡的工作条件及边坡的加固措施等几个方面。
6.1 岩质边坡工程地质问题6.1.1岩体结构及稳定性分析方法一、岩体结构存在于岩体中的各种地质界面,如岩层层面,裂隙面、断层面、不整合面等,统称为结构面。
岩体受结构面切割而产生的单个块体(岩块)称为结构体。
所谓岩体结构,就是指岩体中结构面和结构体两个要素的组合特征,它既表达岩体中结构面的发育程度组合,又反映了结构体的大小、几何形式及排列。
大量的工程实践表明,无论是边坡岩体的破坏,地基岩体的滑移,还是隧洞岩体的塌落等,大多是沿着岩体中软弱结构面发生的。
也就是说.岩体受工程作用力的破坏过程,主要是结构体沿结构面的剪切滑移、拉开以及整体的累积变形和破裂。
因此,从岩体结构的观点分析岩体稳定问题,首先应研究结构面和结构体的类型及其特征。
1、结构面及类型按其成因可分为沉积结构面、火成结构面、变质结构面、构造结构面和次生结构面五类。
其主要特征见表6-1。
2、结构体及类型不同形式的结构体的组合方式决定着岩体结构类型。
常见的岩体结构类型可划分为块体结构、镶嵌结构、碎裂结构、层状结构、层状碎裂结构和等六类。
其主要特征见表6-2。
二、岩体稳定性分析方法在公路工程实践中,遇到的各种各样工程地质问题,归纳起来,主要就是路堑边坡稳定问题以及路、桥地基稳定问题和隧道围岩稳定问题。
这三方面的问题,实质上就是一个岩体的稳定问题。
所谓岩体稳定,它是一个相对的概念,是指在一定的时间内、一定的自然条件和人为因素的影响下,岩体不产生破坏性的剪切滑动、塑性变形或张裂破坏。
岩体稳定分析,目前一般多通过岩体结构分析、力学分析及对比分析进行,三者互相结合,互相补充,互相验证,作出综合评价。
(一)对比分析—工程地质类比法该法是将已有的天然边坡或人工边坡的研究经验(包括稳定的或破坏的),用于新研究边坡的稳定性分析,如坡角或计算参数的取值、边坡的处理措施等。
类比法具有经验性和地区性的特点,应用时必须全面分析已有边坡与新研究边坡两者之间的地貌、地层岩性、结构、水文地质、自然环境、变形主导因素及发育阶段等方面的相似性和差异性,同时还应考虑工程的规模、类型及其对边坡的特殊要求等。
根据经验,存在下列条件时对边坡的稳定性不利:(1)边坡及其邻近地段已有滑坡、崩塌、陷穴等不良地质现象存在。
(2)岩质边坡中有页岩、泥岩、片岩等易风化、软化岩层或软硬交互的不利岩层组合。
(3)软弱结构面与坡面倾向一致或交角小于45°,且结构面倾角小于坡角,或基岩面倾向坡外且倾角较大。
(4)地层渗透性差异大,地下水在弱透水层或基岩面上积聚流动;断层及裂隙中有承压水出露。
(5)坡上有水体漏水,水流冲刷坡脚或因河水位急剧升降引起岸坡内动力水的强烈作用。
(6)边坡处于强震区或邻近地段,采用大爆破施工。
采用工程地质类比法选取的经验值(如坡角、计算参数等)仅能用于地质条件简单的中、小型边坡。
(二)岩体稳定的结构分析—赤平极射投影图法岩体的破坏,往往是一部分不稳定的结构体沿着某些结构面拉开,并沿着另一些结构面向着一定的临空面滑移的结果。
这就揭示了岩体稳定性破坏所必需具备的边界条件(切割面、滑动面和临空面)。
所以,通过对岩体结构要素结构面和结构体分析,明确岩体滑移的边界条件是否具备,就可以对岩体的稳定性作出判断。
这就是岩体稳定的结构分析的基本内容和实质。
而赤平极射投影图法就是岩体稳定的结构分析的方法。
1.作图方法:以最基本的面结构面的产状为例作如下简单介绍。
如已测得两结构面产状如表6-3表6-3 结构面产状表(1)为了简化作图手续,先准备一个等角度赤平极射投影图(吴尔福网)(如图6-1)。
其制作方法可参考有关文献。
图6-1吴尔福网图6-2(2)将透明纸放在投影网上,按相同半径画一圆,并注上南北、东西方向。
(3)利用投影网在圆角的方位度数上,经过圆心绘N30°E 及N20°W的方向线,分别注为AC及BD。
(4)转动透明纸,分别使AC、BD与投影网的上下垂之线(南北线)相合,在投影网的水平线(东西线)上找出倾角为40°及60°的点(倾向为NE、SE时在网的左边找,倾向为NW、SW时在网的右边找),分别注上K及F。
通过K、F点分别描绘40°、60°的经度线,即得结构面J1、 J2的赤平极射投影弧AKC和BFD。
再分别延长OK、OF至圆周交于G、H点,就完成所求结构面J1、 J2的投影图。
图中AC、BD分别为J1、 J2的走向;GK、HF表示J1、 J2的倾角;KO、FO线的方向为J1、 J2的倾向。
(5)找AKC和BFD的交点,注上M,连OM并延长至圆周交于P。
MO线的方向即为J1、 J2交线的倾向,PM表示J1、 J2交线的倾角(如图6-2)。
2.其分析步骤大致如下:(1)对岩体结构面的类型、产状及其特征进行调查、统计、研究。
(2)对各种结构面及其空间组合关系以及结构体的立体形式进行图解分析。
调查统计结构面时,应和工程建筑物的具体方位联系起来,按一般野外地质方法进行。
对多组结构面切割的岩体,要注意分清主次和结构面相互间的组合关系,再逐一测量,这样才能较充分的表达出结构体的特征。
岩体结构的图解分析,在实践中多采用赤平极射投影并结合实体比例投影来进行,通过岩体稳定分析示例来说明岩体稳定性的评价要点。
利用赤平极射投影图可以初步判断边坡的稳定性:(1)当结构面或结构面交线的倾向与坡面倾向相反时,边坡为稳定结构;(2)当结构面或结构面交线的倾向与坡面倾向基本一致但其倾角大于坡角时,边坡为基本稳定结构;(3)当结构面或结构面交线的倾向与坡面倾向之间夹角小于45°且倾角小于坡角时,边坡为不稳定结构。
6.1.2岩质边坡破坏类型及影响因素1.岩质边坡破坏类型(见表6-4)表6-4 岩质边坡破坏类型2.影响边坡稳定的因素影响边坡稳定的因素有:岩石性质、岩体结构、水的作用、风化作用、地震力、地形地貌及人为因素等。
(1)岩石性质岩石的成因类型、矿物成分、结构和强度等是决定边坡稳定性的重要因素。
由坚硬(密实)、矿物稳定、抗风化能力好、强度较高的岩石构成的边坡,其稳定性一般较好;反之稳定性就较差。
(2)岩体结构岩体的结构类型、结构面性状及其与坡面的关系是岩质边坡稳定的控制因素。
(3)水的作用水的渗入使岩体质量增大,岩土体因被水软化而抗剪强度降低,并使孔(裂)隙水压力升高;地下水的渗流将对岩体产生动水压力,水位的升高将产生浮托力;地表水对岸坡的侵蚀使其失去侧向或底部支撑等,这些都对边坡的稳定不利。
(4)风化作用风化作用使岩体的裂隙增多、扩大、透水性增强,抗剪强度降低。
(5)地形地貌临空面的存在及边坡的高度、坡度等都是直接与边坡稳定有关的因素。
平面上呈凹形的边坡较呈凸形的稳定。
(6)地震地震使边坡岩体的剪应力增大、抗剪强度降低。
(7)地应力开挖边坡使边坡岩体的初始应力状态改变,坡角出现剪应力集中带,坡顶与坡面的一些部位可能出现张应力区。
在新构造运动强烈地区,开挖边坡能使岩体中的残余构造应力释放,可直接引起边坡的变形破坏。
(g)人为因素边坡不合理的设计、开挖和加载、大量施工用水的渗人及爆破等都能造成边坡失稳。
6.1.3岩质边坡的稳定性分析岩质边坡的稳定性分析方法有定性分析和定量分析两大类.其中定性分析法包括工程地质类比法、赤乎极射投影法,实体比例投影法和摩擦圆法等,定量分析法有极限平衡法、有限元法和概率法三种,它是根据某一区段边坡横断面的岩土性质,确定其可能破坏的模式,并考虑所受的各种荷载(重力、水作用力、地震、爆破等)对边坡的作用,选择适当的参数进行稳定性计算,确定边坡的稳定性。
以下主要介绍石质边坡稳定性分析的常用方法:工程地质类比法,其它方法参考其它书籍相关内容。
工程地质类比法是在大量收集边坡及其所在地区地质资料的基础上,综合考虑影响边坡稳定性的各种因素,对边坡的稳定状况和发展趋势作出评估和预测的边坡稳定性分析方法。
是定性分析岩质边坡稳定性的方法之一。
这种方法是将已有的天然边坡或人工边坡的应用经验(包括稳定的或破坏的),用于新开挖边坡的稳定性分析,如坡角或计算参数的取值、边坡的处理措施等,具有经验性和地区性的特点。
因此,应用这种方法对边坡稳定性作评估和预测时,必须全面分析已有边坡与新开挖边坡两者之间的地貌、地层岩性、结构、水文地质、自然环境、变形主导因素及发育阶段等方面的相似性和差异性,同时还应考虑工程的规模、类型及其对边坡的特殊要求等,经综合对比分析,才能确定新开挖边坡的边坡结构及处治措施或对边坡的稳定性做出评估等。
根据经验,存在下列条件时对边坡稳定性不利:(1)边坡及其邻近地段已有滑坡、崩塌、陷穴等不良地质现象存在。
(2)岩质边坡中有页岩、泥岩,片石等易风化、软化岩层或软硬交互的不利岩层组合。
(3)软弱结构面与坡面倾向一致或交角小于45°,且结构面倾角小于坡角,或基岩面倾向坡外且倾角较大。
(4)地层渗透性差异大,地下水在弱透水层或基岩面上积聚流动;断层及裂隙中有承压水出露。
(5)坡上有渗水,水流冲刷坡脚或因河水位急剧升降引起岸坡内动水力的强烈作用。
(6)边坡处于强震区或邻近地段采用大爆破施工。
应用工程地质类比法确定岩质边坡设计参数时,除考虑边坡上述不利的地质水文条件外,应对边坡岩体的完整程度、结构面组合情况和结构面产状等工程地质条件进行综合分析评估,然后再确定安全可靠经济合理的边坡比和边坡结构形式。
用工程地质类比法选取的边坡设计参数经验值(如坡角、计算参数等)仅能用于地质条件简单的中、小型边坡。
表6-5~6-7可供岩质边坡设计参数选取论证参考。
表6-5 岩质边坡设计参数表②Ⅳ类强风化包括各类风化程度的极软岩;③岩体分类见表6-6。