2019_2020学年九年级数学下册第二十九章投影与视图29.1投影第2课时正投影作业设计新版新人教版

合集下载

九年级数学下册 第二十九章 投影与视图 29.1 投影教学课件下册数学课件

九年级数学下册 第二十九章 投影与视图 29.1 投影教学课件下册数学课件

课堂小结
正投影的 概念及性质
正投影
平面图形的 正投影
几何体的正 投影
12/11/2021
(3) 在(2)的情况下,如果测得甲、乙木杆的影子长分别 为1.24 m和1 m,那么你能求出甲木杆的高度吗?
D E
A
D'
(甲)
B
(乙)
E'
解:因为△ADD'∽△BEE',所以 ADAD'即AD1.24.
BE BE' 1.5 1
所以1甲2/11木/202杆1 的高度为1.86 m.
皮影
皮影戏是利用灯光的照射,把影子的影态反映在 银幕(投影面)上的表演艺术.
12/11/2021
中心投影
由同一点(点光源)发出的光线形成的投影叫做中心投影. 例如:物体在灯泡发出的光照射下形成影子就是中心投影.
12/11/2021
练一练 请你分别指出下面的例子属于什么投影?
(1)平行投影
(2)中心投影
(3)平行投影
12/11/2021
(4)中心投影
例2:确定下图灯泡所在的位置. O
A
B
A
BA
p A1
12/11/2021
B1 A2
B B2 A3(B3)
结论
BA
A
BA
B
α A1
B1 A2
通过观察,我们可以发现:
B2 A3(B3)
(1)当线段AB平行于投影面α时,它的正投影是线段A1B1,
线段与它的投影的大小关系为AB__=___A1B1;
(2)当线段AB倾斜于投影面α时,它的正投影是线段A2B2, 线段与它的投影的大小关系为AB___&g影面

九年级数学人教版第二学期第29章视图与投影整章知识详解

九年级数学人教版第二学期第29章视图与投影整章知识详解

长对正:主视图和俯视图共同反映了物体左右方向的尺寸.
九年级数学第29章投影与视图
画出如图所示一些基本几何体的三视图.
九年级数学第29章投影与视图
宽相等
主视图
左视图
俯视图 宽相等:俯视图和左视图共同反映了物体前后方向的尺寸.
九年级数学第29章投影与视图


球体 主
九年级数学第29章投影与视图
九年级数学第29章投影与视图
九年级数学第29章投影与视图
29.1 投影
第2课时
九年级数学第29章投影与视图
1、能根据正投影的性质画出简单的平面图形的正投影; 2、培养动手实践能力,发展空间想象能力.
九年级数学第29章投影与视图
1.什么叫投影? 一般地,用 光线 照射物体,在 某个平面 上得到 的影子叫做物体的投影. 2.投影的分类: 由 平行光线 形成的投影是平行投影(例如太阳光,探 照灯光); 由 点光源发出的光线 形成的投影是中心投影 (例如灯 泡).
九年级数学第29章投影与视图
(2)下图是两棵小树在同一时刻的影子.请你在图中画出 形成树影的光线.它们是太阳的光线下形成的还是灯光下 形成的?画出同一时刻旗杆的影子,并与同伴交流这样做的 理由.
A
B
线段AB即为旗杆的影子
九年级数学第29章投影与视图
【例2】确定图中路灯灯泡所在的位置.
O
怎样确定一个点?
盆花的影子,树影是路灯灯光形成的.你P能确
定此时路灯光源的位置吗?
九年级数学第29章投影与视图
1.一个人离开灯光的过程中人的影长( C )
A、不变 B、变短 C、变长 D、不确定
2.同一灯光下两个物体的影子可以是( D )

九年级数学下册第二十九章投影与视图29.1投影29.1.1投影课件新版新人教版

九年级数学下册第二十九章投影与视图29.1投影29.1.1投影课件新版新人教版
2019/5/25源自最新中小学教学课件15
图K-23-5
第1课时 投影
解:(1)∵太阳光线是平行光线,∴只需连接 AC,过点 D 作 DF∥AC,交直线 BC 于 点 F,线段 EF 即为 DE 在太阳光下的投影(如图所示). (2)∵AC∥DF,∴∠ACB=∠DFE. 又∵∠ABC=∠DEF=90°,
AB BC ∴△ABC∽△DEF,∴DE=EF,
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
[解析] D 中心投影的光源为点光源,平行投影的光源为阳光、探照灯 光等平行光,在各选项中只有D选项中的投影为中心投影.故选D.
第1课时 投影
3.如图K-23-1是在北半球一天中四个不同时刻两座建筑物 的影子,将它们按时间先后顺序排列正确的是( C )
图K-23-1 A.(3)(1)(4)(2) B.(3)(2)(1)(4) C.(3)(4)(1)(2) D.(2)(4)(1)(3)
图K-23-2
第1课时 投影
5.如图K-23-3,三角尺与其在灯光照射下的中心投影构成 位似图形,相似比为2∶5,且三角尺的一边长为8 cm,则投影 三角形中该边的对应边长为___2_0_c_m__.
图K-23-3
第1课时 投影
三、解答题
6.如图K-23-4所示,小华、小军、小丽同时站在路灯下, 其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示); (2)画出小华此时在路灯下的影子(用线段EF表示).

【最新】人教版九年级数学下册第二十九章《 投影(2)》公开课课件.ppt

【最新】人教版九年级数学下册第二十九章《 投影(2)》公开课课件.ppt

合作探究 达成目标
如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面. 三种情形下纸板的正投影各是什么现状?
D
D
C
D
C AC
A

B

AB
B
D´ C´ D´(C´)
Q A´ B´
A´ B´ A´( B´)
(2)当正方体在如图的位置时,它的面ABCD和面ABGF倾斜于投
影面,它们的投影分别是矩形A´B´C´D´和A´B´G´F´;正方体其 余两个侧面的投影也分别是上述矩形;上、下地面的投影分别 是线段D´F´和C´G´.因此,正方体的投影是矩形F´G´C´D´,其 中线段A´B´把矩形一分为二.
解: (1)如图,正方体的正投影为正方形A´B´C´D´,它与正方体的
如图,把一根直的细铁丝(记为线段AB)放在三个不同位置; (1)铁丝平行于投影面; (2)铁丝倾斜于投影面; (3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点). 三种情形下铁丝的正投影各是什么现状?
A B
A
BA
A1
p
B1 A2
B B2
B3
合作探究 达成目标
A
BA
A B
A1
p 通过观察,我们可以发现:
• 10、人的志向通常和他们的能力成正比例。2020/12/162020/12/162020/12/1612/16/2020 9:27:20 AM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/162020/12/162020/12/16Dec-2016-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/162020/12/162020/12/16Wednesday, December 16, 2020 • 13、志不立,天下无可成之事。2020/12/162020/12/162020/12/162020/12/1612/16/2020

第29章 投影与视图全章教案

第29章  投影与视图全章教案

第二十九章投影与视图29.1投影(1)学习目标1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。

3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

学习重点理解平行投影和中心投影的特征;学习难点在投影面上画出平面图形的平行投影或中心投影。

教学互动设计备注(一)创设情境你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。

皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。

(二)你知道吗北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。

一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。

2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?(四)应用新知:(1)地面上直立一根标杆AB如图,杆长为2cm。

九年级数学下册 第二十九章 投影与视图 29.1 投影 第2课时 正投影

九年级数学下册 第二十九章 投影与视图 29.1 投影 第2课时 正投影

*6.一个(yī ɡè)正方体的对角线垂直于投影面,正方体正投影是一个(yī ɡè)面积为252 的矩形,
则该正方体的体积是__ 1_2_5,表面积是__ __.150
2021/12/11
第七页,共十二页。
7.一个长8 cm的木棒AB,已知AB平行于投影面α,投影(tóuyǐng)线垂直于α.
(1)求影长A1B1的长度(如图1);
2021/12/11
第八页,共十二页。
8.过圆锥底面圆的圆心与圆锥顶点(dǐngdiǎn)截这个圆锥,得行于投影面,此时圆锥的正投影是边长为3的等边三角形,求这个圆锥的表面积.
2021/12/11
第九页,共十二页。
9.如图,望远镜调节好后,摆放在水平地面(dìmiàn)上.观测者用望远镜观测物体时,眼睛(在A点) 到水平地面的距离AD=91 cm,沿AB方向观测物体的仰角α=33°,望远镜前端(B点)与眼睛(A点)之间的距 离AB=153 cm. (1)求点B到水平地面的距离BC的长;(精确到0.1 cm)
第一页,共十二页。
知识点一:平面图形的正投影
例1 如图,已知线段AB=2 cm,投影面为P,太阳(tàiyáng)光线与地面垂直.
(1)当AB垂直于投影面P时(如图1),请说明线段AB的投影; (2)当AB平行于投影面P时(如图2),请说明(shuōmíng)它的投影,并求出正投影的长;
(3)在(2)的基础(jīchǔ)上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转45°,请说明线 段AB的正投影,并求出其正投影的长.
即正投影与这个平面图形全等;(2)当平面图形倾斜于投影面Q时,平面图形的正投影与这个平
面图形的形状、大小发生变化,即会缩小,是类似图形但不一定相似.它和原图形只是边数

教与学新教案九年级数学下册29.1正投影(第2课时)素材(新版)新人教版

教与学新教案九年级数学下册29.1正投影(第2课时)素材(新版)新人教版

投影与视图29.1 投影第2课时正投影素材一新课导入设计情景导入置疑导入归纳导入复习导入类比导入悬念激趣复习导入<1>什么叫投影?投影有哪几种?<2>图29-1-32表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影,哪个是中心投影?图<2><3>的投影线与投影面的位置关系有什么区别?图29-1-32结论:图<1>中的投影线集中于一点,属于中心投影;图<2><3>中的投影线互相平行,属于平行投影;图<2>中,投影线斜着照射到投影面上;图<3>中投影线垂直照射到投影面上,即投影线垂直于投影面.[说明与建议] 说明:通过对投影的概念和类型的回顾,加强新旧知识之间的联系.建议:充分观察三个图形,发现其中的不同点,给出正投影的概念.条件允许的学校,可以让学生自己做试验探究.素材二考情考向分析[命题角度] 常见几何体的正投影与判断1.线段的正投影.位置线段AB平行于投影面线段AB倾斜于投影面线段AB垂直于投影面投影特点正投影是线段A1B1,线段AB=A1B1正投影是线段A2B2,线段AB>A2B2正投影是一个点A3<B3>2.正方形的正投影.位置纸板ABCD平行于投影面纸板ABCD倾斜于投影面纸板ABCD垂直于投影面投影特点正投影是正方形A1B1C1D1,它们的性质、大小一样正投影是四边形A2B2C2D2,它们的性质、大小不一样正投影是线段A3D3<或B3C3>例一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是<B>素材三教材习题答案P88 练习把下列物体与它们的投影用线连接起来:解:如下图:P92 练习如图,投影线的方向如箭头所示,画出圆柱体的正投影.解:P92 习题29.11.小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是在下午拍摄的?<天安门是坐北朝南的建筑>解:第3幅照片是在下午拍摄的.2.请用线把图中各物体与它们的投影连接起来.解:3.如图,右边的正五边形是光线由上到下照射一个正五棱柱<正棱柱的上、下底面都是正多边形,并且侧棱垂直于底面>时的正投影,你能指出这时正五棱柱的各个面的正投影分别是什么吗?解:上、下底面的正投影是同一个正五边形,5个侧面的正投影分别是正五边形的5条边.4.一个圆锥的轴截面平行于投影面,圆锥的正投影是边长为3的等边三角形,求圆锥的体积和表面积.解:设该圆锥的正投影<轴截面的正投影>为正三角形ABC.过A作AD⊥BC于D,则AD=3×sin60°=错误!错误!,BD=错误!,S侧=错误!×π×3×3=错误!π.∴S表=错误!π+错误!π=错误!π,V=错误!×错误!π×错误!错误!=错误!错误!π.5.画出如图摆放的物体<正六棱柱>的正投影:<1>投影线由物体前方照射到后方;<2>投影线由物体左方照射到右方;<3>投影线由物体上方照射到下方.解:素材四图书增值练习[当堂检测]1. 如图,从左面看圆柱,则图中圆柱的投影是〔〕A.圆B.矩形C.梯形D.圆柱2. 太阳光垂直照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是〔〕A.与窗户全等的矩形 B.平行四边形C.比窗户略小的矩形 D.比窗户略大的矩形3. 〔2013达州〕下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是〔〕A.③①④②B.③②①④C.③④①②D.①②①③4. 如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.5.如图是木杆和旗杆竖立在操场上,其中木杆在阳光下的影子已画出.〔1〕用线段表示这一时刻旗杆在阳光下的影子;〔2〕比较旗杆与木杆影子的长短;〔3〕图中是否出现了相似三角形?〔4〕上面的投影是正投影吗?为什么?参考答案1.B2.A3.C4.15π45.解:〔1〕线段MN即是旗杆在阳光下的影子.〔2〕根据图形可观察出旗杆的影子长.〔3〕有相似三角形,分别由旗杆与其影子和木杆与其影子以与太阳光线构成.〔4〕不是正投影,只有投影线和投影面垂直的投影才是正投影.[能力培优]专题一太阳光下的投影1.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是〔〕A.①②③④B.④①③②C.②③①④D.④③②①2.兴趣小组的同学要测量某棵树的高度.在阳光下,一名同学测得一根长为1米的直立竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.3米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.8米,则树高为多少米?3.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C的水平距离为8.8m.在阳光下某一时刻测得1米的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m.已知斜坡CD的坡比i=3求树高AB.〔结果保留整数,参考数据:3 1.7〕专题二灯光下的投影如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.5.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.〔1〕请你在图中画出路灯灯泡所在的位置〔用点P表示〕;〔2〕画出小华此时在路灯下的影子〔用线段EF表示〕.6.如图所示,点P表示广场上的一盏照明灯.〔1〕请你在图中画出小敏在照明灯P照射下的影子〔用线段表示〕;〔2〕若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P 的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离〔结果精确到0.1米〕.〔参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574〕专题三正投影7.如图,投影面上垂直立一线段AB,线段长为2 cm.〔1〕当投影线垂直照射投影面时,线段在地面上的投影是什么图形?请在左图中画出来.〔2〕当投影线与投影面的倾斜角为60°时,线段在投影面上的投影是什么图形?并画出投影示意图.〔3〕上面〔1〕、〔2〕问题中的投影都是正投影吗?为什么?8.在正投影中,正方形倾斜于投影面放置时,它的投影是什么图形?若正方形的面积为10,它的正投影的面积是5,你知道正方形与投影面的倾斜角是多少度吗?专题四规律探究题9.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6m的小明〔AB〕的影子BC的长是3m,而小颖〔EH〕刚好在路灯灯泡的正下方H点,并测得HB=6m.〔1〕请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ;〔2〕求路灯灯泡的垂直高度GH ;〔3〕如果小明沿线段BH 向小颖〔点H 〕走去,当小明走到BH 的中点B 1处时,求其影子B 1C 1的长;当小明继续走剩下路程的13到B 2处时,求其影子B 2C 2的长;当小明继续走剩下路程的14到B 3处时,……,按此规律继续走下去,当小明走剩下路程的11 n 到B n 处时,其影子B n C n 的长为m 〔用含n 的代数式表示〕.[知识要点]1.投影:一个物体放在阳光下或灯光前,就会在地面上或墙壁上留下它的影子,这个影子称为物体的投影.投影要有照射光线和形成影子的地方,这就是投影线和投影面.2.平行投影:由平行光线形成的投影是平行投影.3.中心投影:由同一个点〔点光源〕发出的光线所形成的投影为中心投影.4.正投影的概念:在平行投影中,如果投射线垂直于投影面,那么这种投影称为正投影.几何体在一个平面上的正投影叫做这个几何体的视图.5.<1>当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段AB 与它的投影的大小关 系为AB =A 1B 1;<2>当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段AB 与它的投影的大小关系为AB >A 2B 2;<3>当线段AB 垂直于投影面P 时,它的正投影是一个点.6.<1>当纸板Q 平行于投影面P 时,Q 的正投影与Q 的形状、大小一样;<2>当纸板Q 倾斜于投影面P 时,Q 的正投影与Q 的形状、大小发生变化;<3>当纸板Q 垂直于投影面P 时,Q 的正投影成为一条线段.故当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同. [温馨提示]平行投影与中心投影的区别与联系.2.在平行投影下,一个图形上的点被投影后,对应点的连线互相平行.同一时刻,平行投影的影子方向和大小不随物体位置的变化而变化.3.中心投影的投射光线相交于一点,同一时刻,中心投影的影子方向随物体位置的变化而发生变化.4.正投影是平行投影的一种特例,正投影的特征是每条投影线都垂直于投影面.[方法技巧]1.因为一天之中,太阳东升西落,所以早晨物体的影子朝西,傍晚物体的影子朝东,但因为地处北半球,即使是夏天的正午,也由于太阳直射点的关系,物体的影子略微向北偏移,故一天之中影子方向的变化顺序为:正西→北偏西→正北→北偏东→正东;一天之中影子的长度的变化规律为:长→短→长.2.确定点光源的位置的方法:两个物体影子的顶端与物体的顶端的连线的交点为点光源的位置.区别 联系 光线 物体与投影面平行时的投影 平行投影 平行的投影线 全等 都是物体在光线的照射下,在某个平面内形成的影子〔即都是投影〕 中心投影 从一点出发的投影线放大〔位似变换〕3.分别自两个物体的顶端与其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.参考答案C [解析]太阳由东升起的过程中,物体的影子投向西侧,且由长到短,太阳偏西,物体的影子也转投向东侧,且由短到长.故选C.解:画出示意图如图所示.从图中我们看到小树在一组平行光的照射下,影子分成了三部分AC 、CD 、DG .因为小树和竖直台阶是水平的,所以四边形CDEF 是平行四边形,EF =CD ,因为同一时刻,不同物体的物高与影长之比相等,所以6.01==AC AF DG BE . 即6.018.43.0==AF BE . 解得BE =0.5,AF =8.所以小树的高AB =AF +EF +BE =8+0.3+0.5=8.8<米>.3.解:如图所示,延长BD 与AC 的延长线交于点E ,过点D 作DH ⊥AE 于点H .∵i =tan ∠DCH =CH DH =31=33, ∴∠DCH =30°. ∴DH =12CD =1.6m,CH =3DH ≈2.7 m. 由题意可知10.8DH HE =, ∴HE =0.8DH =1.28m.∴AE =AC +CH +HE ≈8.8+2.7+1.28=12.78<m>.∵8.01=AE AB ,所以168.078.128.0≈==AE AB <m>. ①③④ [解析]当木杆绕点A 按逆时针方向旋转时,如图所示,m>AC ,①成立;①成立,那么②不成立;当旋转到达地面时,有最短影长,等于AB ,③成立;由上可知,影子的长度先增大后减小,④成立.解:如图所示.〔1〕点P 就是所求的点;〔2〕EF 就是小华此时在路灯下的影子.6.解:〔1〕如图,线段AC 是小敏的影子.〔2〕过点Q 作QE ⊥MO 于E ,过点P 作PF ⊥AB 于F ,交EQ 于点D ,则PF ⊥EQ .在Rt △PDQ 中,∠PQD =55°,DQ =EQ -ED =4.5-1.5=3〔米〕.∵tan55°=错误!未找到引用源.,∴PD =3tan55°≈4.3〔米〕.∵DF =QB =1.6米,∴PF =PD +DF ≈4.3+1.6=5.9〔米〕.答:照明灯P 到地面的距离为5.9米.7.解:〔1〕点.〔2〕线段,这条线段BC 的长度为332.〔3〕〔1〕问中的投影是正投影,〔2〕问中的投影不是正投影,是平行投影.只有投影线和投影面垂直的投影才是正投影.8.是一个长方形,当正方形倾斜于投影面放置时,它与投影面平行的一边长等于原来的长度,而与投影面不平行的边长缩小.因为正方形的面积为10,它的正投影的面积是5,所以不平行的一边长的投影等于这边的一半,所以正方形与投影面的倾斜角是60度.9.解:〔1〕如图,点G 即为所求.〔2〕由题意得△∽△ABC GHC ,∴AB BC GH HC =, ∴1.6363GH =+, ∴ 4.8GH =m.〔3〕1111△∽△A B C GHC ,∴11111A B B C GH HC =, 设11B C 的长为x m,则1.64.83x x =+, 解得32x =〔m 〕,即1132B C =m . 同理22221.64.82B C B C =+, 解得221B C =〔m 〕,31n n B C n =+. 素材五 数学素养提升日晷简介日晷,本义是指太阳的影子.现代的"日晷〞指的是人类古代利用日影测得时刻的一种计时仪器,又称"日规〞.其原理就是利用太阳的投影方向来测定并划分时刻,通常由晷针和晷面组成.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久. 在一天中,被太阳照射到的物体投下的影子在不断地改变着:第一是影子的长短在改变.早晨的影子最长,随着时间的推移,影子逐渐变短,一过中午它又重新变长;第二是影子的方向在改变.在北回归线以北的地方,早晨的影子在西方,中午的影子在北方,傍晚的影子在东方.从原理上来说,根据影子的长度或方向都可以计时,但根据影子的方向来计时更方便一些.故通常都是以影子的方位计时.[1]随着时间的推移,晷针上的影子慢慢地由西向东移动.移动着的晷针影子好像是现代钟表的指针,晷面则是钟表的表面,以此来显示时刻.早晨,影子投向盘面西端的卯时附近;当太阳达正南最高位置〔上中天〕时,针影位于正北〔下〕方,指示着当地的午时正时刻.午后,太阳西移,日影东斜,依次指向未、申、酉各个时辰.。

初中九年级数学下册,第二十九章,《投影与视图》,全章课件汇总

初中九年级数学下册,第二十九章,《投影与视图》,全章课件汇总

【必须掌握】
平行投影的特点:
不同 位置
物体
物体平行于投 物体倾斜于投 物体垂直于 影面 影面 投影面 形状、大小不 变(全等)
线段
大小变化 形状、大小 均变化


形状、大小不 变(全等)
线
【趁热打铁】
画出如图摆放的正方体在投影面上的正投影。 (1)正方体的一个面ABCD平行于投影面; (2)正方体的一个面ABCD倾斜于投影面,上底面ADEF垂直于投影 面P,并且对角线AE垂直于投影面.
A’
D’
C’
B’ A D C
B
解:(1)如图所示,正方体的正投影为正方形 A’B’C’D’,它与正方体的一个面是全等关系。
【趁热打铁】
分析:(2)当正方体在如图(2) 的位置时,正方体的一个面ABCD和 面ABGF倾斜于投影面,这两个面的 正投影分别是矩形A’B’C’D’和 A’B’G’F’;正方体其余两个侧 面的投影也分别是上述矩形;上下 底面的投影分别是线段D’F’和 C’G’,因此正方体的投影是矩形 F’G’C’D’,其中线段A’B’把 矩形一分为二。
------------强化训练-------------2某住宅区的两幢楼如图所示,它们的高AB=CD=30米,两楼间的 距离AC=24米,现需了解甲楼对乙楼的采光的影响情况.当太阳 光与水平线的夹角为30°时,甲楼的影子在乙楼上有多高? ( 3 ≈1.732,结果精确到0.1米) 解:设光线射到乙楼的最低点为E点, 过E作EF⊥AB于F, BF=EF· tan30°=8 3 , EC=30-8 3 ≈16.1(米). F
(3)铁丝垂直于投影面。 正投影是一个点A3
【探究求索】
如图,把一块正方形硬纸板P(例如正方形ABCD)放在 三个不同的位置,三种情况的正投影各是什么形状? D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2课时正投影
知识点1 正投影
1. 如图,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是()
D O □ o
A B C D
2. 把一个正五棱柱按如图方式摆放,当投影线由正前方射到后方时,它的正投影是
( )
3. 当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小
知识点2 画物体的正投影
4. 画出图中物体(正三棱柱)的正投影:
⑴投影线由物体前方射到后方;
(2)投影线由物体左方射到右方;
(3)投影线由物体上方射到下方.
C D
5. 下列说法正确的有()
①线段a垂直于投影面P,则线段a在投影面P上的正投影是一个点;②长方形的对角线垂直于投影面,则长方形在投影面上的正投影是一条线段;③正方体的一侧面与投影面平行,则该正方体有4个面的正投影是线段;④圆锥的轴截面与投影面平行,则圆锥在投影面上的正投影是等腰三角形.
A.1个B . 2个C . 3个D . 4个
6. 底面与投影面垂直的圆锥的正投影是___________ .
7. 如图,在正方体上面放一个圆柱,已知正方体的一个侧面ABCD平行于投影面P,若
一一1
圆柱中心正对正方体上面的中心,圆柱高等于AB底面直径为石AB若AB= 4 cm.
3
(1) 画出立体图形的正投影;
(2) 计算投影的面积.
8. 如图,已知一纸板的形状为正方形ABCD其边长为10 cm, AD BC与投影面卩平行, ABCD与投影面不平行,正方形在投影面卩上的正投影为四边形ABCD.若/ ABB= 45°,
求四边形ABCD的面积.
参考答案
1. D [解析]从上向下观察水杯,杯口的正投影为圆,杯把为线段•故选 D.
2. B
3. 相同[解析]当物体的某个面平行于投影面时,光线垂直于这个面,故这个面的正投影与这个面的形状、大小相同.
4. 解:如图.
5. D [解析]根据题目要求画图分析,说法①②③④都正确.
6. 等腰三角形
7. 解:⑴如图.
1 64 2, 64 2
(2) -X4X4+ 4X4= —(cm ),即投影的面积为—cm.
3 3 3
8.解:易知四边形A i BiGD是矩形.如图,过点A作AHL BB于点H.
•••/ ABE= 45°,
• • •△ ABH是等腰直角三角形,
AH= ~22A B= ~22X 10= 5 '』2(cm),
•- AB= AH= 5 yJ2 cm.
■/ AD = AD= 10 cm ,
•矩形ABGD 的面积为AB • AD= 5 J2X 10 = 50 Q2(cm1 2 3).。

相关文档
最新文档