初三数学投影与视图
2023年中考数学专题21 视图与投影(原卷版)

专题21 视图与投影一、投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光下形成的物体的投影叫做中心投影,点光叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光近的物体的影子短,离点光远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥三棱柱2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图1.下列立体图形中,主视图是三角形的是()A.B.C.D.2.如图所示的几何体从上面看到的形状图是()A.B.C.D.3.某立体图形如图,其从正面看所得到的图形是()A.B.C.D.4.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积.考向二几何体的还原5.下列几何体中,俯视图与主视图完全相同的几何体是()A.圆锥B.球C.三棱柱D.四棱锥6.如图是某几何体的三视图,这个几何体是()A.三棱柱B.三棱锥C.长方体D.正方体7.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm38.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是个.考向三组合正方体的最值问题9.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.810.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个11.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=()A.14B.16C.17D.1812.如图,用小立方块搭一几何体,从正面看相从上面看得到的图形如图所示,这样的几何体至少要个立方块.考向四几何体的计算问题13.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是()A.10cm2B.12cm2C.15cm2D.20cm214.如图所示的三棱柱,其俯视图的内角和为()A.180°B.360°C.540°D.720°15.如图,是一个几何体的三视图,则该几何体的表面积是()A.7πcm2B.(+2)πcm2C.6πcm2D.(+5)πcm2 16.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.考向五立体图形的展开与折叠17.下面图形中是正方体的表面展开图的是()A.B.C.D.18.如图是一个几何体的展开图,则这个几何体是()A.B.C.D.19.从如图所示的7个小正方形中剪去一个小正方形,使剩余的6个小正方形折叠后能围成一个正方体,则应剪去标记为()的小正方形A.祝或考B.你或考C.好或绩D.祝或你或成20.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).考向六投影21.下列投影不是中心投影的是()A.B.C.D.22.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定23.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短24.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4m.则路灯的高度OP为m.一.选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图所示,圆柱的主视图是()A.B.C.D.3.下面四个几何体中,左视图为圆的是()A.B.C.D.4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.5.如图是一个几何体的三视图,则该几何体的体积为()A.1B.2C.D.46.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是()A.6B.5C.4D.3二.填空题7.一个几何体的三视图如图所示,则该几何体的表面积为.8.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).9.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)10.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母,注意:字母只能在多面体外表面出现)11.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.12.如图是某物体的三视图,则此物体的体积为(结果保留π).三.解答题13.已知某几何体的三视图如图所示,其中俯视图为正六边形,求该几何体的表面积.14.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图.15.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.16.用若干个棱长为1cm的小正方体搭成如图所示的几何体.(1)这个几何体的体积为cm3.(2)请在方格纸中用实线画出该几何体的主视图,左视图,俯视图.(3)这个几何体的表面积为cm2.。
九年级数学上册5投影与视图小结与复习课件(新版)北师大版

【解析】所要画出的乙木杆的影子与甲木杆形成的影子是同 一时刻,根据同一时刻两物体的高度比等于其影长的比,同时, 在同一时刻太阳光线是互相平行的,平行移动乙杆,使乙杆顶端 的影长恰好抵达墙角.
解:(1)如图①,过E点作直线DD′的平行线,交AD′所在直 线于E′,则BE′为乙木杆的影子.
(2) 平 移 由 乙 杆 、 乙 杆 的 影 子 和 太 阳 光 线 所 构 成 的 图 形 ( 即 △BEE′),直到其影子的顶端E′抵达墙角(如图②).
方法总结 平时要多注意积累常见的几何体的三视图,并进行适当
的分类.如视图可能是圆的有球、圆柱、圆锥等,可能是三 角形的有圆锥、棱锥,可能是长方形的有长方体、圆柱等.
针对训练
4. 如图,是一个带有方形空洞和 圆形空洞的儿童玩具,如果用下列几 何体作为塞子,那么既可以堵住方形 空洞,又可以堵住圆形空洞的几何体 是( B )
二、平行投影和中心投影的区别 已知两棵小树在同一时刻的影子,你如何确定影子是在太阳
光线下还是在灯光的光线下形成的.
平行投影
中心投影
三、视图 三视图是 主视图 、 俯视图 、 左视图
Байду номын сангаас
的统称.
三视图位置有规定,主视图要在 左上方 ,它的下方应
是 俯视图
, 左视图
坐落在右边.
三视图的对应规律
主视图和俯视图 长对正 ;主视图和左视图 高平齐 ;
A.
B.
C.
D.
【解析】圆柱从上边看是一个圆,从正面看是一个正方 形,既可以堵住方形空洞,又可以堵住圆形空洞, 故选B.
考点五 由三视图确定立方体的个数
例5 由一些大小相同的小正方体组成的几何体三视图如 图所示,那么,组成这个几何体的小正方体的个数是( )
人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。
这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。
本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。
但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。
另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。
三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。
2.让学生掌握视图的分类,学会画一视图、二视图、三视图。
3.培养学生空间想象能力,提高他们解决实际问题的能力。
四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。
2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。
3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。
六. 教学准备1.准备投影仪、实物、模型等教学道具。
2.准备相关的练习题和测试题。
3.准备黑板和粉笔。
七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。
2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。
3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。
教师巡回指导,解答学生疑问。
4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。
北师大版九年级数学上册第五章 投影与视图 投影的概念与中心投影

例2 一个广场中央有一盏路灯.
(1)高矮相同的两个人 在这盏路灯下的影子一定 一样长吗?如果不一定, 那么什么情况下他们的影 子一样长?
不一定一样长,只有当两人与路灯的距离相等时影子 才会一样长.
(2)高矮不同的两个人在这盏路灯下的影子有可 能一样长吗?请实际试试, 并与同伴交流.
有可能
结论 在灯光下,垂直于地面的物体离点光源距离近 时,影子短;离光源远时,影子长.
做一做
2 中心投影
取一些长短不等的小棒和三角形、矩形纸片,用
手电筒(或台灯)等去照射这些小棒和纸片,观察它
们的影子.
(1)固定手电筒(或台灯),改变小棒或纸片的摆放 的位置和方向,它们的影子分别发生了什么变化?
物体离光源越远,影子越大; 距离光源越近,影子越小.
(2)固定小棒或纸片,改变手电筒(或台灯)的摆 放位置和方向,它们的影子发生了什么变化?
改变手电筒的方向, 它们的影子的方向也 发生了变化.
知识要点 手电筒、路灯和台灯的光线可以看成是从一个点发 出的,这样的光线所形成的投影称为中心投影.
例如:物体在灯泡发出的光的照射下形成影子就是 中心投影.
典例精析 例1 确定图中路灯灯泡所在的位置.
O 点 O 就是路过再影灯一过子灯根另的泡木一顶所杆根端在的木作的顶杆一位端的条置及顶 直. 其端 线影及 ,子其 两 的直顶线端交作于一一条点直O线
练一练
2. 如图,晚上小亮在路灯下散步,在小亮由 A 处 径直走到 B 处这一过程中,他在地上的影子 ( B ) A.逐渐变短 B.先变短后变长 C.先变长后变短 D.逐渐变长
A
B
投影的 物体在光线的照射下,会在地面或其
概念
他平面上留下它的影子,这就是投影
初三-上册 第五章 投影与三视图知识点

新天宇培训学校初三第五章投影与视图___________________________________________________________________________________________________________投影与视图;一.投影:1.光源点光源:像手电筒、路灯、台灯都可以看成一个点光源。
平行光源:太阳光可以看成是一个平行光源2.概念定义:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
(1)平行投影:由平行光线(太阳的光线是平行光线)形成的投影。
(2)中心投影:由同一点(点光源发出的光线)形成的投影。
(3)两者区别与联系:区别光线物体与投影面平行联系时的投影平行投影平行的投射线全等都是物体在光线的照射下,在某中心投影从一点出发的投射线放大(位似变换)个平面内形成的影子。
(即都是投影)3.投影知识点:测量同一时刻物体的高度和影长时:①若两物体的高度之比等于影长之比时,则这两个物体的影子是平行投影。
②若两物体的高度之比不等于影长之比时,则这两个物体的影子是中心投影4.投影的性质:①将两个等高物体垂直于与地面放置时,离点光源较近的物体的影子较短,反之则越长。
②将两个等高物体平行于与地面放置时,离点光源较近的物体的影子较长,反之则越短。
5.易错题整理:1)直线的平行投影一定是直线(×)原因:2)矩形的投影一定是矩形(×)原因:3)一个圆在平面上的投影一定是圆。
(×)原因:二.视图:1.概念:用正投影的方法绘制的物体在投影面上的图形,称为物体的视图。
2.分类:视图有:主视图、左视图、俯视图3.正方体的主要视图及展开:正方体的展开图有11种:1)1-4-1型:6种 2)2-3-1型:3种3)2-2-2型:1种 4) 3-3 型:1种4.看视图确定物体有多少正方体组成:在俯视图中画圈标注法,取较小数值的和。
人教版九年级下册数学《由三视图确定几何体的面积或体积》投影与视图教学说课复习课件

知1-讲
知1-讲
例1〈泸州〉如图所示的几何体的左视图是( C )
导引: 左视图是从物体的左面看到的视图,从圆柱的左 边向右边看,看到的是一个矩形,故选C.
总结
知1-讲
单个几何体的三视图直接根据常见的几何体三 视图中识别.
知1-练
1 把图中的几何体与它们对应的三视图用线连接起来.
知1-练
2 【中考·海南】如图是由四个相同的小正方体组成 的几何体,则它的主视图为( A )
分析:支架的形状是由两个大 小不等的长方体 构成的 组合体.画三视图时要注 意这两个长方体的上 下、 前后位置关系.
解:下图是支架的三视图.
知2-讲
总结
知2-讲
画组合体的三视图时,构成组合体的各部分的视图也要遵 守“长对正,高平齐, 宽相等”的规律.
知2-练
1 画出如图所示的正三棱柱、圆锥、半球的三视图.
(2) 请指出三视图、立体图形、展开图之间的对应边.
讲授新课
三视图的有关计算 合作探究
例1 某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三 视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm).
分析: 1. 应先体__形__状____; 2. 画出物体的 展开图 .
1. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为
()
B
A. 6
B. 8
C. 12
D. 24
2. 如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得
这个几何体的体积为3 cm3 .
3 主视图
1 1 左视图 俯视图
2π 3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为
九年级数学下册投影与视图全章教案新人教版

九年级数学下册《投影与视图》全章教案新人教版第一章:投影的概念与分类教学目标:1. 了解投影的概念,掌握各种投影的分类。
2. 能够运用投影的知识解决实际问题。
教学内容:1. 投影的概念:平行投影、中心投影。
2. 投影的分类:正投影、斜投影。
3. 投影的基本性质。
教学步骤:1. 引入投影的概念,展示各种投影的图片,引导学生观察并思考。
2. 讲解平行投影和中心投影的定义,通过示例让学生理解两种投影的特点。
3. 介绍正投影和斜投影的分类,让学生通过实际例子区分两种投影。
4. 引导学生总结投影的基本性质,如相似性、形状不变等。
5. 布置练习题,让学生巩固所学内容。
教学评价:1. 学生能够准确描述投影的概念和分类。
2. 学生能够运用投影的知识解决实际问题。
第二章:视图的定义与分类教学目标:1. 理解视图的定义,掌握各种视图的分类。
2. 能够运用视图的知识解决实际问题。
教学内容:1. 视图的定义:主视图、左视图、俯视图。
2. 视图的分类:正视图、侧视图、俯视图。
3. 视图的基本性质。
教学步骤:1. 引入视图的概念,展示各种视图的图片,引导学生观察并思考。
2. 讲解主视图、左视图、俯视图的定义,通过示例让学生理解三种视图的特点。
3. 介绍正视图、侧视图、俯视图的分类,让学生通过实际例子区分三种视图。
4. 引导学生总结视图的基本性质,如相互补充、完整性等。
5. 布置练习题,让学生巩固所学内容。
教学评价:1. 学生能够准确描述视图的定义和分类。
2. 学生能够运用视图的知识解决实际问题。
第三章:简单几何体的三视图教学目标:1. 掌握简单几何体的三视图的画法。
2. 能够运用三视图的知识解决实际问题。
教学内容:1. 简单几何体的三视图:正方体、长方体、圆柱体、圆锥体。
2. 三视图的画法与特点。
教学步骤:1. 讲解正方体、长方体、圆柱体、圆锥体的三视图的画法,通过示例让学生理解各种几何体的三视图特点。
2. 引导学生动手画出各种几何体的三视图,并观察其特点。
北师大版九年级上册数学《投影》投影与视图说课教学课件

2. 平行投影与中心投影的联系与区别:
知1-讲
项目
定义
类型
平行投影
平行光线所形成的投 影
中心投影 从一个点发出的光线的投影
光源
太阳等
点光源(如电灯等)
区别
投影线 投影方向
联系
平行 相同
相交于一点
由点光源与物体的相对位置确 定
都是投影现象,都是物体在光线照射下形成影子
知1-讲
例1 某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5 m.
1. 中心投影的定义:从一个点(点光源)发出的光线形成的投知2-讲
影称为中心投影.
2.中心投影的性质:
(1)光源、物体边缘上的点以及它在影子上的对应点在同一
条直线上,根据同一灯光下两个不同物体及它们的影
子,可以确定灯(点光源)所在的位置;
(2)若物体相对于光源的方向改变,则该物体的影子的方向
也发生变化,但光源、物体的影子始终分居在物体的两
(来自《点拨》)
知2-练
1 下列现象属于中心投影的有( ) ①小孔成像;②皮影戏;③手影;④放电影.
2 A.1个 B.2个 C.3个 D.4个 小华自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与 屏幕平行,光源到幻灯片的距离是30 cm,幻灯片到屏幕的距离 是1.5 m,幻灯片上小树的高度是10 cm,则屏幕上小树的高度 是( ) A.50 cm B.60 cm C.500 cm D.600 cm
知识点 2 中心投影
知2-导
做一做
取一些长短不等的小棒和三角形、矩形纸片,用手电筒 (或台灯)等去照射这些小棒和纸片,观察它们的影子. (1)固定手电筒(或台灯),改变小棒或纸片的摆放位置
和方向,它们的影子分别发生了什么变化? (2)固定小棒或纸片,改变手电筒(或台灯)的摆放位置
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
投影与视图例题精讲模块一投影【例1】物体在光线照射下,在地面或墙壁上留下的影子叫做它的_________.【解析】略【答案】投影【例2】手电筒、路灯的光线可以看成是从_________发出的,它们所形成的投影是_________投影,而太阳光线所形成的投影是_________投影.【解析】【答案】一点;中心;平行.【例3】将一个三角形放在太阳光下,它所形成的投影的形状是__________________.【解析】略【答案】三角形或一条线段【例4】小明从正面观察下图所示的两个物体,看到的是( )【解析】略【答案】C【例5】物体的影子在正北方,则太阳在物体的( )A.正北B.正南C.正西D.正东【解析】略【答案】B【例6】小明在操场上练习双杠时,发现两横杠在地上的影子( )A.相交B.平行C.垂直D.无法确定【解析】略【答案】B【例7】一只小狗在平面镜前欣赏自己(如图所示),它所看到的全身像是( )【解析】略【答案】A【例8】分别画出下列几个几何体从正面和上面看的正投影.【解析】【答案】从正面看依次为:从上面看依次为:【例9】阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好落到后面一个同学身上,而小宁的影子却没有落到后面一个同学身上,据此判断他们的队列方向是____________ (填“背向太阳”或“面向太阳”),小宁比小勇(填“高”、“矮”、或“一样高”).【解析】【答案】面向太阳;矮【例10】一根竿子高1.5m,影长1m,同一时刻,某塔影长是20m,则塔的高度是______m.【解析】略【答案】30【例11】晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( )A.先变短后变长 B.先变长后变短C.逐渐变短D.逐渐变长【解析】略【答案】A【例12】下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是( )A.③④②①B.②④③①C.③④①②D.③①②④【解析】略【答案】C【例13】如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径是1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积是( )A.0.36m2B.0.81m2C.2m2D.3.24m2【答案】B【例14】平面直角坐标系中,一点光源位于A(0,5)处,线段CD⊥x轴于D,C(3,1),求:(1)CD在x轴上的影长;(2)点C的影子的坐标.【解析】略【答案】(1)CD在x轴上的影长DE=0.75;(2)C的影子为E(3.75,0).【例15】如图所示,一电线杆AB的影子分别落在了地上和墙上,某一时刻.小明竖起1m高的直杆,量得其影长为0.5m,此时,他又量得电线杆AB落在地上的影子BD长3m,落在墙上的影子CD的高为2m,小明用这些数据很快算出了电线杆AB的高.你知道小明是如何计算出来的吗?【解析】略【答案】过C作CD⊥AB于E,则AE的影子为CE由1,0.53AE得AE=6,∴AB=AE+BE=8(m)..【例16】太阳光线与地面成45°角,一棵倾斜的树与地面的夹角为60°,若树高10m,则树影的长为______.【答案】(535)-米.+米或(535)【例17】如图所示,现有m、n两堵墙,两个同学分别站在A和B处,请问在哪个区域内活动才不会被两个同学发现(用阴影表示该区域).【解析】略【答案】如右图模块二三视图【例18】我们常说的三种视图分别是指______、______、______.【解析】略【答案】主视图、左视图、俯视图【例19】某同学把下图所示的几何体的三种视图画出如下(不考虑尺寸);其中错误的是哪个视图?答:是__________________.【解析】略【答案】左视图.【例20】如下图为一个几何体的三视图,那么这个几何体是____________.【解析】略【答案】圆锥【例21】有一实物如图,那么它的主视图是( )【解析】略【答案】B.【例22】下图中①表示的是组合在一起的模块,那么这个模块的俯视图的是( )A.②B.③C.④D.⑤【解析】略【答案】A.【例23】两个物体的主视图都是圆,则这两个物体可能是( )A.圆柱体、圆锥体B.圆柱体、正方体C.圆柱体、球D.圆锥体、球【解析】略【答案】C【例24】角□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )【解析】略【答案】B.【例25】如下图是几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )【解析】略【答案】D.【例26】如图,将图中扇形BOC部分剪掉,用剩余部分围成一个几何体的侧面,使AB、DC重合,则所围成的几何体的俯视图是( )【解析】略【答案】C.【例27】一几何体的三视图如图,那么这个几何体是______.【解析】略【答案】空心圆柱.【例28】如图的几个物体中,哪两个几何体是一样的?答:______(填序号).【解析】略【答案】(1)和(3).【例29】如图所示的正四棱锥的俯视图是( )【解析】略【答案】D.【例30】如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体其中有三个几何体的某一种视图都是同一种几何图形,则别外一个几何体是( )【解析】略【答案】C.【例31】小丽制作了一个如下右图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )【解析】略【答案】A.【例32】如图(1)是一个小正方体的侧面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是( )A.奥B.运C.圣D.火【解析】略【答案】D.图1 图2 【例33】如图,粗线表示嵌在玻璃正方体内的一根铁丝,请画出该正方体的三视图.【解析】略【答案】如图【例34】如图所示的积木是16块棱长为2cm的正方体堆积而成的,求出它的表面积.【解析】略【答案】表面积为22×50=200(2cm).【例35】在正方体的表面上画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是( )【解析】略 【答案】A【例36】 将一正方体纸盒沿如图所示的线剪开,则其平面展开图的形状为( )【解析】略 【答案】B .【例37】 桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如右上图所示,这个几何体最多可以由______个这样的正方体组成.第12题图【解析】略 【答案】13.【例38】 某糖果厂想要为儿童设计一种新型的装糖果的不倒翁,请你根据包装厂设计好的三视图的尺寸计算其表面积和体积.【解析】略【答案】表面积为2225π5π1390π(cm );13⨯+⋅= 体积为231π512100π(cm ).3⨯⨯=【例39】 用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:(1)a=____________,b=_________,c=____________.(2)这个几何体最少由________个小立方体搭成,最多由_______个小立方体搭成.(3)当d=2,e=1,f=2时,画出这个儿何体的左视图.【解析】略【答案】(1)a=3,b=1,c=1;(2)最少9个,最多11个;(3)左视图为【例40】平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散【解析】略【答案】A.【例41】正方形在太阳光下的投影不可能是( )A.正方形B.一条线段C.矩形D.三角形【解析】略【答案】D.【例42】如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )【解析】略【答案】A.【例43】由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )A.8 B.7 C.6 D.5【解析】略【答案】A.【例44】若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5【解析】略【答案】B.【例45】一个圆柱的俯视图是______,左视图是______.【解析】略【答案】圆;矩形.【例46】一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.【解析】略【答案】48【例47】如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.【解析】略【答案】24.【例48】楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)【解析】略【答案】画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.课后作业1.如果某物体的三视图如图所示,那么该物体的形状是______.【解析】略【答案】三棱柱2.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c2【解析】略【答案】D.3.由十个棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是______2cm.第11题图【解析】略【答案】36.4.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.【解析】略【答案】第一种:高为a,表面积为2 1;2πb S ab=+第二种:高为b,表面积为2 22πa S ab=+⋅5.思考下列问题:(1)根据图①,你能画出该物体的大致形状吗?图①(2)根据图②和图③呢?图②图③(3)由(1)(2),你能得到什么结论?【解析】略【答案】(1)不能唯一确定.(2)不能唯一确定;能确定是圆锥.(3)两种视图不能完整地反映物体的形状,三种视图能完整地反映物体的形状.。