初三数学视图与投影(一)

合集下载

初三数学:投影与视图知识点归纳

初三数学:投影与视图知识点归纳

初三数学:投影与视图知识点归纳一、知识要点1、投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。

(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影是平行投影(parallel projection).(3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。

(4)正投影:投影线垂直于投影面产生的投影叫做正投影。

注:物体正投影的形状、大小与它相对于投影面的位置有关。

2、三视图(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。

一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形三视图就是主视图、俯视图、左视图的总称。

(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从加速度学习网我的学习也要加速三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

二、经验之谈:多读两遍吧!有兴趣的同学可以多画图观察。

北师大版九年级上册第五章投影与视图知识点归纳及例题

北师大版九年级上册第五章投影与视图知识点归纳及例题

北师大版九年级上册第五章投影与视图知识点归纳及例题【学习目标】1.在观察、操作、想象等活动中增强对空间物体的把握和理解能力;2.通过实例了解中心投影与平行投影;3.会画直棱柱、圆柱、圆锥和球的三种视图;4.能根据三种视图描述简单的几何体.【知识点梳理】知识点一、投影1.投影现象物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象.影子所在的平面称为投影面.2. 中心投影手电筒、路灯和台灯的光线可以看成是从一点发出的,这样的光线照射在物体上所形成的投影,称为中心投影.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.知识点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.3.平行投影1.平行投影的定义太阳光线可看成平行光线,平行光线所形成的投影称为平行投影.相应地,我们会得到两个结论:①等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.②等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2. 物高与影长的关系①在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.②在同一时刻,不同物体的物高与影长成正比例.即:.利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.知识点诠释:1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.4、正投影如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,当平行光线与投影面垂直时,这种投影称为正投影.知识点诠释:正投影是特殊的平行投影,它不可能是中心投影.知识点二、中心投影与平行投影的区别与联系1.区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.2.联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.知识点诠释:在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.知识点三、视图1.三视图(1)视图用正投影的方法绘制的物体在投影面上的图形,称为物体的视图.(2)三视图在实际生活和工程中,人们常常从正面、左面和上面三个不同方向观察一个物体,分别得到这个物体的三个视图.通常我们把从正面得到的视图叫做主视图,从左面得到的视图叫做左视图,从上面得到的视图叫做俯视图.主视图、左视图、俯视图叫做物体的三视图.2.三视图之间的关系(1)位置关系一般地,把俯视图画在主视图下面,把左视图画在主视图右面,如图(1)所示.(2)大小关系三视图之间的大小是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则.如图(2)所示.知识点诠释:三视图把物体的长、宽、高三个方面反映到各个视图上,具体地说,主视图反映物体的长和高;俯视图反映物体的长和宽,左视图反映物体的高和宽,抓住这些特征能为画物体的三视图打下坚实的基础.3.画几何体的三视图画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:(1)确定主视图的位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;(3)在主视图的正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”.几何体上被其他部分遮挡而看不见的部分的轮廓线要画成虚线.知识点诠释:画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以,首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其二,要注意正确地用虚线表示看不到的轮廓线;其三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图的位置和大小要求从整体上画出几何体的三视图.4.由三视图想象几何体的形状由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象主体图的前面、上面和左侧面,然后综合起来考虑整体图形.知识点诠释:由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:(1)根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2)根据实线和虚线想象几何体看得见和看不见的轮廓线;(3)熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助;(4)利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.【典型例题】类型一、投影的作图与计算1.如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等,试画图说明.【答案与解析】(1)如图所示.可在同一方向上画出与原长相等的影长,此时为平行投影.(2)如图所示,可在两树外侧不同方向上画出与原长相等的影子,连结影子的顶点与树的顶点.相交于点P.此时为中心投影,P点即为光源位置.【总结升华】连结物体顶点与其影长的顶点,如果得到的是平行线,即为平行投影;如果得到相交直线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本做法.但若中心投影光源在两树同侧时,图中的两棵树的影长不可能同时与原长相等,所以点光源可以选在两树之间.特别提醒:易错认为只有平行投影才能使两棵树在同一时刻的影长分别与它们的原长相等,从而漏掉上图这一情形.举一反三:【变式】与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花CD和一棵树AB.晚上,幕墙反射路灯,灯光形成那盆花的影子DF,树影BE是路灯灯光直接形成的,如图所示,你能确定此时路灯光源的位置吗?【答案】作法如下:①连结FC并延长交玻璃幕墙于O点;②过点O作直线OG垂直于玻璃幕墙面;③在OC另一侧作∠POG=∠FOG且交EA延长线于点P.P点即此时路灯光源位置,如图所示.2.(2015·盐城校级模拟)如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m的小明落在地面上的影长为BC=2.4m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.【思路点拨】(1)连结AC,过D点作DG∥AC交BC于G点,则GE为所求;(2)先证明Rt∥ABC∥∥RtDGE,然后利用相似比计算DE的长.【答案与解析】解:(1)影子EG如图所示;(2)∥DG∥AC,∥∥G=∥C,∥Rt∥ABC∥∥RtDGE,∥=,即=,解得DE=,∥旗杆的高度为m.【总结升华】本题考查了平行投影,也考查了相似三角形的判定与性质.举一反三:【变式】如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB 的高.【答案】解:(1)如图所示:(2)如图,因为DE,AB都垂直于地面,且光线DF∥AC,所以Rt△DEF∽Rt△ABC,所以DE EF AB BC=,即1.720.866AB=,所以AB=12(m).答:旗杆AB的高为12m.类型二、三视图3.如图,分别从正面、左面、上面观察该立体图形,能得到什么平面图形.【答案与解析】从正面看该几何体是三角形,从左面看该几何体是长方形,从上面看该几何体是一长方形中带一条竖线.如图:【总结升华】本题考查了几何体的三视图的判断.举一反三:【变式】如图,画出这些立体图形的三视图.【答案】(1)如图:(2)如图:(3)如图:(4)如图:4.(2015·惠州校级月考)如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出这个几何体的主视图和左视图.【思路点拨】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,2,3,左视图有3列,每列小正方形数目分别为1,3,2.据此可画出图形.【答案与解析】解:如图所示:【总结升华】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.类型三、三视图的有关计算5.某工厂要对一机器零件表面进行喷漆,设计者给出了该零件的三视图(如图所示),请你根据三视图确定其喷漆的面积.【思路点拨】首先要根据立体图形的三视图,想象出物体的实际形状,然后再计算表面积.【答案与解析】解:长方体的表面积为(30×40+40×25+25×30)×2=5900(cm2),圆柱体的侧面积为3.14×20×32=2010(cm2),其喷漆的面积为5900+2010=7910(cm2).【总结升华】由该机械零件的三视图,可想象它是一个组合体,是由一个长方体和一个圆柱体组成.其表面积是一个长方体的六个面与圆柱体的侧面构成.(圆柱体的上表面补在长方体的上表面被圆柱体遮挡的部分).该组合体是由一长方体与一圆柱体组合而成,但不能认为组合体的表面积就是两几何体的表面积之和.举一反三:【变式】某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.【答案】解:(1)根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,故可判断出该几何体为圆柱.(2)根据圆柱的全面积公式可得,20π×40+2×π×102=1000π.。

北师大版九年级数学上册课件:第五章 投影与视图

北师大版九年级数学上册课件:第五章 投影与视图

投影所在的平面叫做 投影面.
获取新知
有时光线是一组互相平行的射线,例如太阳光或探照灯 光的一束光中的光线,由平行光线形成的投影是平行投影.
例如,物体在太阳光的照射下形成的影子(简称日影) 就是平行投影.日影的方向可以反映时间.
我国古代的计时器日晷,就是根据日影来观测时间的.
皮影戏是利用灯光的照射,把影 子的影态反映在银幕(投影面)上的 表演艺术.
如图,把一根直的细铁丝(记为线段AB)放在三个不
同位置; (1)铁丝平行于投影面; (2)铁丝倾斜于投影面; (3)铁丝垂直于投影面(铁丝不一定要与投影面有公 共点).
三种情形下铁丝的正投影各是什么形状?
A
B
A
BA
A1
p
B1 A2
B B2
B3
A
B
A
BA
A1
p
B1 A2
B B2
A3(B3)
通过观察,我们可以发现:

照射光线叫做投影线
影 面
投影所在的平面叫做 投影面.
由同一点(点光源)发出的光线形 成的投影叫做中心投影.
典例剖析
1.投影线的方向如箭头所示,画出图中圆柱体的 正投影:
2.确定图中路灯灯泡所在的位置.
o
小结:
物体上的点以及
它们影子上的对应点
的连线都过光源.
作法:①过一根木杆的顶端及其影子的顶端作一条直线;
• 又如何?如果平行光从上面投射到正方 体上呢?
获取新知
视图的定义:
• 像这样,用正投影的方法绘制的物体在投 影面上的图形,称为物体的视图. • 通常我们把从正面得到的视图叫做主视图, 从左面得到的视图叫做左视图,从上面得到的 视图叫做俯视图.

九年级数学下册投影与视图全章教案新人教版

九年级数学下册投影与视图全章教案新人教版

新人教版九年级数学下册《投影与视图》全章教案第一节:投影的概念与分类教学目标:1. 了解投影的概念,掌握投影的分类。

2. 能够运用投影的知识解决实际问题。

教学重点:投影的概念,投影的分类。

教学难点:投影的应用。

教学过程:1. 导入:通过展示图片,引导学生思考投影的概念。

2. 新课:介绍投影的分类,讲解不同类型的投影特点。

3. 练习:让学生运用投影的知识解决实际问题。

课后作业:1. 复习投影的概念与分类。

2. 运用投影的知识解决实际问题。

第二节:视图的概念与分类教学目标:1. 了解视图的概念,掌握视图的分类。

2. 能够运用视图的知识解决实际问题。

教学重点:视图的概念,视图的分类。

教学难点:视图的应用。

教学过程:1. 导入:通过展示图片,引导学生思考视图的概念。

2. 新课:介绍视图的分类,讲解不同类型的视图特点。

3. 练习:让学生运用视图的知识解决实际问题。

课后作业:1. 复习视图的概念与分类。

2. 运用视图的知识解决实际问题。

第三节:三视图教学目标:1. 了解三视图的概念,掌握三视图的画法。

2. 能够运用三视图的知识解决实际问题。

教学重点:三视图的概念,三视图的画法。

教学难点:三视图的应用。

教学过程:1. 导入:通过展示图片,引导学生思考三视图的概念。

2. 新课:介绍三视图的画法,讲解不同类型的三视图特点。

3. 练习:让学生运用三视图的知识解决实际问题。

课后作业:1. 复习三视图的概念与画法。

2. 运用三视图的知识解决实际问题。

第四节:投影与视图的应用教学目标:1. 了解投影与视图在实际中的应用,掌握投影与视图的转换方法。

2. 能够运用投影与视图的知识解决实际问题。

教学重点:投影与视图的应用,投影与视图的转换方法。

教学难点:投影与视图在实际问题中的应用。

教学过程:1. 导入:通过展示图片,引导学生思考投影与视图在实际中的应用。

2. 新课:介绍投影与视图的转换方法,讲解不同类型的投影与视图应用。

3. 练习:让学生运用投影与视图的知识解决实际问题。

九年级数学 第五章 投影与视图 1 投影 第2课时 平行投影与正投影教学

九年级数学 第五章 投影与视图 1 投影 第2课时 平行投影与正投影教学

∵ AB 1.5,AB 3.9m. BE3
∴树高AB为3.9m.
12/10/2021
课堂小结
概念:平行光线所形成的投影
平行投影 画法
平行投影 与
正投影
计算
线段的 正投影
平行长不变, 倾斜长变短, 垂直成一点
影长≤线段长
正 投 影
12/10/2021
平行形不变, 平面图形的正投影 倾斜形改变,
垂直成线段
A
∵四边形AEDC为平行四边形,
E
∴AE=CD=1.2m.
C ∵EB 1.5,EB 2.7m.
BD3
B
D ∴AB=AE+EB=3.9m.
∴树高AB为3.9m.
12/10/2021
A
C
B
D
E
解:延长AC交BD的延长线于点E.
∵ C D 1.2CmD ,1., 5D E2.4m. DE3
∴BE=BD+DE=7.8 m.
12/10/2021
3.下列说法正确的是( C )
①线段a垂直于投影面P,则线段a在投影面P上的正投
影是一个点;②长方形的对角线垂直于投影面,则长
方形在投影面上的正投影是一条线段;③正方体的一
侧面与投影面平行,则该正方体有4个面的正投影是
线段;④圆锥的轴截面与投影面平行,则圆锥在投影
面上的正投影是等腰三角形.
u平面图形的正投影有如下规律: 平行形不变,倾斜形改变,垂直成线段.
12/10/2021
练一练
1.皮皮拿着一块正方形纸板在阳光下做投影实验, 正方形纸板在投影面上形成的投影不可能是( D )
A
B
12/10/2021
C

九年级数学下册投影与视图全章教案新人教版

九年级数学下册投影与视图全章教案新人教版

九年级数学下册《投影与视图》全章教案新人教版第一章:投影的概念与分类教学目标:1. 了解投影的概念,掌握各种投影的分类。

2. 能够运用投影的知识解决实际问题。

教学内容:1. 投影的概念:平行投影、中心投影。

2. 投影的分类:正投影、斜投影。

3. 投影的基本性质。

教学步骤:1. 引入投影的概念,展示各种投影的图片,引导学生观察并思考。

2. 讲解平行投影和中心投影的定义,通过示例让学生理解两种投影的特点。

3. 介绍正投影和斜投影的分类,让学生通过实际例子区分两种投影。

4. 引导学生总结投影的基本性质,如相似性、形状不变等。

5. 布置练习题,让学生巩固所学内容。

教学评价:1. 学生能够准确描述投影的概念和分类。

2. 学生能够运用投影的知识解决实际问题。

第二章:视图的定义与分类教学目标:1. 理解视图的定义,掌握各种视图的分类。

2. 能够运用视图的知识解决实际问题。

教学内容:1. 视图的定义:主视图、左视图、俯视图。

2. 视图的分类:正视图、侧视图、俯视图。

3. 视图的基本性质。

教学步骤:1. 引入视图的概念,展示各种视图的图片,引导学生观察并思考。

2. 讲解主视图、左视图、俯视图的定义,通过示例让学生理解三种视图的特点。

3. 介绍正视图、侧视图、俯视图的分类,让学生通过实际例子区分三种视图。

4. 引导学生总结视图的基本性质,如相互补充、完整性等。

5. 布置练习题,让学生巩固所学内容。

教学评价:1. 学生能够准确描述视图的定义和分类。

2. 学生能够运用视图的知识解决实际问题。

第三章:简单几何体的三视图教学目标:1. 掌握简单几何体的三视图的画法。

2. 能够运用三视图的知识解决实际问题。

教学内容:1. 简单几何体的三视图:正方体、长方体、圆柱体、圆锥体。

2. 三视图的画法与特点。

教学步骤:1. 讲解正方体、长方体、圆柱体、圆锥体的三视图的画法,通过示例让学生理解各种几何体的三视图特点。

2. 引导学生动手画出各种几何体的三视图,并观察其特点。

人教版数学九年级上册第29节 投影与视图-课件

人教版数学九年级上册第29节 投影与视图-课件
A.3个 B.4个 C.5个 D.6个
11.(2017·安顺)如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底 面紧贴在长方体的上底面上,那么这个几何体的俯视图为( )C
12.(2017·黔东南州)如图,所给的三视图表示的几何体是( )D A.圆锥 B.正三棱锥 C.正四棱锥 D.正三棱柱
13.(导学号 78324060)(2017·黔西南州模拟)如图是一个几何体的三视图,
A.的 B.中 C.国 D.梦 5.(2017·哈尔滨)五个大小相同的正方体搭成的几何体如图所示,其左视 图是( )
C
6.(2017·贵阳)如图,水平的讲台放置的圆柱笔筒和正方形粉笔盒, 其俯视图是( )D
7.(2016·黔东南州)将一个棱长为 1 的正方体水平放于桌面 (始终保持正方体的一个面落在桌面上), 则该正方体主视图面积的最大值为( C ) A.2 B. 2+1 C. 2 D.1
则路灯的高为__3__m.
17.(导学号 78324062)(2017·宁夏)如图是由若干个棱长为1的小正方体组 合而成的一个几何体的三视图,则这个几何体的表面积是____.
22
18.如图,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻 AB在阳光下的投影BC=3 m.
(1)请你在图中画出此时DE在阳光下的投影; (2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计 算DE的长.
天每
开个
放孩
;子
有的
的花
孩期Leabharlann 子不是一菊样花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春

投影(第1课时)(课件)九年级数学上册(北师大版)

投影(第1课时)(课件)九年级数学上册(北师大版)
知识点:点光源、物体上的点以及他在影子上的对应点, 三点在一条直线上.
探究新知
例:下图是两棵小树在同一时刻的影子,你能画出灯 光在哪里吗?与同伴交流
注意:物体的 影子在同一旁
注意:物体的 影子在两旁
探究新知
例:下图是两棵小树在同一时刻的影子,你能画出灯 光在哪里吗?与同伴交流
解:如图所示:
探究新知
随堂练习
6.如图,位似图形由三角尺与其灯光下的中心投影 组成,相似比为2:5,且三角尺的一边长为8cm, 则投影三角形的对应边长为_2_0___㎝.
随堂练习
7.如图,小王晚上由路灯A下的B处向前走3米到达 C处时,测得影子CD的长为1米,已知小王的身高 是1.5米,那么路灯A的高度AB等于_____6___米.
随堂练习
4.如图,在一间黑屋里用一盏白炽灯照一个球,
球在地面上的阴影的形状是一个圆,当把白炽灯
向上移时,圆形阴影的大小变化情况是( A )
A.越来越小
B.越来越大
C.大小不变 D.不能确定
随堂练习
5.傍晚,小明陪妈妈在路灯下散步,当他们经过路 灯时身体的影长( A ) A.先由长变短,再由短变长 B.先由短变长,再由长变短 C.保持不变 D.无法确定
例:如图,一个广告牌挡住了路灯的灯泡。 (1)确定图中路灯灯泡所在的位置; (2)在图中画出表示小赵身高的线段。
小赵 小张 小李
探究新知
解:如图所示
小赵
小李 小张
知识点:等高的物体垂直地面放置时,在灯光下里点光源越近, 物体的影子越短;离点光源越远物体的影子越长
探究新知
练一练:两棵小树在一盏路灯下的影子如图所示. (1)确定该路灯灯泡所在的位置; (2)画出图中表示婷婷影长的线段。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12次课:视图与投影(一)一、考点、热点回顾(一)三视图1.视图:我们从某一角度观察一个物体时,所看到的物象叫做一个物体的视图.2.三视图:我们从不同的方向观察同一物体时,可能看到不同的图形.其中,把从正面内得到的由前向后观察物体的视图叫做主视图,在侧面内得到的由左向右观察物体的视图叫做左视图,由水平面内得到的由上向下观察物体的视图叫做俯视图.三个视图合起来简称为三视图.3.三视图中三个视图之间的位置关系为:俯视图在主视图的正下方,左视图在主视图的正右方.4. 三视图中三个视图之间的大小关系为:主视图与俯视图长对正,主视图与左视图高平齐,左视图与俯视图宽相等.这里的长、宽、高分别对应三视图所示物体的左右之间、前后之间、上下之间的长度.(二)投影1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面.2.平行投影:由平行光线形成的投影是平行投影(parallel projection).3.中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影(center projection).4.正投影:投影线垂直于投影面产生的投影叫做正投影.5.正投影的性质:物体正投影的形状、大小与它相对于投影面的位置有关.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.二、典型例题1.视图”以“视”的基础上的“对应”为特征,建立起三维的基本几何体及简单物体与二维(平面)图形表示方法间的对应关系。

例10.投影线的方向如箭头所示,画出图9-12中圆台的正投影.图9-12要注意图中所示箭头的方向。

【解答示范】如图9-13【归纳点评】图9-13画正投影的过程体现了立体图形与平面图形之间的转化与联系的过程。

例11. 在下列几何体中,主视图是圆的是( ).(A)(B)(C)(D)【思路点拨】分析物体主视图的形状时,就是判断从正面看到的这个物体的正投影,可以从物体中哪些部分平行于投影面入手考虑. 当一个几何图形平行于投影面时,它的正投影是与它全等的平面几何图形. 选项A图圆锥的正投影是一个三角形,B图圆柱的正投影是矩形,C图圆台的正投影是梯形,只有D图球的正投影是圆。

【解答示范】选(D)【归纳点评】三视图是由同一物体在三个不同投影面上的正投影组成的。

对物体的三视图的讨论,首先是确定它的形状,其次是考虑它的大小.本题只涉及了形状的确定。

2.三视图三视图是主视图、俯视图和左视图的统称,它是从三个方向分别表示物体形状的一种常用视图. 三视图是由同一物体在三个不同投影面上的正投影组成的.物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图对这三个投影面的相对位置有特殊要求,即三个平面中任何两个平面都互相垂直,一般地,对于许多物体,通过反映其正面、上面和左面的形状和大小,就可以了解其整体的形状和大小.通过一些的典型实例,就可以理解这种关系在现实生活中的应用。

例12. 下面的三视图所对应的物体是()(A)(B)(C)(D)【思路点拨】由三视图想出物体形状,这是由平面图形得到立体图形的过程,反映了平面图形与立体图形之间的联系. 本题还提示我们,对于三视图的问题不仅要考虑物体与图形的形状,还要考虑大小。

【解答示范】选(A)【归纳点评】三视图反映了立体图形和平面图形之间的联系与转化,这对培养我们的空间想象能力有很直接的帮助.3. 画三种视图的方法在学习中注意想像和抽象,即把实物抽象成相应的几何体,在此基础上再画其视图.画三种视图时,主视图涉及的是这个立体图形的长和高,左视图涉及的是这个立体图形的宽和高,俯视图涉及的是这个立体图形的长和宽,所以,主、俯视图的长是相等的,主、左视图的高是相等的,左视图的长与俯视图的高是相等的.更严格地说,应是“长对正,高平齐,宽相等”.看得见部分的轮廊线通常画成实线,看不见部分的轮廊线通常画成虚线.画三视图是将一个物体从三个方面观察,分别表现这三个方面的“分解”过程;由三视图想出物体的立体形状,则是把物体的三个方面形状“综合”起来的过程.这两个过程是相反的,也是互相联系的.例13. 画出下面实物的三视图(图9-14).图9-14【思路点拨】主视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;左视图反映了物体的高度和宽度,所以画某物体的三种视图时,一定要注意:主视图与俯视图要一样长;主视图与左视图要一样高;俯视图与左视图要一样宽。

另外还要注意,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.【解答示范】如图9-15:【归纳点评】画好虚线部分需要具备一定的空间想象能力。

:图9-15例14:如图9-17是图9-16所示的几何体的三种视图,其中是否有错误?若有错误,请指出其错在哪里,并画出正确的三种视图.【思路点拨】首先考虑三视图的形状,其次考虑所画三视图的大小是否符合“长对正,高平齐,宽相等”,最后考虑是否在看得见部分的轮廊线画成实线,看不见部分的轮廊线画成了虚线.【解答示范】如果将主视图看作正确的,那么俯视图和左视图都有错误,它们错在: (1)俯视图中,内部实线段位置与实物图不对应;(2)左视图有三处错误:①左视图没有与主视图“平齐”(即两视图的高不等);②左视图的宽与俯视图的宽不相等;③左视图中未画出相应的虚线. 正确的三种视图如图9-18所示: 【归纳点评】“长对正,高平齐,宽相等”中的长、宽、高并不局限于长方体,而是分别对应于一般三视图所示物体的左右之间、前后之间、上下之间三个方向的长度.例15. 如图9-19是一个由若干个边长都为2cm 的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的体积是____________.【思路点拨】由三视图确定该几何体有三层三列,假定是排满三层三列的正方体,应共有27块小正方体组成。

首先由主视图中间一列的缝隙,我们知道应从27块中减去6块,同理我们再看左视图中所缺少的,应再减去8块,最后看俯视图,应在最下面一层中再减去3块。

所以由图形的三视图可知原图形有27-6-8-3=10块,如图9-19,即可求得体积.【解答示范】如图9-20所示:80cm 31111 2 13图9-18主视图俯视图左视图图9-16图9-17 主视图俯视图左视图主视图 左视图俯视图图9-19图9-20【归纳点评】 由三视图想立体形状、由立体图形想平面展开图以及计算面积等结合在结合在一起的这类题木具有一定的综合性,其中由三视图想立体形状是分析和解决问题的基础,面积的计算一般不是难点。

三、课后练习一、选择题1.图1是某几何体的三种视图,则该几何体是( ) A.正方体 B.圆锥体 C.圆柱体 D.球体2.主视图、左视图和俯视图完全相同的几何体是( )3.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能...是( )A B C D4. 星期天小川和他爸爸到公园散步,小川身高是160cm ,在阳光下他的影长为80cm ,爸爸身高180cm ,则此时爸爸的影长为( )A.80B.85C.90D.955. 小明从正面观察下图所示的两个物体,看到的是( )6.如图3,路灯距地面 8 米,身高 1 . 6 米的小明从距离灯的A B CD底部(点O ) 20米的点A 处,沿AO 所在的直线行走14米到点B 时,人影长度( )A .变长3.5 米 B.变长2.5米 C .变短3.5米 D.变短2.5米7.“皮影戏”作为我国一种民间艺术,对它的叙述错误的是( ) A.它是用兽皮或纸板做成的人物剪影,来表演故事的戏曲 B.表演时,要用灯光把剪影照在银幕上 C.灯光下,做不同的手势可以形成不同的手影 D.表演时,也可用阳光把剪影照在银幕上8.图4是一几何体,某同学画出它的三视图如下(不考虑尺寸),你认为正确的是()A.①②B.①③C.②③D.③1. (2009武汉)如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )2.(2009泸州市)如图2,是一个物体的俯视图,它所对应的物体是( )答案:1. A 2.A1.将一个正方体沿某些棱展开后,能够得到的平面图形是( )正面A .B .C .D .2.一个正方体的表面展开图如图所示,每个面内都标注了字母,如果从正方体的右面看是面D ,面C 在后面,则正方体的上面是( ) A.面E B.面F C.面A D.面B3.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的左视图是( )1.(2009年凉山州)一个正方体的平面展开图如图所示, 将它折成正方体后“建”字对面是( ) A .和 B .谐 C .凉 D .山2.(2009年包头)将一个正方体沿某些棱展开后,能够得到的平面图形是()3.(2009年枣庄市)如图,骰子是一个质量均匀的小正方体,它的六个面上分别刻有1~6 个点.小明仔细观察骰子,发现任意相对两面的点数和都相等.这枚骰子向上的一面的点数是5,它的对面的点数是()A .B.C.D .12A .B .C .D .2 31A .B.C.D .1.(2009柳州)一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是( )A .AB=CDB .AB ≤CDC .CD AB D .AB ≥CD2.(2009年鄂州)在一个晴朗的上午,皮皮拿着一块正方形术板在阳光下做投影实验,正方形木板在地面上形成的投影不可能是()3.(2009年舟山)陈老师要为他家的长方形餐厅(如图)选择一张餐桌,并且想按如下要求摆放:餐桌一侧靠墙,靠墙对面的桌边留出宽度不小于80cm 的通道,另两边各留出宽度不小于60cm 的通道.那么在下面四张餐桌中,其大小规格符合要求的餐桌编号是 (把符合要求的编号都写上).1.(2009年咸宁市)如图,桌面上的模型由20个棱长为a 的小正方体组成,现将该模型露在外面的部分涂上涂料,则涂上涂料部分的总面积为( )A .20a 2B .30a 2C .40a 2D .50a22.(2009年广州市)如图是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成230cm餐厅180cm门桌面是边长为80cm 的正方形 ①桌面是长、宽分别为100cm 和64cm 的长方形②桌面是半径 为45cm 的圆③桌面的中间是边长 为60cm 的正方形, 两头均为半圆④四、课后反馈表1、本次课学生总体满意度打分(满分100分)______ _________________ 。

相关文档
最新文档