沪科版八年级数学(上)期末测试卷(含答案)
沪科版八年级数学上册试题 期末综合测试卷(含解析)

期末综合测试卷一.选择题(共10小题,满分30分,每小题3分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0)B.(1,4)C.(5,4)D.(5,0)2.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是图中的( )A.B.C.D.3.如图,在△ABC中,已知点D,E,F分别为BC,AD,EC的中点,且S=12cm2,则阴影ΔABC部分面积S=( )cm2.A.1B.2C.3D.44.如图,顺次连接同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC=120°,若∠ABC的平分线BE经过点D,则∠ABE的度数为()A.25°B.30°C.35°D.40°5.如图,点P是∠AOB内部一点,点P′,P″分别是点P关于OA,OB的对称点,且P′P″=8cm,则△PMN的周长为()A.5cm B.6cm C.7cm D.8cm6.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB=8,则DE 的长度是()A.6B.2C.3D.47.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t 之间的函数关系如图所示.下列说法中正确的有( )①A、B两地相距120千米;②出发1小时,货车与小汽车相遇③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A .1个B .2个C .3个D .4个8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n ,则△O A 3A 2022的面积是( )A .504m 2B .10092m 2C .505m 2D .10112m 29.在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n ),其中m >a ,a <1,n >0,若△ABC 是等腰直角三角形,且AB =BC ,则m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >310.已知:如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90° ,AB =AC ,AD=AE ,点C 、D 、E 三点在同一直线上,连接BD ,BE ;以下四个结论:①BD=CE ;②∠ACE +∠DBC =45°;③BD ⊥CE ;④∠BAE +∠DAC =180° ;其中结论正确的个数有( )A .1B .2C .3D .4二.填空题(共6小题,满分18分,每小题3分)11.已知AB ∥x 轴,A 的坐标为(3,-2),并且AB=4,则点B 的坐标是____________.12.函数y =(k −1)x −3(k 是常数,k ≠1)的图象上有两个点A (x 1,y 1),B (x 2,y 2),且(x 1−x 2)(y 1−y 2)<0,则k 的取值范围为______.13.在平面直角坐标系中,点A (2,m )在直线y =−2x +1上,点A 关于y 轴对称的点B 恰好落在直线y =kx +1上,则k 的值为___.14.如图,ΔABC 中,∠ACB =90°,AC =6,BC =8.点P 从A 点出发沿A →C →B 路径向终点B点运动;点Q从B点出发沿B→C→A路径向终点A点运动.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动.在某时刻,分别过P和Q作PE⊥l 于E,QF⊥l于F.点P运动________秒时,ΔPEC与ΔQFC全等.15.如图,已知∠MON=30°,点A1,A2,A3,……在射线ON上,点B1,B2,B3,……在射线OM上,ΔA1B1A2,ΔA2B2A3,ΔA3B3A4,……均为等边三角形,若O A1=2,则ΔA6B6A7的边长为___________.16.如图,在四边形ABCD中,AC是四边形的对角线,∠CAD=30°,过点C作CE⊥AB于点E,∠B=2∠BAC,∠ACD+∠BAC=60°,若AB的长度比CD的长度多2,则BE的长为_______________.三.解答题(共9小题,满分72分)17.(6分)已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式|a+b−c|+|b−a−c|=_______.(2)若∠B=∠A+18°,∠C=∠B+18°,求△ABC的各内角度数;18.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作∠CBA的角平分线BD,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在上图中,若BD=10cm,求DC的长19.(6分)已知△ABC三个顶点坐标分别为A(2,5),B(-1,2),C(4,0),在直角坐标系中,正方形网格的单位长度为1.(1)若△ABC内部一点P(a,b),直角坐标系中有点P'(a−3,b−5),请平移△ABC,使点P与点P'重合,画出平移后的△A'B'C';(2)直接写出△A'B'C'的三个顶点的坐标;(3)求出△ABC在平移过程中扫过的面积.20.(8分)已知一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),与坐标轴的交点分别是A 、B 、C 、D .(1)直接写出方程组{ax −y =−6y +x =b的解;(2)求△PCD 的面积;(3)请根据图象直接写出当y 1>y 2时x 的取值范围.21.(8分)如图,在△ABC 中,已知∠1=∠2,BE =CD .(1)证明:AB=AC;(2)AB=5,AE=2,求CE的长.22.(9分)A校和B校分别有库存电脑12台和6台,现决定支援给C校10台和D校8台,从A校运一台电脑到C校的运费是40元,到D校是80元;从B校运一台电脑到C校的运费是30元,到D校是50元.设A校运往C校的电脑为x台,总运费为W元.(1)写出W关于x的函数关系式;(2)从A、B两校调运电脑到C、D两校有多少种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?23.(9分)如图1,在ΔABC中,过点B作BD⊥AB,且BD=AB,连接CD.(问题原型)(1)若∠ACB=90°,且AC=BC=8,过点D作的ΔBCD的BC边上的高DE,易证△ABC≌△BDE,从而得到ΔBCD的面积为______.(变式探究)(2)如图2,若∠ACB=90°,BC=a,用含a的代数式表示△BCD的面积,并说明理由.(拓展应用)(3)如图3,若AB=AC,BC=16,则△BCD的面积为______.24.(10分)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠ADC=90°. E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法:延长FD到点G,使DG=BE.连接AG.先证明△ABE≌△ADG,再证△AEF≌△AGF,可得出结论,他的结论应是.【灵活运用】(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°, F、F分别是BC、CD上的点.且EF=BE+FD,上述结论是否仍然成立?请说明理由.【延伸拓展】(3)如图③,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.25.(10分)如图,△ABC为等边三角形,点D是△ABC外一点,连接AD,BD,CD,AB与CD 相交于点G,且∠DAC+∠DBC=180°.图1 图2(1)请求出∠ADB的度数;(2)请写出AD,BD,CD之间的数量关系,并说明理由;(3)如图2,点E为CD的中点,连接BE并延长,交AC于点F,当BF与CD的夹角∠FEC=60°时,△ABC的面积为12,直接写出△CEF的面积.答案解析一.选择题1.D【分析】根据“横坐标右移加,左移减;纵坐标上移加,下移减”的规律求解即可.【详解】解:将点P(3,2)向右平移2个单位长度得到(5,2),再向下平移2个单位长度,所得到的点坐标为(5,0).故选:D.2.C【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【详解】解:注水量一定,即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.A.容器的底面积大,中,小,则函数图象的走势是平缓,稍陡,陡,故此选项不符合题意;B.容器的底面积小,大,中,则函数图象的走势是陡,平缓,稍陡,故此选项不符合题意;C.容器的底面积中,大,小,则函数图象的走势是稍陡,平缓,陡,故此选项符合题意;D.容器的底面积小,中,大,则函数图象的走势是陡,稍陡,平缓,故此选项不符合题意;故选:C.3.C【分析】根据三角形面积公式由点D为BC的中点得到SΔABD =SΔADC=12SΔABC=6,同理得到SΔEBD=SΔEDC=12SΔABD=3,则SΔBEC=6,然后再由点F为EC的中点得到SΔBEF=12SΔBEC=3.【详解】解:∵点D为BC的中点,∴SΔABD =SΔADC=12SΔABC=6,∵点E为AD的中点,∴SΔEBD =SΔEDC=12SΔABD=3,∴SΔBEC =SΔEBD+SΔEDC=6,∵点F为EC的中点,∴SΔBEF =12SΔBEC=3,即阴影部分的面积为3.故选:C.4.B【分析】首先根据三角形的外角性质得∠ADC=∠A+∠C+∠ABC,从而求出∠ABC,最后根据角平分线的定义即可解决问题.【详解】解:∵∠ADE=∠ABD+∠A,∠EDC=∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120∘=40∘+20∘+∠ABC,∴∠ABC=60∘,∵BE平分∠ABC,∴∠ABE=12∠ABC=30∘,故选:B.5.D【分析】根据点P′,P″分别是P关于OA,OB的对称点,得到PP′被OA垂直平分,PP″被OB垂直平分,根据线段垂直平分线的性质得到MP=MP′,NP=NP″,即可得出△PMN的周长.【详解】∵点P′,P″分别是P关于OA,OB的对称点,∴PP′被OA垂直平分,PP″被OB垂直平分,∴MP=MP′,NP=NP″,∴△PMN的周长=MN+MP+NP=MN+MP′+NP″=P′P″=8(cm).故选:D.6.D【分析】分别延长AC 、BD 交于点F ,根据角平分线的性质得到∠BAD=∠FAD ,证明△BAD ≌△FAD ,根据全等三角形的性质得到BD=DF ,根据平行线的性质得到BE=ED ,EA=ED ,进一步计算即可求解.【详解】解:分别延长AC 、BD 交于点F ,∵AD 平分∠BAC ,AD ⊥BD ,∴∠BAD=∠FAD ,∠ADB=∠ADF=90°,在△BAD 和△FAD 中,{∠BAD =∠FADAD =AD ∠ADB =∠ADF =90°,∴△BAD ≌△FAD (ASA ),∴∠ABD=∠F ,∵DE ∥AC ,∴∠EDB=∠F ,∠EDA=∠FAD ,∴∠ABD=∠EDB ,∠EDA=∠EAD ,∴BE=ED ,EA=ED ,∴BE=EA=ED ,∴DE=12AB=12×8=4,故选:D .7.D【分析】根据图象中t =0 时,s =120 可得A 、B 两地相距的距离,进而可判断①;根据图象中t =1 时,s =0可判断②;由图象t =1.5 和t =3的实际意义,得到货车和小汽车的速度,从而可判断④;根据路程=速度×时间分别计算出货车与小汽车出发1.5小时后的路程,进而可判断③,于是可得答案.【详解】解:由图象可知,当t=0时,货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①正确;当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故小汽车的速度为:120÷ 1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),∴小汽车的速度是货车速度的2倍,故④正确;出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A 地,即小汽车1.5小时行驶路程为120千米,所以出发1.5小时,小汽车比货车多行驶了60千米,故③正确.∴正确的说法有①②③④四个.故选:D.8.B【分析】从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,则第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),点A2020的坐标(1010,0),则点A2022的坐标(1011,1),点A3的坐标(2,1),则A3A2022=1009(m),则△OA3A2023的底边为A3A2022,高为1m,则根据三角形面积公式就可以求得.【详解】解:从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,2023÷4=505…2,∴第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),∴点A2020的坐标(1010,0),∴点A2022的坐标(1011,1),∵点A3的坐标(2,1),则A3A2022=1009(m),∴△OA3A2022的面积是12×1×1009=10092m2,故选:B.9.B【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a ,即可求解.【详解】解:如图,过点C 作CD ⊥x 轴于D ,∵点A (0,2),∴AO =2,∵△ABC 是等腰直角三角形,且AB =BC ,∴∠ABC =90°=∠AOB =∠BDC ,∴∠ABO+∠CBD =90°∠ABO+∠BAO =90°,∴∠BAO =∠CBD ,在△AOB 和△BDC 中,{∠AOB =∠BDC∠BAO =∠CBD AB =BC,∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB+BD =2+a =m ,∴2<m <3,故选:B .10.D【分析】①由AB =AC ,AD =AE 利用等式的性质得到夹角相等,从而得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD =CE ,本选项正确;②由三角形ABD 与三角形ACE 全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC =45°,进而得到∠ACE +∠DBC =45° ,本选项正确;③再利用等腰直角三角形的性质及等量代换得到BD⊥CE,本选项正确;④利用周角减去两个直角可得答案;【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD 即:∠BAD=∠CAE在△BAD和△CAE中{AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS)∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°∴∠ABD+∠DBC=45°∵△BAD≌△CAE∴∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°∴∠ACE+∠DBC=45°∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°即:BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°∴∠BAE+∠DAC=360°−90°−90°=180°,本此选项正确;故选:D.二.填空题11.(-1,-2)或(7,-2)##(7,-2)或(-1,-2)【分析】根据点B与点A的位置关系分类讨论,分别求解即可.【详解】解:∵AB∥x轴,A的坐标为(3,−2),并且AB=4,∴点B的纵坐标为−2,若点B在点A的左侧,则点B的坐标为(3-4,-2)=(-1,-2)若点B在点A的右侧,则点B的坐标为(3+4,-2)=(7,-2)故答案为:(-1,-2)或(7,-2).12.k<1【分析】先根据(x1−x2)(y1−y2)<0可得出{x1−x2>0y1−y2<0或{x1−x2<0y1−y2>0两种情况讨论求解即可.【详解】解:∵点A(x1,y1),B(x2,y2)在函数y=(k−1)x−3(k是常数,k≠1)的图象上,且(x1−x2)(y1−y2)<0,∴{x1−x2>0 y1−y2<0或{x1−x2<0 y1−y2>0∴函数值y随x的增大而减小,∴k−1<0解得,k<1故答案为:k<113.2【分析】根据直线y=−2x+1的解析式求出m,再求出点A关于y轴的对称点,再将对称点带入y=kx+1求出k.【详解】解:点A(2,m)在直线y=−2x+1上,∴m=−3,点 A(2,-3)关于y轴对称的点为(-2,-3),∴−3=−2k+1,∴k=2,故答案为:2.14.1或3.5或12【分析】根据题意分为五种情况,根据全等三角形的性质得出CP=CQ,代入得出关于t的方程,解方程即可.【详解】解:分为五种情况:①如图1,P在AC上,Q在BC上,则PC=6−t,QC=8−3t,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,∵ΔPCE≅ΔCQF,∴PC=CQ,即6−t=8−3t,t=1;②如图2,P在BC上,Q在AC上,则PC=t−6,QC=3t−8,∵由①知:PC=CQ,∴t−6=3t−8,t=1;t−6<0,即此种情况不符合题意;③当P、Q都在AC上时,如图3,CP=6−t=3t−8,t= 3.5;④当Q到A点停止,P在BC上时,如图4,AC=PC,t−6=6时,解得t=12.⑤P和Q都在BC上的情况不存在,因为P的速度是每秒1,Q的速度是每秒3;答:点P运动1或3.5或12秒时,以P、E、C为顶点的三角形上以O、F、C为顶点的三角形全等.故答案为:1或3.5或12.15.64【分析】由等边三角形的性质得到∠BA1A2=60°,A1B1=A1A2,再由三角形外角的性质求1出∠AB1O=30°,则A1B1=A1A2=O A1,同理得A2B2=A2A3=O A2=2O A1,A3B3=A3A4= 122⋅O A1,A4B4=A4A5=23⋅O A1,由此得出规律A n B n=A n A n+1=2n-1⋅O A1=2n,即可求解.【详解】解:∵ΔAB1A2为等边三角形,1∴∠BA1A2=60°,A1B1=A1A2,1∴∠AB1O=∠B1A1A2-∠MON=60°-30°=30°,1∴∠AB1O=∠MON,1∴AB1=O A1,1∴AB1=A1A2=O A1,1同理可得AB2=A2A3=O A2=2O A1,2∴AB3=A3A4=O A3=2O A2=22⋅O A1,3A4B4=A4A5=O A4=2O A3=23⋅O A1,…∴AB n=A n A n+1=2n-1⋅O A1=2n,n∴ΔAB6A7的边长:A6B6=26=64,6故答案为:64.16.1【分析】在AE上截取EF=BE,连接CF,则CE垂直平分BF,结合题意推出AF=CF,过点F作FM ⊥AC,交AC于点M,过点C作CN⊥AD,交AD的延长线于点N,则有∠AMF=∠N=90°,AC=2AM,进而得出AM=CN,根据题意及三角形外角性质推出∠MAF=∠NCD,利用ASA判定△AFM ≌△CDN,根据全等三角形的性质得到AF=CD,结合题意即可得解.【详解】解:在AE上截取EF=BE,连接CF,∵CE⊥AB,∴CE垂直平分BF,∴BC=FC,∴∠B=∠BFC,∵∠B=2∠BAC,∴∠BFC=2∠BAC,∵∠BFC=∠BAC+∠ACF,∴∠ACF=∠BAC ,∴AF=CF ,过点F 作FM ⊥AC ,交AC 于点M ,过点C 作CN ⊥AD ,交AD 的延长线于点N ,则有∠AMF=∠N=90°,AC=2AM ,∵∠CAD=30°,∠N=90°,∴AC=2CN ,∴AM=CN ,∵∠ACD+∠BAC=60°,∴∠ACD=60°-∠BAC ,∴∠CDN=∠ACD+∠CAD=60°-∠BAC+30°=90°-∠BAC ,∴∠NCD=90°-∠CDN=90°-(90°-∠BAC )=∠BAC ,∴∠MAF=∠NCD ,在△AFM 和△CDN 中,{∠MAF =∠NCDAM =CN ∠AMF =∠N,∴△AFM ≌△CDN (ASA ),∴AF=CD ,∵AB 的长度比CD 的长度多2,∴AB- CD=AB- AF=2BE=2,∴BE=1,故答案为:1.三.解答题17.(1)解:∵在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∴a +b >c ,b −a <c ,∴a +b −c >0,b −a −c <0,∴|a +b −c|+|b −a −c|=a +b −c −(b −a −c )=a +b −c −b +a +c=2a,故答案为:2a;(2)解:∵∠B=∠A+18°,∠C=∠B+18°,∴∠C=∠A+18°+18°=∠A+36°,∵∠A+∠B+∠C=180°,∴∠A+∠A+18°+∠A+36°=180°,解得∠A=42°,故∠B=42°+18°=60°,∠C=60°+18°=78°,故△ABC的各内角度数分别为42°,60°,78°.18.(1)如图所示:(2)∵△ABC中,∠C=90°,∠A=30°∴∠ABC=90°-∠A=90°-30°=60°∵BD平分∠ABC∴∠DBC=12×60∘=30∘∵△DBC中,∠C=90°,∠CBD=30°∴CD=12BD=12×10=5cm答:CD长5cm19.(1)解:由题意可知,只需要将点A、B、C的坐标分别向左平移3个单位长度,向下平移5个单位长度,画出图形即可,△A'B'C'如图所示:(2)解:坐标内同一个图形中点的坐标的平移方式一致,故A'(−1,0),B'(−4,−3),C'(1,−5)(3)解:如图,△ABC在平移过程中扫过的面积为△ABC的面积与四边形B B'C'C的面积和,即8×10−2×12×3×5−12×2×5−3×3−12×3×3−12×2×5=41.5,即△ABC在平移过程中扫过的面积为41.520.(1)解:∵一次函数y1=ax+6和y2=﹣x+b的图象交于点P(1,2),∴方程组{ax −y =−6y +x =b 的解为{x =1y =2;(2)∵一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),∴{a+6=2−1+b =2 ,解得{a =−4b =3 ,∴y 1=﹣4x+6,y 2=﹣x+3,当y =0时,0=﹣4x +6,解得x =32,当y =0时,0=﹣x+3,解得x =3,∴C (32,0),D (3,0),∴CD =32,∴S △PCD =12×32×2=32.即△PCD 的面积为32;(3)根据图象可知当在P 点左边时y 1>y 2,∴y 1>y 2时x 的取值范围为x <1.21.(1)证明:在△ABE 和△ACD 中,∵{∠A =∠A∠1=∠2BE =CD,∴△ABE ≌△ACD ,∴AB =AC .(2)解:∵△ABE ≌△ACD ,∴AB =AC ,∵AB =5,AE =2,∴CE =AC -AE =5-2=3.22.(1)解:设A校运往C校的电脑为x台,则A校运往D校的电脑为(12−x)台,从B校运往C校的电脑为(10−x)台,运往D校的电脑为8−(12−x)=(x−4)台,由题意得,W=40x+80(12−x)+30(10−x)+50(x−4),=−20x+1060,由{12−x≥010−x≥0x−4≥0解得4≤x≤10,所以,W=1060−20x(4≤x≤10);(2)∵4≤x≤10∴0≤x−4≤6共有7种调运方案,即B到D的可以是0,1,2,3,4,5,6这7种情况.(3)∵k=−20<0,∴W随x的增大而减小,∴当x=10时,W最小,最小值为:−20×10+1060=860元.答:总运费最低方案:A校给C校10台,给D校2台,B校给C校0台,给D校6台,最低运费是860元.23.解:(1)∵在△ABC中,∠ACB=90°,过点B作BD⊥AB且过点D作的△BCD的BC边上的高DE,∴∠DEB=∠ACB =∠ABD =90°∴∠ABC+∠DBE =90°∵∠DBE+∠BDE =90°∴∠ABC =∠BDE .在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠ABC =∠BDE AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =8∴S ΔBCD =12CB ⋅DE =12×8×8=32故答案为:32(2)S ΔBCD =12a 2理由:过点D 作DE ⊥CB 延长线于点E ∴∠DEB=∠ACB =90°∵BD ⊥AB ,∠1+∠2=90°∵∠2+∠A =90°∴∠A =∠1.在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠A =∠1AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =a ∴S ΔBCD =12CB ⋅DE =12a 2(3)如图3中,∵AB =AC∴BF =12BC =12×8=4.过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E,∴∠AFB=∠E =90°,∴∠FAB+∠ABF =90°.∵∠ABD=90°,∴∠ABF+∠DBE =90°,∴∠FAB =∠EBD .在△AFB 和△BED 中,{∠AFB =∠E∠FAB =∠EBD AB =BD,∴△AFB ≌△BED(AAS),∴BF =DE =4.∵S △BCD =12BC ⋅DE ,∴S △BCD =12×8×4=16∴△BCD 的面积为16.故答案为:1624.解:(1)∠BAE+∠FAD=∠EAF .理由:如图1,延长FD 到点G ,使DG=BE ,连接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案为:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°−1∠DAB.2证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°−1∠DAB.225.(1)解:∵四边形ACBD,∴∠DAC+∠DBC+∠ADB+∠ACB=360°.∵△ABC为等边三角形,∴∠ACB=60°.又∵∠DAC +∠DBC =180°,∴∠ADB =120°.(2)AD +BD =CD ,理由如下:如图,延长BD 至点H ,使得DH =AD ,连接AH .∵由(1)可知∠ADB =120°,∴∠ADH =60°.又∵DH =AD ,∴△ADH 为等边三角形.∴∠HAD =60°.AD =AH =DH .∵△ABC 为等边三边形,∴∠HAD +∠DAB =∠BAC +∠DAB .即∠HAB =∠DAC .在△HAB 与△DAC 中,{AH =AD ∠HAB =∠DAC AB =AC ∴△HAB ≅△DAC(SAS),∴CD =BH .又∵BH =BD +DH =BD +AD ,∴AD +BD =CD .(3)由(1)可知∠ABD=∠ACG,∵∠DGB=∠AGC,∴∠BDG=∠CAG=60°,∵∠CEF=∠BED=60°,∴△BDE是等边三角形,∴BE=DE,∵DE=EC,∴BE=EC,∵∠BEC=120°,∴∠EBC=∠ECB=30°,∵∠ABC=∠ACB=60°,∴∠ABF=∠CBF=30°,∠ACE=∠BCE=30°,∵BA=BC,∴BF⊥AC,AF=CF,∴EC=2EF,∴BE=2EF,∵△ABC 的面积为12,∴S△CEF =13S△BCF=16S△ABC=2.。
沪科版八年级上册数学期末测试卷(参考答案)

沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在平面直角坐标系中,点( ,)关于轴对称的点的坐标是()A.(,)B.(,)C.(,)D.(,)2、点M(2,-1)向上平移2个单位长度得到的点的坐标是()A.(2,0)B.(2,1)C.(2,2)D.(2,)3、在同一平面直角坐标系中,函数y=mx+m与y= (m≠0)的图象可能是()A. B. C. D.4、如图,函数=2 和= +4的图象相交于点A(,3),则不等式2 <+4的解集为()A. <B. <3C. >D. >35、把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有()( 1 )∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A.1个B.2个C.3个D.46、平面直角坐标系y轴上有一点P(m-1,m+3),则P点坐标是()A.(-4,0)B.(0,-4)C.(4,0)D.(0,4)7、如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F.若S=12,DF=2,AC=3,则AB的长是()△ABCA.2B.4C.7D.98、如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P 的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.9、如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=4,则图中阴影部分的面积为()A. +B. +2C. +D.2 +10、下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等; C.等腰三角形的底角可以是直角; D.直角三角形的两锐角互余.11、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=-x-2C.y=x+2D.y=x-212、如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0)B.(8,-8)C.(-8,8)D.(0,16)13、如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=65°,∠E=60°,则∠BAC的大小为( )A.60°B.75°C.85°D.95°14、函数y=﹣中的自变量x的取值范围是()A.x≥0B.x<0且x≠1C.x<0D.x≥0且x≠115、如图,在中,.若,,则的度数是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是________.(填写序号)17、如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM=________.18、如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为________.19、如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=14cm,BC=12cm,S=52cm2,则DE=________ cm.△ABC20、如图,平行四边形ABCD的对角线AC,BD交于点O,△AOD是正三角形,AD=4,则平行四边形ABCD的面积为________.21、如图,和都是等腰直角三角形,若,,,则________.22、已知:如图,△ABC是等边三角形,延长AC到E,C为线段AE上的一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC.以下五个结论:①AD=BE;②AP=BO;③PQ//AE;④∠AOB=60°;⑤OC平分∠AOE;结论正确的有________(把你认为正确的序号都填上)23、三角形两边的长分别是3和4,第三边的长是方程的根,则该三角形的周长为________.24、如图,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A、B两点,D、E分别是AB,OA上的动点,当△CDE周长最小时,点D坐标为________.25、在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y= 上,则k值可以是________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、如图.AB=AD,∠ABC=∠ADC,求证:BC=DC.28、如图,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图,连接AE和GC. 你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.29、C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明:AC+DE=CE.30、已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、A5、D6、D8、D9、B10、C11、C12、C13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
沪科版八年级上册数学期末测试卷及含答案

沪科版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时2、已知点A的坐标是(2,1),以坐标原点O为位似中心,图像与原图形的位似比为2,则点的坐标为()A.(1,)B.(4,2)C.(1,)或(-1,- )D.(4,2)或(-4,-2)3、如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE :S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个4、如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G.连接EF,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.则正确结论的序号是()A.①③B.②④C.①③④D.②③④5、已知抛物线具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线上一个动点,则∆PMF周长的最小值是()A.3B.4C.5D.66、若点M(3,-2)与点N(x、y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为()A.(4,-2)B.(3,-1)C.(3,-1)或(3,-3)D.(4,-2)或(2,-2)7、如图,将绕点C顺时针旋转得到,使点A的对应点D恰好落在边上,点B的对应点为E,连接.下列结论一定正确的是()A. B. C. D.8、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A. B. C. D.9、如图,以两条直线l1, l2的交点坐标为解的方程组是( )A. B. C. D.10、如图,矩形ABCD中,,,且BE与DF之间的距离为3,则AE的长是)A. B. C. D.11、到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点12、下列图形中,不是轴对称图形的是()A. B. C. D.13、如图所示的网格中各有不同的图案,不能通过平移得到的是()A. B. C. D.14、如图,点O为平行四边形ABCD对角线AC、BD的交点,过点O的直线与边AB、DC的延长线分别交于点E、F,EF与AD、BC相交于点G、H.则图中全等三角形有()A.8对B.9对C.10对D.11对15、下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.7 cm、5 cm、11 cmB.4 cm、3 cm、7 cmC.5 cm、10 cm、4 cmD.2 cm、3 cm、1 cm二、填空题(共10题,共计30分)16、如图,在半径为2cm的扇形纸片AOB中,∠AOB=90°,将其折叠使点B落在点O 处,折痕为DE,则图中阴影部分的面积为________cm217、平面直角坐标系中,已知A(8,0),△AOP为等腰三角形,且△AOP的面积为16,则满足条件的P点个数是________.18、如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又不重叠的四边形EFGH,若EH=4,EF=5,那么线段AD与AB的比等于________.19、将矩形ABCD折叠,使得对角线的两个端点A、C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,则BC的长为________.20、如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A→C →B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A点.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,当一个点到达终点时另一个点也停止运动,在某时刻,分别过P和Q作PE⊥l 于E,QF⊥l于F.设运动时间为t秒,则当t=________秒时,△PEC与△QFC 全等.21、如果点P1(﹣2,3)和P2(﹣2,b)关于x轴对称,则b=________.22、函数的定义域是________.23、如图,在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是________.24、已知直线y=kx﹣4(k≠0)与两坐标轴所围成的三角形的面积为4,则该直线的函数关系式为________.25、折叠矩形ABCD,使它的顶点D落在BC边上的F处,如图,AB=6,AD=10,那么CE的长为________.三、解答题(共5题,共计25分)26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、如图,点A,E,F,B在直线l上,AE=BF,AC//BD,且AC=BD,求证:CF=DE28、小林同学利用暑假参观了幸福村果树种植基地(如图),他出发沿(1,3),(﹣3,3),(﹣4,0),(﹣4,﹣3),(2,﹣2),(5,﹣3),(5,0),(5,4)的路线进行了参观,写出他路上经过的地方,并用线段依次连接他经过的地点.29、已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.30、证明:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:在给出的△ABC中用尺规作出AB、AC边的中点M、N,保留作图痕迹,不要求写作法,并根据图形写出已知、求证和证明)参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、C5、C6、D7、D8、C9、C10、C11、A12、A13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
沪科版八年级数学上册期末测试题含答案

沪科版八年级数学上册期末测试题含答案一、选择题(每题4分,共40分)1.下面四个手机应用图标中是轴对称图形的是()2.下面的四个点中,位于第一象限的点是()A.(1,-5) B.(1,5) C.(-1,5) D.(-1,-5)3.如图是正方形的网格,则∠1与∠2的关系是()A.互余B.互补C.相等D.无法判断4.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等5.如果点A(x1,y1),B(x2,y2)都在一次函数y=-x+3的图象上,并且x1<x2,那么y1与y2的大小关系正确的是()A.y1>y2B.y1<y2C.y1=y2D.无法判断6.现有两根木棒,长度分别为5 cm和17 cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取()A.24 cm的木棒B.15 cm的木棒C.12 cm的木棒D.8 cm的木棒7.下列表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()8.如图,在△ABC中,∠B+∠C=100°,AD平分∠BAC,交BC于点D,DE ∥AB,交AC于点E,则∠ADE的大小是()A.30°B.40°C.50°D.60°9.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P 关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段Q R的长为()A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm10.如图,在△ABC中,∠BCA=90°,∠CBA的邻补角的平分线所在直线交AC 的延长线于F,交斜边AB上的高CD的延长线于E,EG∥AC交AB的延长线于G,则下列结论:①CF=CE;②GE=CF;③EF是CG的垂直平分线;④BC=BG,其中正确的是()A.①②③④B.①③④C.②③④D.①②二、填空题(每题5分,共20分)11.命题“有两边相等的三角形是等腰三角形”的题设是________________,结论是________________,它的逆命题是__________________.12.如图,等边△ABC的边长为1 cm,D,E分别是AB,AC上的点,将△ABC 沿直线DE折叠,点A落在A′处,且A′在△ABC外部,则阴影部分的周长为________cm.13.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3,…每个正方形四条边上的整点的个数.按此规律推算出正方形A2 019B2 019C2 019D2 019四条边上的整点共有________个.三、解答题(15~17题每题6分,其余每题12分,共90分)15.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1的坐标:A1________,B1________;(3)S△A1B1C1=________.16.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.17.将一张长方形纸条ABCD按如图所示折叠,若∠FEC=64°.(1)求∠1的度数;(2)求证:△EFG是等腰三角形.18.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数y=kx+b的图象经过点B(-2,-1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数表达式;(2)求C点的坐标;(3)求△AOD的面积.19.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF ⊥AC交AC的延长线于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE,BE的长.20.如图,直线l:y=-12x+2与x轴、y轴分别交于A,B两点,在y轴上有一点C(0,4),动点M从A点出发以每秒1个单位的速度沿x轴向左移动.(1)求A,B两点的坐标;(2)求△COM的面积S与点M的移动时间t之间的函数表达式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.21.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系图象如图①中的点状图所示(5月份及以后每月的销售额都相等),而经销成本p(万元)与销售额y(万元)之间的函数关系图象如图②中的线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数表达式;(2)分别求该公司3月、4月的利润;(利润=销售额-经销成本)(3)问:把3月作为第1个月开始往后算,最早到第几个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?22.(1)如图①,直线m经过正三角形ABC的顶点A,在直线m上取两点D,E,使得∠ADB=60°,∠AEC=60°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明;(2)将(1)中的直线m绕着点A按逆时针方向旋转到如图②的位置,并使∠ADB=120°,∠AEC=120°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.23.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,α与β之间的数量关系是________,证明你的结论;(2)如图②,点D在线段BC的延长线上移动时,α与β之间的数量关系是____________,请说明理由;(3)当点D在线段BC的反向延长线上移动时,请在图③中画出完整图形,此时α与β之间的数量关系是____________.答案一、1.D 2.B 3.A 4.B 5.A 6.B7.A8.B9.A10.A点拨:由BF平分∠GBC得∠GBF=∠CBF,因为∠GBF=∠EBD,所以∠CBF=∠EBD,利用等角的余角相等得∠F=∠BED,所以CF=CE,所以①正确;由GE∥AF,利用平行线的性质得∠F=∠GEB,则∠GEB=∠CEB,易证△BEG≌△BEC,则GE=CE,所以GE=CF,即可得到②正确;根据等腰三角形的性质易得EF垂直平分GC,所以③正确;根据线段垂直平分线的性质得BC=BG,所以④正确.故选A.二、11.一个三角形有两条边相等;这个三角形是等腰三角形;等腰三角形有两条边相等12.313.≥214.16 152三、15.解:(1)略(2)(0,-4);(-2,-2)(3)716.证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴△ABC≌△DEF.17.(1)解:∵∠GEF=∠FEC=64°,∴∠BEG=180°-64°×2=52°∵AD∥BC,∴∠1=∠BEG=52°.(2)证明:∵AD∥BC,∴∠GFE=∠FEC,∴∠GEF=∠GFE,∴GE=GF,∴△EFG是等腰三角形.18.解:(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),∴2m=2,∴m=1.把点A(1,2)和点B(-2,-1)的坐标代入y=kx+b,得k+b=2,-2k+b=-1,解得k=1,b=1,则一次函数表达式是y=x +1.(2)在y=x+1中,令x=0,则y=1,所以点C(0,1).(3)在y =x +1中,令y =0,所以x =-1.则△AOD 的面积=12×1×2=1.19.解:(1)连接BD ,CD ,∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠BED =∠CFD =90°.∵DG ⊥BC 且平分BC ,∴BD =CD .在Rt △BED 与Rt △CFD 中,BD =CD ,DE =DF ,∴Rt △BED ≌Rt △CFD (HL ),∴BE =CF .(2)在△AED 和△AFD 中,∠AED =∠AFD =90°,∠EAD =∠F AD , AD =AD ,∴△AED ≌△AFD (AAS ),∴AE =AF .设BE =x ,则CF =x ,∵AB =5,AC =3,AE =AB -BE ,AF =AC +CF ,∴5-x =3+x ,解得x =1,∴BE =1,AE =AB -BE =5-1=4.20.解:(1)在y =-12x +2中,当x =0时,y =2.当y =0时,-12x +2=0,解得x =4,所以A (4,0),B (0,2).(2)当0<t ≤4时,OM =4-t ,S =12OM ·OC =12(4-t )×4=-2t +8;当t >4时,OM =t -4,S =12OM ·OC =12(t -4)×4=2t -8.(3)因为△COM ≌△AOB ,所以OM =OB =2,当0<t ≤4时,OM =4-t =2,所以t =2.当t >4时,OM =t -4=2,所以t =6.所以当t =2或6时,△COM ≌△AOB ,此时M 点的坐标是(2,0)或(-2,0).21.解:(1)设经销成本p 与销售额y 之间的函数表达式为p =ky +b (k ≠0),则⎩⎨⎧100k +b =60,200k +b =110,解得⎩⎪⎨⎪⎧k =12,b =10.∴p =12y +10(100≤y ≤200).(2)利润=销售额-经销成本=y -⎝ ⎛⎭⎪⎫12y +10=12y -10.由题图①知,当x =3时,y=150;当x=4时,y=175.∴3月份的利润为12×150-10=65(万元),4月份的利润为12×175-10=77.5(万元).(3)设最早到第x个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,用原线下销售方式每月销售所获的利润为12×100-10=40(万元),5月份及以后用线上方式销售每月的利润为12×200-10=90(万元),依题意,得[65+77.5+90(x-2)]-40x≥200,解得x≥4.75.∵x是整数,∴x至少取5.答:最早到第5个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.22.解:(1)猜想:BD+CE=DE.证明:∵在正三角形ABC中,∠BAC=60°,∴∠DAB+∠CAE=120°,又∵∠AEC=60°,∴∠ECA+∠CAE=120°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠CEA=60°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴BD+CE=AE+AD=DE.(2)猜想:CE-BD=DE.证明:∵在正三角形ABC中,∠BAC=60°,∴∠DAB+∠CAE=60°,∵∠AEC=120°,∴∠ECA+∠CAE=60°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠CEA=120°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴CE-BD=AD-AE=DE.23.解:(1)α+β=180°证明:∵∠DAE=∠BAC,∴∠DAE-∠DAC=∠BAC-∠DAC,∴∠CAE=∠BAD.∵在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°.(2)α=β理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,即α=β.(3)图略,α=β。
沪科版八年级数学上册期末测试卷及答案

沪科版数学八年级上册期末测试卷及答案一、选择题(本大题共10小题,共40分)1. 点,1(P )2-关于y 轴对称的点的坐标是( )A. (1,2)B. (-1,2)C. (-1,-2)D. (-2,1)2. 有一个角是的等腰三角形,其它两个角的度数是( )A. 36°,108°B. 36°,72°C. 72°,72°D. 36°,108°或72°,°72°3. 点P 在x 轴的下方,且距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标为( )A. (4,-3)B. (3,-4)C. (-3,-4)或(3,-4)D. (-4,-3)或(4,-3)4. 若三条线段中3=a ,5=b ,c 为奇数,那么由a 、b 、c 为边组成的三角形共有( )A. 1个B. 3个C. 无数多个D. 无法确定5. 在同一直角坐标系中,若直线3+=kx y 与直线b x y +-=2平行,则( )A.2-=k ,3≠bB.2-=k ,3=bC.2-≠k ,3≠bD.2-≠k ,3=b6. 当0>k ,0<b 时,函数b kx y +=的图象大致是( ) A. B. C. D.7. 有以下四个命题:其中正确的个数为( )(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是矩形;(3)两条对角线互相垂直的平行四边形是菱形;(4)有一组邻边相等且有一个角是直角的四边形是正方形;A. 1B. 2C. 3D. 48. 如图,OP 是∠AOB 的平分线,点P 到OA 的距离为3,点N 是OB 上的任意一点,则线段PN 的取值范围为( )A. 3<PNB. 3>PNC. 3≥PND. 3≤PN9. 如图,将矩形纸片ABCD 折叠,使点D 与点B重合,点C 落在C '处,折痕为EF ,若1=AB ,2=BC ,则△ABE 和F C B '的周长之和为( )A. 3B. 4C. 6D. 810.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离 其中是真命题的个数有( )A. 0个B. 1个C. 2个D. 3个二、填空题(每题5分,共20分)11.命题“有两边相等的三角形是等腰三角形”的题设是________________,结论是________________,它的逆命题是__________________.12.如图,等边△ABC的边长为1 cm,D,E分别是AB,AC上的点,将△ABC 沿直线DE折叠,点A落在A′处,且A′在△ABC外部,则阴影部分的周长为________cm.13.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3,…每个正方形四条边上的整点的个数.按此规律推算出正方形A2 019B2 019C2 019D2 019四条边上的整点共有________个.三、解答题(15~17题每题6分,其余每题12分,共90分)15.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1的坐标:A1________,B1________;(3)S△A1B1C1=________.16.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.17.将一张长方形纸条ABCD按如图所示折叠,若∠FEC=64°.(1)求∠1的度数;(2)求证:△EFG是等腰三角形.18.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数y=kx+b的图象经过点B(-2,-1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数表达式;(2)求C点的坐标;(3)求△AOD的面积.19.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF ⊥AC交AC的延长线于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE,BE的长.20.如图,直线l:y=-12x+2与x轴、y轴分别交于A,B两点,在y轴上有一点C(0,4),动点M从A点出发以每秒1个单位的速度沿x轴向左移动.(1)求A,B两点的坐标;(2)求△COM的面积S与点M的移动时间t之间的函数表达式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.21.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系图象如图①中的点状图所示(5月份及以后每月的销售额都相等),而经销成本p(万元)与销售额y(万元)之间的函数关系图象如图②中的线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数表达式;(2)分别求该公司3月、4月的利润;(利润=销售额-经销成本)(3)问:把3月作为第1个月开始往后算,最早到第几个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?22.(1)如图①,直线m经过正三角形ABC的顶点A,在直线m上取两点D,E,使得∠ADB=60°,∠AEC=60°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明;(2)将(1)中的直线m绕着点A按逆时针方向旋转到如图②的位置,并使∠ADB=120°,∠AEC=120°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.23.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,α与β之间的数量关系是________,证明你的结论;(2)如图②,点D在线段BC的延长线上移动时,α与β之间的数量关系是____________,请说明理由;(3)当点D在线段BC的反向延长线上移动时,请在图③中画出完整图形,此时α与β之间的数量关系是____________.沪科版数学八年级上册期末测试卷参考答案1. C2. D3. D4. B5. A6. D7. B8. C9.C10.A二、11.一个三角形有两条边相等;这个三角形是等腰三角形;等腰三角形有两条边相等12.313.≥214.16 152三、15.解:(1)略(2)(0,-4);(-2,-2)(3)716.证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴△ABC≌△DEF.17.(1)解:∵∠GEF=∠FEC=64°,∴∠BEG=180°-64°×2=52°∵AD∥BC,∴∠1=∠BEG=52°.(2)证明:∵AD∥BC,∴∠GFE=∠FEC,∴∠GEF=∠GFE,∴GE=GF,∴△EFG是等腰三角形.18.解:(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),∴2m=2,∴m=1.把点A(1,2)和点B(-2,-1)的坐标代入y=kx+b,得k+b=2,-2k+b=-1,解得k=1,b=1,则一次函数表达式是y=x +1.(2)在y=x+1中,令x=0,则y=1,所以点C(0,1).(3)在y=x+1中,令y=0,所以x=-1.则△AOD的面积=12×1×2=1.19.解:(1)连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE =DF ,∠BED =∠CFD =90°.∵DG ⊥BC 且平分BC ,∴BD =CD .在Rt △BED 与Rt △CFD 中,BD =CD ,DE =DF ,∴Rt △BED ≌Rt △CFD (HL ),∴BE =CF .(2)在△AED 和△AFD 中,∠AED =∠AFD =90°,∠EAD =∠F AD , AD =AD ,∴△AED ≌△AFD (AAS ),∴AE =AF .设BE =x ,则CF =x ,∵AB =5,AC =3,AE =AB -BE ,AF =AC +CF ,∴5-x =3+x ,解得x =1,∴BE =1,AE =AB -BE =5-1=4.20.解:(1)在y =-12x +2中,当x =0时,y =2.当y =0时,-12x +2=0,解得x =4,所以A (4,0),B (0,2).(2)当0<t ≤4时,OM =4-t ,S =12OM ·OC =12(4-t )×4=-2t +8;当t >4时,OM =t -4,S =12OM ·OC =12(t -4)×4=2t -8.(3)因为△COM ≌△AOB ,所以OM =OB =2,当0<t ≤4时,OM =4-t =2,所以t =2.当t >4时,OM =t -4=2,所以t =6.所以当t =2或6时,△COM ≌△AOB ,此时M 点的坐标是(2,0)或(-2,0).21.解:(1)设经销成本p 与销售额y 之间的函数表达式为p =ky +b (k ≠0),则⎩⎨⎧100k +b =60,200k +b =110,解得⎩⎪⎨⎪⎧k =12,b =10.∴p =12y +10(100≤y ≤200). (2)利润=销售额-经销成本=y -⎝ ⎛⎭⎪⎫12y +10=12y -10.由题图①知,当x =3时,y =150;当x =4时,y =175.∴3月份的利润为12×150-10=65(万元),4月份的利润为12×175-10=77.5(万元).(3)设最早到第x 个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,用原线下销售方式每月销售所获的利润为12×100-10=40(万元),5月份及以后用线上方式销售每月的利润为12×200-10=90(万元),依题意,得[65+77.5+90(x-2)]-40x≥200,解得x≥4.75.∵x是整数,∴x至少取5.答:最早到第5个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.22.解:(1)猜想:BD+CE=DE.证明:∵在正三角形ABC中,∠BAC=60°,∴∠DAB+∠CAE=120°,又∵∠AEC=60°,∴∠ECA+∠CAE=120°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠CEA=60°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴BD+CE=AE+AD=DE.(2)猜想:CE-BD=DE.证明:∵在正三角形ABC中,∠BAC=60°,∴∠DAB+∠CAE=60°,∵∠AEC=120°,∴∠ECA+∠CAE=60°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠CEA=120°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴CE-BD=AD-AE=DE.23.解:(1)α+β=180°证明:∵∠DAE=∠BAC,∴∠DAE-∠DAC=∠BAC-∠DAC,∴∠CAE=∠BAD.∵在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°.(2)α=β理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,即α=β.(3)图略,α=β。
沪科版八年级上册数学期末测试卷(含解析)

沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、△ABC中,∠ABC=30°,边AB=10,边AC可以从4,5,7,9,11取一值.满足这些条件的互不全等三角形的个数是()A.6B.7C.5D.42、若点在第二象限内,则点()在()A. 轴正半轴上B. 轴负半轴上C. 轴正半轴上D. 轴负半轴上3、下列线段长能构成三角形的是()A.3、4、8B.2、3、6C.5、6、11D.5、6、104、下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.5、圆的周长公式为C=2πr,下列说法正确的是()A.π是自变量B.π和r都是自变量C.C、π是变量D.C、r 是变量6、一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是( )A. B. C. D.7、小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:① 的距离为120米;②乙的速度为60米/分;③ 的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有()个A.1B.2C.3D.48、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是()A.6B.5C.10D.89、下列图形中阴影部分面积相等的是()A.①②B.②③C.①④D.③④10、如图所示,为的切线,切点为点A,交于点C,点D在上,若的度数是32°,则的度数是( )A.29°B.30°C.32°D.45°11、下列图形中,对称轴最多的是()A.正方形B.线段C.圆D.等腰三角形12、如图,过点Q(0,3.5)的一次函数的图象与正比例函数的图象相交于点P ,能表示这个一次函数图象的方程是()A. B. C. D.13、如图(1),在矩形ABCD中,动点P从点B出发,沿着BC、CD、DA运动到点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图(2)所示,则△ABC的周长为()A.9B.6C.12D.714、用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,,则该等腰三角形的腰长为()A.4cmB.6cmC.4cm或6cmD.4cm或8cm15、如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m-1)D. (m-2)二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD 的中点,若AD=10,则CP的长为________.17、如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△AʹBʹCʹ,连接AʹC,则△AʹBʹC的周长为________.18、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,△ADE的顶点D在BC上运动,且∠DAE=90°,∠ADE=∠B,F为线段DE的中点,连接CF,在点D运动过程中,线段CF长的最小值为________.19、如图,直线y=mx﹣4m(m<0)与x,y轴分别相交于A,B两点,将△AOB 绕点O逆时针转90°得到△COD,E为AB中点,F为CD中点,连接EF,G为EF 中点,连接OG.若OG=,则m的值为________ .20、如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为________.21、如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;② ;③∠ADF=2∠ECD;④;⑤CE=DF.其中正确结论的序号是________.22、现以A(0,4),B(﹣3,0),C(3,0)三点为顶点画平行四边形,则第四个顶点D的坐标为________.23、如图,在中,AB=AC=10,BC=12,AD=8,A D⊥BC.若P、Q分别是AD 和AC上的动点,则PC+PQ的最小值是________.24、已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=________.25、若点(a,-2)与点(-3,b)关于x轴对称,则a+b= ________三、解答题(共5题,共计25分)26、如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠A=56°,求∠EDF.27、如图,已知.相交于点.求证:.28、如图,E是□ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.29、在同一平面直角坐标系中,观察以下直线:y=2x,y=﹣x+6,y=x+2,y=4x ﹣4图象的共同特点,若y=kx+5也有该特点,试求满足条件的k值.30、在△ABC中,AB=AC,AB边上的中线CD把三角形的周长分成6和15的两部分,求三角形腰和底的长.参考答案一、单选题(共15题,共计45分)1、A2、A3、D4、B5、D6、B7、C8、B10、A11、C12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
沪科版数学八年级上册期末测试题及答案

沪科版数学八年级上册期末测试题(时间:120分钟分值:120分)一、选择题(共10小题,每小题4分,满分40分)1.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5) C.(﹣2,﹣5)D.(2,﹣5)2.点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,2)3.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.34.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定()A.小于直角B.等于直角C.大于直角D.不能确定5.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等6. 对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(4分)如图,若△ABC≌△DEF,∠E=()A.30°B.62°C.92°D.88°8.(4分)如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC =12cm,AC=9cm,那么BD的长是()A.7cm B.9cm C.12cm D.无法确定9.(4分)如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件不可以是()A.AB=CD B.OB=OD C.∠A=∠C D.∠B=∠D 10.(4分)已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()A.4对B.3对C.2对D.1对二、填空题(共6小题,每小题4分,满分24分)11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,那么∠ACE 的大小是_____度.12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=度.13.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.14.若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2014=.15.(4分)如图,四边形ABCD的对角线相交于O点,且有AB∥DC,AD∥BC,则图中有对全等三角形.16.(4分)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.三、解答题(共4小题,满分36分)17.(8分)下列句子是命题吗?若是,把它改写成“如果……那么……”的形式,并写出它的逆命题,同时判断原命题和逆命题的真假.(1)一个角的补角比这个角的余角大多少度?(2)垂线段最短,对吗?(3)等角的补角相等.(4)两条直线相交只有一个交点.(5)同旁内角互补.(6)邻补角的角平分线互相垂直.18.(9分)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.19.(9分)如图,点B、C、E、F在同一直线上,AB∥DE,∠A=∠D,BF=CE求证:AB=DE.20.(10分)如图所示,已知线段a、b、h(h<b).求作△ABC,使BC=a,AB=b,BC 边上的高AD=h.(要求:写出作法,并保留作图痕迹)参考答案一、选择题。
沪科版八年级上册数学期末测试卷【及含答案】

沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,▱ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取值范围是()A.1<m<11B.2<m<22C.10<m<12D.5<m<62、点A(-5,4)关于原点的对称点A/的坐标为()A.(5,4)B.(5,-4)C.(-5,4)D.(-5,-4)3、已知一次函数y= x+a与y=x+b的图象都经过点A(﹣2,0),且与y 轴分别交于B,C两点,那么△ABC的面积是()A.2B.3C.4D.54、如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A. B. C. D.5、如图,是的两条角平分线,,则的度数为()A. B. C. D.6、一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7、△ABC中,等腰三角形有两条边分别为2,4,则等腰三角形的周长为()A.6B.8C.10D.8或108、如图,已知:是不等边三角形,请以为公共边,能作出()个三角形与全等,且构成的整体图形是轴对称图形.()A. 个B. 个C. 个D. 个9、观察下图中各组图形,其中不是轴对称的是()A. B. C.D.10、下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A.3,4,5B.7,8,15C.3,12,20D.5,11,511、直线y=2x﹣1沿y轴向下平移3个单位,则平移后直线与x轴的交点坐标为()A.(﹣2,0)B.(2,0)C.(4,0)D.(﹣1,0)12、以下四个三角形分别满足以下条件:①∠A=∠B=∠C;②∠A﹣∠B=∠C;③∠A=∠B=2∠C;④∠A= ∠B= ∠C,其中是Rt△的个数为()A.1B.2C.3D.413、如下图,将△ABC的各边都延长一倍至A'、B'、C',连接这些点,得到一个新的三角形A'B'C',若△ABC的面积为3,则△A'B'C'的面积是( )A.18B.21C.24D.314、如图,点D、E是等边△ABC的边BC、AC上的点,且CD=AE,AD、BE相交于P点,BQ⊥AD于Q,已知PE=1,PQ=2.5,则AD等于()A.5B.6C.7D.815、如图,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为( )A.15B.16C.18D.20二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是________.17、用7根火柴首尾顺次相接摆成一个三角形,能摆成________个不同的三角形.18、把一张长方形纸条按如图方式折叠,若∠1=40°,则∠2的度数是________.19、直线与x轴的交点坐标是________.20、点(﹣3,5)到x轴上的距离是________,到y轴上的距离是________.21、如图,把一个长方形纸片沿EF折叠后,点A,B分别落在A′,B′的位置,若∠A′FD=50°,则∠CEF等于________.22、摩托车油箱中有8升油,行驶时每小时耗油2升,在不加油的情况下,求余油量Q(升)与行驶时间t(小时)之间的函数关系式为________,这里的时间t的取值范围为________.23、如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为________cm.24、已知,点A在y轴正半轴,点B在x轴正半轴,点C在x轴负半轴,,D为轴上一动点,平分,平分,若,则________.(用含的式子表示)25、如图,是半圆的直径,以弦(非直径)为对称轴将弧折叠,点是折叠后的弧与的交点,若,则________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、如图,在菱形ABCD中,∠B=30°,点E在CD边上,若AE=AC,DE=6,求AC 的长.28、如图,△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,B,C,D在同一直线上,连接EC.求证:EC⊥BD.29、如图所示,,,试说明≌ .30、已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、A5、A7、C8、B9、C10、A11、B12、B13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(沪科版)(上)期末测试卷 考试时间:120分钟 满分150分一、精心选一选(本大题共10小题,每小题4分,共40分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题目后的括号内.1、下列各条件中,能作出惟一的ABC ∆的是 ( ) A 、AB=4,BC=5,AC=10 B 、AB=5,BC=4 40A ︒∠= C 、90A ︒∠=,AB=8 D 、60A ︒∠=,50B ︒∠= ,AB=52、在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ). A 、 4cm B 、 5cm C 、9cm D 、 13cm3、李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )4、下列语句不是命题的是………………………………………………( ) A 、x 与y 的和等于0吗? B 、不平行的两条直线有一个交点 C 、两点之间线段最短 D 、对顶角不相等。
5、在下图中,正确画出AC 边上高的是( ).EBAC C A BCA BCA BE EE(A ) (B ) (C ) (D )6、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b <7、在以下四个图形中。
对称轴条数最多的一个图形是( ).8、如图(8),已知在△ABC 中,AD 垂直平分BC ,AC=EC ,点B 、D 、C 、E 在同一直线上,则下列结论○1AB=AC ○2∠CAE=∠E ○3AB+BD=DE ○4∠BAC=∠ACBA B C D正确的个数有()个A、1B、2C、3D、49)FA9、已知如图(9),AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A、BD+ED=BCB、DE平分∠ADBC、AD平分∠EDCD、ED+AC>AD10、如图(10),在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕点P旋转时,下列结论错误的有()A、EF=APB、△EPF为等腰直角三角形C、AE=CFD、12ABCAEPFS SΔ四边形二、细心填一填(本大题共6小题,每小题5分,共30分)把答案直接写在题中的横线上.11、写一个图象交y轴于点(0,-3),且y随x的增大而增大的一次函数关系式________ .12、如图(12)在等腰△ABC中,AB=BC,∠A=360,BD平分∠ABC,问该图中等腰三角形有___个13、如图13,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”。
14、如图(14),在RT△ABC中,∠A=900,BD平分∠ABC交AC于D,S△BDC=4,BC=8,则AD=___15、若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.16、如图(16),△ABC边BC长是10,BC边上的高是6cm,D点在BC上运动,设BD长为x,请写出△ACD的面积y与x之间的函数关系式: __________,自变量x的取值范围是________ 。
三、专心解一解,解答题应写出文字说明、演算步骤17、(本小题8分)判断下列命题的真假,若是假命题,举出反例.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.01234551015206t/时s/千米l l 1218、(本小题9分)已知:E 是AB 、CD 外一点,∠D=∠B+∠E ,求证:AB ∥CD 。
19、(本小题9分)如图,1l 反映了甲离开A 的时间与离A 地的距离的关系,2l 反映了乙离开A 地的时间与离A 地的距离之间的关系,根据图象填空:(1)当时间为2小时时,甲离A 地__________ 千米,乙离A 地__________千米。
(2)当时间__________ 时,甲、乙两人离A 地距离相等。
(3)当时间 __________ 时,甲在乙的前面,当时间__________时,乙超过了甲.(4)1l 对应的函数表达式为 __________,2l 对应的函数表达式为__________ . 20、(本小题9分)△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于y 轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标; (2)将△ABC 向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2 各顶点的坐标;(3)观察△A1B1C 和△A2B2C2,它们是否关于某直线对称?若是,请用粗线 条画出对称轴.21、(本题9分)已知:如图,△ABC 是等腰三角形,AB=AC ,且∠1=∠2, 求证:OA 平分∠BAC.DF E BAC A B C1 2 3 4 5 6 7 -1 -2 -3 1O 2xy22、(本小题12分)探究与思考(1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A =30°,则∠ABC +∠ACB =__________度,∠XBC +∠XCB =__________度; (2)如图2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ 仍然分别经过点B 、C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小,并证明你的结论。
23、(本小题12分)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一些有趣现象,即鞋子的号码与鞋子的长(cm )之间存在着某种联系,经过收集数据,得到下表:鞋长x (cm ) … 22 23 24 25 26 … 码数y…3436384042…请你代替小明解决下列问题:(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上? (2)猜想y 与x 之间满足怎样的函数关系式,并求出y与x 之间的函数关系式,验证这些点的坐标是否满足函数关系式. (3)当鞋码是40码时,鞋长是多长?24、已知:三角形ABC 中,∠A =90°,AB =AC ,D 为BC的中点,(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF , 求证:△DEF 为等腰直角三角形.(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变, 那么,△DEF 是否仍为等腰直角三角形?证明你的结论.22 23 24 25 26343638 40 42 yO参考答案(仅供参考)一:1、D 2、C 3、C 4、A 5、C 6、B 7、B 8、C 9、B 10、A二:11、答案不唯一,如:y=x-3; 12、3; 13、HL;14、1。
15、x<2 16、y=-3x+30,0≤x<10. 三:17、(1)假命题.如:两条直线平行,内错角相等(2)假命题.如:a=5和b=018、证明:∵∠D=∠B+∠E(已知)∠BFD=∠B+∠E(三角形的一个外角等于与它不相留邻的两个内角的和)∴∠D=∠BFD(等式的性质)∴ AB∥CD (内错角相等,两直线平行)19、解:(1)15 10 (2)(3)等于4;(4)小于4;大于4 (5)y1=2. 5 x+10, y2=5x20、(1)作图略, 各顶点的坐标为:A1(0,4) B1 (2,2) C1(1,1); 3分(2)图形略, 各顶点的坐标为:A2 (6,4) B2 (4,2) C2(5,1) 3分(3)是关于某直线对称,对称轴画图略(直线x=3). 2分21、证明略22、(1)∠ABC+∠ACB= 150 度∠XBC+∠XCB= 90 度;(2)∠ABX+∠ACX的大小不变化;∠ABX+∠ACX=60o。
略证:∵∠ABX+∠ACX=(∠ABC+∠ACB )-(∠XBC+∠XCB)=(180O-∠A)-(180O-∠X)=(180O-30O)-(180O-90O)=150O-90O=60o即∠ABX+∠ACX=60o。
23、(1)在直线上;(2)一次函数,210y x=-;(3)当y=40时,x=2524、题:证明:①连结∵AB AC=∠BAC=90°D为BC的中点∴AD⊥BC BD=AD∴∠B=∠DAC=45°又BE=AF∴△BDE≌△ADF (S.A.S)∴ED=FD ∠BDE=∠ADF∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°∴△DEF为等腰直角三角形 6分②若E,F分别是AB,CA延长线上的点,如图所示.连结AD∵AB=AC ∠BAC=90° D为BC的中点∴AD=BD AD⊥BC∴∠DAC=∠ABD=45°∴∠DAF=∠DBE=135°又AF=BE∴△DAF≌△DBE (S.A.S)∴FD=ED ∠FDA=∠EDB∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°∴△DEF仍为等腰直角三角形 6分。