沪科版八年级数学下册《期末测试卷》(附答案)
沪科版八年级下册数学期末测试卷(含解析)

沪科版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,已知口ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=45°,则∠DA′E′的大小为()A.170°B.165°C.160°D.155°2、空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A.折线图B.条形图C.直方图D.扇形图3、如图,四边形是菱形,,,点是边上的一动点,过点作于点,于点,连接,则的最小值为()A. B. C. D.4、学校篮球队名场上队员的身高分别为:,,,,(单位:).增加一名身高为的成员后,现篮球队成员的身高与原来相比,下列说法正确的是()A.方差不变B.方差变大C.方差变小D.不能确定5、如果把直角三角形的两条直角边长同时扩大到原来的3倍,那么斜边长扩大到原来的()A.3倍B.4倍C.6倍D.9倍6、学校为了了解七年级700名学生上学期参加社会实践活动的时间,随机对该年级50名学生进行了调查。
根据收集的数据绘制了下面的频数分市直方图,则以下说法正确的是()A.绘制该频数分布直方图时选取的组距为10分成的组数为5B.这50人中大多数学生参加社会实践活动的时间是12-14hC.这50人中有64%的学生参加社会实践活动时间不少于10hD.可以估计全年级700人中参加社会实践活动时间为6~8h的学生大约为28人7、下列各组数中,能作为直角三角形三边长度的是()A.5、6、7B.1、4、9C.5、12、13D.5、11、128、如图,在菱形中,,的垂直平分线交对角线于点, 为垂足,连结,则等于()A. B. C. D.9、一个样本的极差是52,样本容量不超过100.若取组距为10,则画频数分布直方图应把数据分成()A.5组B.6组C.10组D.11组10、下列计算正确的是().A. B. C. D.11、体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A.平均数B.方差C.頻数分布D.中位数12、某校5个小组参加植树活动,平均每组植树10株.已知第一,二,三,五组分别植树9株、12株、9株、8株,那么第四小组植树()A.12株B.11株C.10株D.9株13、用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(B.C.D.14、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.615、如图,在中,,,,是的垂直平分线,交于点,连接,则的长为().A. B. C. D.二、填空题(共10题,共计30分)16、如图,在菱形ABCD中,DE⊥AB,cosA=,则tan∠BDE的值是________17、如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G 分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则=________.18、如图,在正方形ABCD中,AB=6,点E在边CD上,DE= DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG的周长是________.19、计算:| -|+2 =________.20、若一组数据1,3,a, 2,5的平均数是3,则a=________。
沪科版八年级下册数学期末考试卷附答案

沪科版八年级下册数学期末考试试题题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列根式中,不是最简二次根式的是()A.10B.8C. 6D. 22.下列计算正确的是()A.5-2= 3 B.35×23=615C.(22)2=16 D.33=13.已知关于x的方程x2+3x+a=0有一个根为-2,则另一个根为()A.5 B.2 C.-1 D.-54.正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.135.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分、90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分6.已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A.8 B.10 C.8或10 D.127.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形8.如图,在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC的中点,连接DE,EF,FD则四边形DBEF的周长是()A.5 B.7 C.9 D.11第8题图第9题图第10题图9.如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°10.如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D的路线运动,运动到点D时停止,那么△APD 的面积S与点P运动的时间t之间的函数关系的图象是()二、填空题(本大题共4小题,每小题5分,满分20分) 11.要使代数式x +12有意义,则x 的取值范围是________. 12.方程x (x -1)=x 的解为________________.13.如图,△ABC 的顶点A ,B ,C 在边长均为1的正方形网格的格点上,BD ⊥AC 于D ,则BD 的长为________.第13题图 第14题图14.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF ,CF ,则下列结论中一定成立的是________(把所有正确结论的序号都填在横线上).①∠DCF =12∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .三、(本大题共2小题,每小题8分,满分16分) 15.计算:(3+1)(3-1)+24-⎝⎛⎭⎫120.16.解方程:x 2-2x =4.四、(本大题共2小题,每小题8分,满分16分) 17.按要求作图(不写作法,保留作图痕迹):(1)如图①,在平行四边形ABCD 中,请作出一条直线,将其分成面积相等的两部分;(2)如图②,在多边形ABCDEF中,AB∥CD∥EF,AF∥DE∥BC,请作出一条直线,将该多边形分成面积相等的两部分.18.定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a 的值小于0.(1)求a的取值范围;(2)请判断方程2x2-bx+a=0的根的情况.五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,BD=9.(1)求CD,AD的长;(2)判断△ABC的形状,并说明理由.20.中华文明,源远流长;中华汉字,寓意深广.为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=________,b=________;(2)请补全频数直方图;(3)这次比赛成绩的中位数会落在____________分数段;(4)若成绩在90分以上(包括90分)的为“优等”,则该校参加这次比赛的3000名学生中成绩“优等”的约有多少人?六、(本题满分12分)21.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元,2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.七、(本题满分12分)22.如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.成绩x/分频数频率50≤x<60100.05 60≤x<70200.10 70≤x<8030b 80≤x<90 a 0.30 90≤x≤100800.40八、(本题满分14分)23.【问题情境】如图①,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)求证:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图②,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与解析1.B 2.B 3.C 4.C 5.D 6.B7.A8.B9.C解析:如图,延长AB交直线b于点E.∵a∥b,∴∠AEC=∠1=60°.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠2=∠AEC =60°.故选C.10.B 解析:由四边形ABCD 是菱形,∠A =60°,AB =4,易得菱形的高为2 3.当点P 在AB 上时,S △APD =12×23t =3t (0≤t ≤4);当点P 在BC 上时,S △APD =12×4×23=43(4<t ≤8);当点P 在CD 上时,S △APD =12×23(12-t )=-3t +123(8<t ≤12).纵观各选项,只有B 选项图象符合题意.故选B.11.x ≥-1 12.x 1=0,x 2=2 13.45514.①②④ 解析:①∵四边形ABCD 是平行四边形,∴AB =CD ,AD ∥BC .∵AD =2AB ,∴AD =2CD .∵F 是AD 的中点,∴AF =FD =12AD ,∴AF =FD =CD ,∴∠DFC =∠DCF .∵AD ∥BC ,∴∠DFC =∠BCF ,∴∠DCF =∠BCF ,∴∠DCF =12∠BCD ,故①正确;②如图,延长EF ,交CD 的延长线于点M .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF .在△AEF 和△DMF 中,∵⎩⎪⎨⎪⎧∠A =∠MDF ,AF =DF ,∠AFE =∠DFM ,∴△AEF ≌△DMF (ASA ),∴EF=MF .∵CE ⊥AB ,AB ∥CD ,∴CD ⊥CE .在Rt △ECM 中,EF =MF ,∴EF =CF ,故②正确;③∵EF =MF ,∴S △CEF =S △CMF ,∴S △CEM =2S △CEF .∵AB ∥CM ,∴△BEC 中BE 边上的高和△CEM 中CM 边上的高相等.∵BE <CM ,∴S △BEC <S △CEM ,∴S △BEC <2S △CEF ,故③错误;④∵EF =CF ,∴∠FEC =∠FCE .设∠FEC =∠FCE =x ,∴∠EFC =180°-∠FEC -∠FCE =180°-2x ,∠DFC =∠DCF =∠ECD -∠ECF =90°-x ,∠AEF =∠AEC -∠FEC =90°-x ,∴∠DFE =∠DFC +∠EFC =90°-x +180°-2x =270°-3x ,∴∠DFE =3∠AEF ,故④正确.故答案为①②④.15.解:原式=3-1+26-1=1+2 6.(8分)16.解:配方得x 2-2x +1=4+1.∴(x -1)2=5,开平方得x -1=±5,∴x 1=1+5,x 2=1- 5.(8分)17.解:(1)答案不唯一,如图①,连接AC ,BD 交于点O ,过O 作直线EF 交AB 于点E ,交CD 于点F ,直线EF 即为所求.(4分)(2)答案不唯一,如图②,延长CB 交EF 于点G ,连接CE ,DG 交于点M ,连接AG ,BF 交于点N ,作直线MN ,直线MN 即为所求.(8分)18.解:(1)∵2☆a 的值小于0,∴22·a +a =5a <0,解得a <0.(4分)(2)在方程2x 2-bx +a =0中,Δ=(-b )2-4×2a =b 2-8a .由(1)可知a <0,∴b 2-8a >0,∴方程2x 2-bx +a =0有两个不相等的实数根.(8分)19.解:(1)∵CD ⊥AB ,∴△BCD 和△ACD 都是直角三角形,∴CD =BC 2-BD 2=152-92=12,∴AD =AC 2-CD 2=202-122=16.(5分)(2)△ABC 为直角三角形.(7分)理由如下:由(1)可知AD =16,又∵BD =9,∴AB =AD +BD =16+9=25.∵AC 2+BC 2=202+152=625=252=AB 2,∴△ABC 为直角三角形.(10分)20.解:(1)60 0.15(3分)(2)补全频数直方图如图所示.(5分)(3)80≤x <90(7分)(4)3000×0.40=1200(人).(9分)答:该校参加这次比赛的3000名学生中成绩“优等”的约有1200人.(10分)21.解:(1)设这两年该县投入教育经费的年平均增长率为x ,根据题意得6000(1+x )2=8640,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).(5分)答:这两年该县投入教育经费的年平均增长率为20%.(6分)(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为8640×(1+0.2)=10368(万元).(11分)答:预算2017年该县投入教育经费为10368万元.(12分) 22.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BEF =∠CDF ,∠EBF =∠DCF .∵BE =AB ,∴BE =CD .在△BEF 和△CDF 中,∵⎩⎪⎨⎪⎧∠BEF =∠CDF ,BE =CD ,∠EBF =∠DCF ,∴△BEF ≌△CDF (ASA ).(6分)(2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠A =∠DCB .由(1)可知△BEF ≌△CDF ,∴BF =CF ,EF =DF ,∴四边形BECD 是平行四边形.∵∠BFD =2∠A ,∴∠BFD =2∠DCF ,∴∠DCF =∠FDC ,∴DF =CF ,∴DE =BC ,∴四边形BECD 是矩形.(12分)23.(1)证明:延长AE ,BC 交于点N .(1分)∵四边形ABCD 是正方形,∴AD ∥BC ,∴∠DAE =∠N .∵AE 平分∠DAM ,∴∠DAE =∠MAE ,∴∠N =∠MAE ,∴MA =MN .∵E 是CD 边的中点,∴DE =CE .在△ADE 和△NCE 中,∵⎩⎪⎨⎪⎧∠DAE =∠N ,∠AED =∠NEC ,DE =CE ,∴△ADE ≌△NCE (AAS ),∴AD =NC ,∴MA =MN =NC +MC =AD +MC .(5分)(2)解:AM =DE +BM 成立.(6分)证明如下:过点A 作AF ⊥AE 交CB 的延长线于点F .(7分)∵四边形ABCD 是正方形,∴∠BAD =∠D =∠ABC =90°,AB =AD ,AB ∥DC ,∴∠DAE +∠BAE =90°,∠ABF =180°-∠ABC =90°=∠D .∵AF ⊥AE ,∴∠F AE =90°,∴∠BAF +∠BAE =90°,∴∠BAF =∠DAE .在△ABF 和△ADE 中,∵⎩⎪⎨⎪⎧∠BAF =∠DAE ,AB =AD ,∠ABF =∠D ,∴△ABF ≌△ADE (ASA ),∴BF =DE ,∠F =∠AED .∵AB ∥DC ,∴∠BAE =∠AED =∠F .∵AE 平分∠DAM ,∴∠DAE =∠MAE ,∴∠BAF =∠MAE ,∴∠BAE =∠BAM +∠MAE =∠BAM +∠BAF =∠F AM ,∴∠F =∠F AM ,∴AM =FM =FB +BM =DE +BM .(10分) (3)解:(1)中的结论AM =AD +MC 仍然成立,(2)中的结论AM =DE +BM 不成立.(14分)。
沪科版八年级下册数学期末考试卷含答案

沪科版八年级下册数学期末考试试题一、选择题(本大题共10小题,满分30分)1.(3分)下列各式中属于最简二次根式的是()A.B.C. D.2.(3分)如果,那么x的取值范围是()A.1≤x≤2 B.1<x≤2 C.x≥2 D.x>23.(3分)一元二次方程x(x﹣2)=2﹣x的根是()A.x=2 B.x1=0,x2=﹣2 C.x1=2,x2=﹣1 D.x=﹣14.(3分)关于x的一元二次方程(m﹣1)x2+2x+m2﹣5m+4=0,常数项为0,则m值等于()A.1 B.4 C.1或4 D.05.(3分)一元二次方程x2﹣x﹣1=0和2x2﹣6x+5=0,这两个方程的所有实数根之和为()A.4 B.﹣4 C.﹣6 D.16.(3分)如果一个直角三角形的两边分别是6,8,那么斜边上的中线是()A.4 B.5 C.4或5 D.3或57.(3分)在直角三角形中,如果有一个角是30°,这个直角三角形的三边之比最有可能的是()A.3:4:5 B.1:1:C.5:12:13 D.1::28.(3分)从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m、n的值分别为()A.4,3 B.3,3 C.3,4 D.4,49.(3分)已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A.AB∥CD,AB=CD B.AB∥CD,BC∥AD C.AB∥CD,BC=AD D.AB=CD,BC=AD10.(3分)在端午节道来之前,双十中学高中部食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购.下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数二、填空题(本大题共6小题,满分18分)11.(3分)已知a、b、c位置如图所示,试化简:|a+b﹣c|+=.12.(3分)关于x的一元二次方程kx2﹣3x﹣1=0有实数根,则k的取值范围是.13.(3分)小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此反复,小林共走了108米回到点P,则角α的度数为.14.(3分)如图,一透明的圆柱体玻璃杯,从内部测得底部直径为6cm,杯深8cm.今有一根长为16cm的吸管如图放入杯中,露在杯口外的长度为h,则h 的变化范围是:.15.(3分)如图所示,将两张等宽的长方形条交叉叠放,重叠部分是一个四边形ABCD,若AD=4cm,∠ABC=30°,则四边形ABCD的面积是cm2.16.(3分)顺次连接对角线互相垂直且相等的四边形中点所得到的四边形是.三、计算题(本大题共7小题,满分72分)17.(8分)计算:3﹣9﹣(2﹣)﹣|2﹣5|.18.(8分)如图,有一块耕地ACBD,已知AD=24m,BD=26m,AC⊥BC,且AC=6m,BC=8m.求这块耕地的面积.19.(10分)如图,已知四边形ABCD是平行四边形,点E,F是对角线BD上的两点,且BE=DF,连接AE,CF.求证:AE∥CF且AE=CF.20.(10分)如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO 到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.21.(12分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总数甲班891009611897500乙班1009511091104500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率.(2)计算两班比赛数据的方差.(3)根据以上信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.22.(12分)江苏是全国首个自然村“村村通宽带”省份.我市某村为了将当地农产品外销,建立了淘宝网店.该网店于今年7月底以每袋25元的成本价收购一批农产品.当商品售价为每袋40元时,8月份销售256袋.9、10月该商品十分畅销.销售量持续走高.在售价不变的基础上,10月份的销售量达到400袋.设9、10这两个月月平均增长率不变.(1)求9、10这两个月的月平均增长率;(2)为迎接双“十一”,11月份起,该网店采用降价促销的方式回馈顾客,经调查发现,该农产品每降价1元/每袋,销售量就增加5袋,当农产品每袋降价多少元时,该淘宝网店11月份获利4250元?23.(12分)如图所示,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.参考答案与试题解析一、选择题(本大题共10小题,满分30分)1.(3分)(2017春•蒙城县期末)下列各式中属于最简二次根式的是()A.B.C. D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A不符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.(3分)(2017春•蒙城县期末)如果,那么x的取值范围是()A.1≤x≤2 B.1<x≤2 C.x≥2 D.x>2【分析】根据二次根式有意义的条件和0不能为分母可知,x﹣1≥0且x﹣2>0,解不等式组即可.【解答】解:由题意可得,x﹣1≥0且x﹣2>0,解得x>2.故选D.【点评】二次根式有意义的条件必须是被开方数大于等于0,特别注意0做除数无意义.3.(3分)(2017春•蒙城县期末)一元二次方程x(x﹣2)=2﹣x的根是()A.x=2 B.x1=0,x2=﹣2 C.x1=2,x2=﹣1 D.x=﹣1【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用因式分解法解方程.【解答】解:x(x﹣2)+(x﹣2)=0,(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选C.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.4.(3分)(2017•河北模拟)关于x的一元二次方程(m﹣1)x2+2x+m2﹣5m+4=0,常数项为0,则m值等于()A.1 B.4 C.1或4 D.0【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.【解答】解:由题意,得m2﹣5m+4=0,且m﹣1≠0,解得m=4,故选:B.【点评】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a ≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.5.(3分)(2017春•蒙城县期末)一元二次方程x2﹣x﹣1=0和2x2﹣6x+5=0,这两个方程的所有实数根之和为()A.4 B.﹣4 C.﹣6 D.1【分析】先根据根的判别式分析两个方程解的情况,可得出方程x2﹣x﹣1=0有两个不相等的实数根、方程2x2﹣6x+5=0没有实数根,再根据根与系数的关系即可得出方程x2﹣x﹣1=0的两个实数根之和,此题得解.【解答】解:∵在方程x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程x2﹣x﹣1=0有两个不相等的实数根,设方程x2﹣x﹣1=0的两个根分别为m、n,∴m+n=1.∵在方程2x2﹣6x+5=0中,△=(﹣6)2﹣4×2×5=﹣4<0,∴方程2x2﹣6x+5=0没有实数根.∴一元二次方程x2﹣x﹣1=0和2x2﹣6x+5=0的所有实数根之和为1.故选D.【点评】本题考查了根与系数的关系以及根的判别式,利用根的判别式△=b2﹣4ac分析出两方程解的情况是解题的关键.6.(3分)(2017春•蒙城县期末)如果一个直角三角形的两边分别是6,8,那么斜边上的中线是()A.4 B.5 C.4或5 D.3或5【分析】分一个直角三角形的两直角边分别是6,8和8是斜边两种情况,根据勾股定理、直角三角形的性质计算.【解答】解:当一个直角三角形的两直角边分别是6,8时,由勾股定理得,斜边==10,则斜边上的中线=10=5,当8是斜边时,斜边上的中线是4,故选:C.【点评】本题考查的是勾股定理的应用以及直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.7.(3分)(2017春•蒙城县期末)在直角三角形中,如果有一个角是30°,这个直角三角形的三边之比最有可能的是()A.3:4:5 B.1:1:C.5:12:13 D.1::2【分析】设30°角所对的直角边为a,根据30°角所对的直角边等于斜边的一半求出斜边的长度,再利用勾股定理求出另一条边的长度,然后即可求出比值.【解答】解:如图,设30°角所对的直角边BC=a,则AB=2BC=2a,∴AC==a,∴三边之比为a:a:2a=1::2.故选D.【点评】本题主要考查了含30度角的直角三角形的边的关系,勾股定理,是基础题,作出草图求解更形象直观.8.(3分)(2017春•蒙城县期末)从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m、n的值分别为()A.4,3 B.3,3 C.3,4 D.4,4【分析】从一个n边形一个顶点出发,可以连的对角线的条数是n﹣3,分成的三角形数是n﹣2.【解答】解:对角线的数量=6﹣3=3条;分成的三角形的数量为n﹣2=4个.故选C.【点评】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n﹣3,分成的三角形数是n﹣2.9.(3分)(2017春•蒙城县期末)已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A.AB∥CD,AB=CD B.AB∥CD,BC∥AD C.AB∥CD,BC=AD D.AB=CD,BC=AD【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据判定方法依次组合即可.【解答】解:A、AB∥CD,AB=CD.根据平行四边形的判定定理“一组对边平行且相等的四边形是平行四边形”可以判定四边形ABCD是平行四边形,故本选项错误;B、AB∥CD,BC∥AD.根据平行四边形的判定定理“两组对边分别平行的四边形是平行四边形”可以判定四边形ABCD是平行四边形,故本选项错误;C、AB∥CD,BC=AD,根据一组对边平行,另一组对边相等,不能判定四边形ABCD 是平行四边形,故本选项正确;D、AB=CD,BC=AD,根据平行四边形的判定定理“两组对边分别相等的四边形是平行四边形”可以判定四边形ABCD是平行四边形,故本选项错误;故选:C.【点评】本题主要考查对平行四边形的判定的理解和掌握,能熟练地运用平行四边形的判定定理进行推理是解此题的关键.10.(3分)(2017•南平模拟)在端午节道来之前,双十中学高中部食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购.下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数【分析】学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.二、填空题(本大题共6小题,满分18分)11.(3分)(2017春•蒙城县期末)已知a、b、c位置如图所示,试化简:|a+b ﹣c|+=﹣2a+c.【分析】直接利用数轴得出a+b﹣c<0,b﹣a>0,进而化简即可.【解答】解:由数轴可得:a+b﹣c<0,b﹣a>0,故:|a+b﹣c|+=﹣(a+b﹣c)+b﹣a=﹣2a+c.故答案为:﹣2a+c.【点评】此题主要考查了二次根式的化简,正确开平方是解题关键.12.(3分)(2017•昆都仑区二模)关于x的一元二次方程kx2﹣3x﹣1=0有实数根,则k的取值范围是k≥﹣且k≠0.【分析】根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有实数根,∴,解得:k≥﹣且k≠0.故答案为:k≥﹣且k≠0.【点评】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式,找出关于k的一元一次不等式组是解题的关键.13.(3分)(2011•衡阳模拟)小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此反复,小林共走了108米回到点P,则角α的度数为40°.【分析】先求出多边形的边数,再利用多边形的外角和求出答案即可.【解答】解:∵108÷12=9,∴小林从P点出发又回到点P正好走了一个九边形,∴α=360°÷9=40°.故答案为:40°.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.14.(3分)(2017春•蒙城县期末)如图,一透明的圆柱体玻璃杯,从内部测得底部直径为6cm,杯深8cm.今有一根长为16cm的吸管如图放入杯中,露在杯口外的长度为h,则h的变化范围是:6cm≤h≤8cm.【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时最短为8cm,则露在杯口外的长度最长为16﹣8=8cm;最长时与底面直径和高正好组成直角三角形,用勾股定理解答进而求出露在杯口外的长度最短.【解答】解:当吸管放进杯里垂直于底面时最短为8cm,则露在杯口外的长度最长为16﹣8=8cm;最长时与底面直径和高正好组成直角三角形,底面直径为6cm,高为8cm,所以由勾股定理可得杯里面管长为=10cm,则露在杯口外的长度最长为16﹣10=6cm;所以,露在杯口外的长度在6cm和8cm范围变化.故答案为:6cm≤h≤8cm.【点评】本题考查勾股定理的应用,解答此题的关键是要找出管最长和最短时在杯中所处的位置,然后计算求解.15.(3分)(2017春•蒙城县期末)如图所示,将两张等宽的长方形条交叉叠放,重叠部分是一个四边形ABCD,若AD=4cm,∠ABC=30°,则四边形ABCD的面积是8cm2.【分析】证出该四边形是一个菱形,再由直角三角形的性质即可得出答案.【解答】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,分别作CD,BC边上的高为AE,AF,如图所示:∵两纸条相同,∴纸条宽度AE=AF.∵平行四边形的面积为AE×CD=BC×AF,∴CD=BC.∴平行四边形ABCD为菱形,∴AB=AD=4cm,∵∠ABC=30°,∴AE=AB=2cm,=BC•AE=4×2=8,∴S菱形ABCD故答案为8.【点评】本题考查菱形的判定与性质的应用、含30°角的直角三角形的性质;证明四边形是菱形是解决问题的突破口.16.(3分)(2017春•蒙城县期末)顺次连接对角线互相垂直且相等的四边形中点所得到的四边形是正方形.【分析】画出满足条件的图象,利用E、F、G、H分别为各边的中点,由三角形中位线定理及平行四边形判定定理,可得这个四边形是平行四边形,再由对角线垂直,即可得到结论.【解答】解:连接AC、BD,则∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,EF=GH=AC,EH=FG=BD∴四边形EFGH是平行四边形,∵AC⊥BD,且AC=BD,∴EF⊥FG,且EF=FG,∴四边形EFGH是正方形;故答案为:正方形.【点评】本题考查了三角形的中位线的性质及特殊四边形的判定,属于基础题.三、计算题(本大题共7小题,满分72分)17.(8分)(2017春•蒙城县期末)计算:3﹣9﹣(2﹣)﹣|2﹣5|. 【分析】先进行二次根式的乘法运算,再去绝对值,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=12﹣3﹣2+9+2﹣5 =9+4. 【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)(2017春•蒙城县期末)如图,有一块耕地ACBD ,已知AD=24m ,BD=26m ,AC ⊥BC ,且AC=6m ,BC=8m .求这块耕地的面积.【分析】连接AB ,先根据勾股定理求出AB 的长,再由勾股定理的逆定理,判断出△ABD 的形状,根据S 四边形ADBC =S △ABD ﹣S △ABC 即可得出结论.【解答】解:连接AB ,∵AC ⊥BC ,AC=6m ,BC=8m ,∴Rt △ABC 中,AB==10m , ∵AD=24m ,BD=26m ,∴AD 2=242=576,BD 2=262=676,AB 2=1002=100,∴AB 2+AD 2=BD 2,∴△ABD 是直角三角形,∴S 四边形ADBC =S △ABD ﹣S △ABC =AB•AD ﹣AC•BC=×10×24﹣×8×6=120﹣24=96m 2.答:这块土地的面积是96m 2.【点评】本题考查的是勾股定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.(10分)(2017春•蒙城县期末)如图,已知四边形ABCD是平行四边形,点E,F是对角线BD上的两点,且BE=DF,连接AE,CF.求证:AE∥CF且AE=CF.【分析】由平行四边形的性质得∠ABE=∠CDF,由已知条件和三角形全等的判定方法即可证明△ABE≌△CDF,得出∠AEB=∠DFC,进而可得∠AED=∠BFC,得出AE∥CF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴∠AEB=∠DFC,AE=CF,∴∠AED=∠BFC,∴AE∥CF,∴AE∥CF且AE=CF.【点评】本题考查了平行四边形的性质、全等三角形的判定和性质以及平行线的判定方法;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(10分)(2017春•蒙城县期末)如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.【分析】(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可.【解答】(1)证明:∵点O是AC中点,∴AO=OC,∵OE=OD,∴四边形ADCE是平行四边形,∵AD是等腰△ABC底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===15,∴四边形ADCE的面积是AD×DC=15×8=120.【点评】本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解此题的关键,比较典型,难度适中.21.(12分)(2017春•蒙城县期末)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总数甲班891009611897500乙班1009511091104500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率.(2)计算两班比赛数据的方差.(3)根据以上信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.【分析】(1)根据优秀率的公式:优秀人数÷总人数×100%,进行计算即可;(2)根据方程的计算公式,计算即可;(3)根据优秀率和方差进行比较即可.【解答】解:(1)甲班的优秀率:=0.4=40%,乙班的优秀率:=0.6=60%;(2)甲班的平均数==100(个),甲班的方差=[(89﹣100)2+(100﹣100)2+(96﹣100)2+(118﹣100)2+(97﹣100)2]=94;乙班的平均数==100(个),乙班的方差=[(100﹣100)2+(95﹣100)2+(110﹣100)2+(91﹣100)2+(104﹣100)2]=44.4;(3)冠军奖杯应发给乙班.因为乙班5名学生的比赛成绩的优秀率比甲班高,方差比甲班小,综合评定乙班踢毽子水平较好.【点评】本题考查了方差,以及优秀率的概念,并且运用它们的意义解决问题.22.(12分)(2017春•蒙城县期末)江苏是全国首个自然村“村村通宽带”省份.我市某村为了将当地农产品外销,建立了淘宝网店.该网店于今年7月底以每袋25元的成本价收购一批农产品.当商品售价为每袋40元时,8月份销售256袋.9、10月该商品十分畅销.销售量持续走高.在售价不变的基础上,10月份的销售量达到400袋.设9、10这两个月月平均增长率不变.(1)求9、10这两个月的月平均增长率;(2)为迎接双“十一”,11月份起,该网店采用降价促销的方式回馈顾客,经调查发现,该农产品每降价1元/每袋,销售量就增加5袋,当农产品每袋降价多少元时,该淘宝网店11月份获利4250元?【分析】(1)由题意可得,8月份的销售量为:256件;设9月份到10月份销售额的月平均增长率,则9月份的销售量为:256(1+x);10月份的销售量为:256(1+x)(1+x),又知三月份的销售量为:400袋,由此等量关系列出方程求出x 的值,即求出了平均增长率;(2)利用销量×每件商品的利润=4250求出即可.【解答】解:(1)设9、10这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=﹣(不合题意舍去).答:9、10这两个月的月平均增长率为25%;(2)设当每袋降价m元时,根据题意可得:(40﹣25﹣m)(400+5m)=4250,解得:m1=5,m2=﹣70(不合题意舍去).答:当每袋降价5元时,获利4250元.【点评】此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.23.(12分)(2006•太原)如图所示,在四边形ABCD中,点E、F是对角线BD 上的两点,且BE=FD.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.【分析】(1)连AC,证OB=OD,即可;(2)四边形ABCD是菱形.证对角线互相垂直平分即可;(3)因为∠BAD和∠EAF不可能都为90°,所以四边形ABCD不是矩形.【解答】解:连AC,设AC、BD相交于点O;(1)∵四边形AECF是平行四边形,∴OE=OF,OA=OC,∵BE=FD,∴OB=OD.∴四边形ABCD是平行四边形.(2)∵四边形AECF是菱形,∴OE=OF,OA=OC,AC⊥BD.∵BE=FD,∴OB=OD.∴四边形ABCD是菱形.(3)四边形ABCD不是矩形.【点评】此题主要考查平行四边形、菱形、矩形的判定.。
沪科版八年级数学下册《期末测试卷》(附答案)

沪科版八年级数学下册《期末测试卷》(附答案)选择题1.下列根式中一定有意义的是()A。
$a$B。
$-a^2$C。
$a+1/2$D。
$a-1/2$2.下列式子中$y$是$x$的正比例函数的是()A。
$y=3x-5$B。
$y=2/x$___D。
$y=2x$3.直线$y=x-2$与$x$轴的交点坐标是()A。
$(2,0)$B。
$(-2,0)$C。
$(0,-2)$D。
$(0,2)$4.无理数$5+\sqrt{1}$在两个整数之间,下列结论正确的是()A。
$2<5+\sqrt{1}<3$B。
$3<5+\sqrt{1}<4$___<5+\sqrt{1}<5$D。
$5<5+\sqrt{1}<6$5.某校排球队21名同学身高的众数和中位数分别是(单位:cm)()A。
185,178B。
178,175C。
175,178D。
175,1756.若$a b>c$,$a c<b$,则一次函数$y=-\frac{ac}{x-b}$的图像不经过下列哪个象限()A。
第一象限B。
第二象限C。
第三象限D。
第四象限7.如图,在正方形$ABCD$中,$BD=2$,$\angle DCE$是正方形$ABCD$的外角,$P$是$\angle DCE$的角平分线$CF$上任意一点,则$\triangle PBD$的面积等于()A。
1B。
1.5C。
2D。
2.58.如图,在直角三角形$ABC$中,$\angle ACB=90°$,$AC=BC$,边$AC$落在数轴上,点$A$表示的数是1,点$C$表示的数是3,负半轴上有一点$B_1$,且$AB_1=AB$,点$B_1$所表示的数是()A。
$-2$B。
$-\sqrt{2}$C。
$\sqrt{2}-1$D。
$1-\sqrt{2}$9.如图,函数$y=kx$和$y=-\frac{11}{x+4}$的图像相交于点$A(3,m)$,则不等式$kx\geq-x+4$的解集为A。
沪科版八年级数学下册《期末试卷》(附答案)

学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……一、选择题:(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下列式子中,属于最简二次根式的是()A .B .C .D .2.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.53.一次函数y=﹣2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是()A.平均数B.中位数C.众数D.方差5.如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A .﹣B .﹣C.﹣3 D.﹣26.下列等式成立的是()A .•=B .=2C .﹣=D .=﹣37.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣2 8.如图,在R△ABC中,CD、CE分别是斜边AB上的中线和高,CD=8,CE=5,则Rt△ABC的面积是()A.80 B.60 C.40 D.209.如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是()A.k≤2 B.k≥C.0<k<D.≤k≤210.菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为()A.4cm B.5cm C.5cm或8cm D.5cm或cm二、填空题:(本大题共4小题,每小题5分,满分20分)11.若二次根式有意义,则x的取值范围是.12.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩.13.如图,函数y=3x和y=kx+6的图象相交于点A(a,3),则不等式3x≤kx+6的解集为.14.如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM ⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为.三、(本大题共2小题,每小题8分,满分16分)15.计算:(2﹣1)2+(+4)().16.《九章算术》“勾股”章有一题:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”译文为:一根竹子,原来高一丈,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处与原竹子底部距离三尺,问原处还有多高的竹子?请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.小明骑单车上学,当他骑了一段路时起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米,本次上学途中,小明一共行驶了米;(2)小明在书店停留了分钟,本次上学,小明一共用了分钟;(3)在整个上学的途中那个时间段小明骑车速度最快,最快的速度是多少?18.如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,过点E作EF⊥AD于点F 求证:四边形ABEF是正方形.五、(本大题共2小题,每小题10分,满分20分)19.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)求四边形CDEF的周长.20.如图,直线l1的函数表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.六、(本题满分12分)21.某校要从王同学和李同学中挑选一人参加县知识竞赛在五次选拔测试中他俩的成绩如下表.第1次第2次第3次第4次第5次王同学60 75 100 90 75李同学70 90 100 80 80根据上表解答下列问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差王同学80 75 75 190李同学(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由. 七、(本题满分12分)22.某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:甲乙购树苗数量 销售单价 购树苗数量 销售单价 不超过500棵时 800元/棵 不超过1000棵时 800元/棵 超过500棵的部分700元/棵超过1000棵的部分600元/棵设购买银杏树苗x 棵,到两家购买所需费用分别为y 甲元、y 乙元(1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为 元,若都在乙家购买所需费用为 元;(2)当x >1000时,分别求出y 甲、y 乙与x 之间的函数关系式; (3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么? 八、(本题满分14分)23.已知,▱ABCD 中,∠ABC =90°,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形. (2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止,在运动过程中,点P 的速度为每秒1cm ,点Q 的速度为每秒0.8cm ,设运动时间为t 秒,若当以A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t 的值.参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.解:A、=2,故此选项错误;B、=,故此选项错误;C、=,故此选项错误;D、是最简二次根式,故此选项正确.故选:D.2.解:A、72+62≠82,故此选项错误;B、不是整数,故此选项错误;C、32+42=52,故此选项正确;D、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C.3.解:∵y=﹣2x﹣3∴k<0,b<0∴y=﹣2x﹣3的图象经过第二、三、四象限,不经过第一象限故选:A.4.解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:B.5.解:∵在Rt△AOB中,OA=2,AB=1,∴OB==.∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,∴OC=OB=,∴点C表示的实数是﹣.故选:B.6.解:A、原式==,所以A选项错误;B、原式=2,所以B选项正确;C、原式=2﹣,所以C选项错误;D、原式=3,所以D选项错误.故选:B.7.解:由“左加右减”的原则可知,将直线y=2x向左平移1个单位所得的直线的解析式是y=2(x+1)=2x+2.即y=2x+2,故选:C.8.解:∵在R△ABC中,CD是斜边AB上的中线,CD=8,∴AB=2CD=16,∵CE=5,∴△ACB的面积S===40,故选:C.9.解:∵直线y=kx与正方形ABCD有公共点,∴直线y=kx在过点A和点C两直线之间之间,如图,可知A(2,1),C(1,2),当直线y=kx过A点时,代入可得1=2k,解得k=,当直线y=kx过C点时,代入可得2=k,解得k=2,∴k的取值范围为:≤k≤2,故选:D.10.解:∵AC=6cm,BD=4cm,∴AO=AC=×6=3cm,BO=BD=×4=2m,如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,BG=AO=3cm,FG=AF+AG=6+2=8cm,在Rt△BFG中,BF=cm,如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,BG=AO=3cm,FG=AF﹣AG=6﹣2=4cm,在Rt△BFG中,BF==5cm,综上所述,BF长为5cm或cm.故选:D.二、填空题:(本大题共4小题,每小题5分,满分20分)11.解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.12.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.13.解:把A(a,3)代入y=3x得3a=3,解得a=1,则A(1,3),根据图象得,当x≤1时,3x≤kx+6.故答案为:x≤114.解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB==5,∵PM⊥AC,PN⊥BC,∠C=90°,∴四边形CNPM是矩形,∴MN=CP,由垂线段最短可得CP⊥AB时,线段MN的值最小,此时,S=BC•AC=AB•CP,△ABC即×4×3=×5•CP,解得CP=2.4.故答案为:2.4.三、(本大题共2小题,每小题8分,满分16分)15.解:原式=12﹣4+1+3﹣16=﹣4.16.解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=4.55.答:原处还有4.55尺高的竹子.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.(2)由图象可知:小明在书店停留了4分钟.本次上学,小明一共用了14分钟;(3)折回之前的速度=1200÷6=200(米/分),折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分),经过比较可知:小明在从书店到学校的时候速度最快,即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分.故答案是:(1)1500,2700;(2)4,14.18.证明:∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE,∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是正方形.五、(本大题共2小题,每小题10分,满分20分)19.(1)证明:∵D、E分别为AB、AC的中点,∴DE是△ABC的中位线,∴DE BC,∵EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=,∴四边形CDEF的周长=2(1+)=2+2.20.解:(1)∵D在直线l1y=﹣3x+3的图象上,∴当y=0时,0=﹣3x+3,解得:x=1,∴D(1,0),(2)设直线l2的解析表达式为y=kx+b,∵过(3,﹣),(4,0),∴,解得,∴直线l2的解析表达式为y=x﹣6;(3)∵,解得:,∴C(2,﹣3),∴△ADC的面积为:×AD×3=×3×3=.六、(本题满分12分)21.解:(1)将李同学的成绩从小到大排列为:70、80、80、90、100,所以李同学的平均成绩为×(70+80+80+90+100)=84,中位数为80、众数为80,方差为×[(70﹣84)2+(80﹣84)2+(80﹣84)2+(90﹣84)2+(100﹣84)2]=104,补全表格如下:姓名平均成绩(分)中位数(分)众数(分)方差王同学80 75 75 190李同学84 80 80 104(2)在这五次考试中,成绩比较稳定的是小李,小王的优秀率=×100%=40%,小李的优秀率=×100%=80%;(3)我选李同学去参加比赛,因为李同学的优秀率高,有4次得80分以上,成绩比较稳定,获奖机会大.七、(本题满分12分)22.解:(1)甲家购买所要费用=500×800+300×700=400000+210000=610000;都在乙家购买所需费用=800×800=640000.故答案为:610000;640000.(2)当x>1000时,y甲=800×500+700(x﹣500)=700x+50000,y乙=800×1000+600(x﹣1000)=600x+200000,x为正整数,(3)当0≤x≤500时,到两家购买所需费用一样;‚当500≤x≤1000时,甲家有优惠而乙家无优惠,所以到甲家购买合算;又y甲﹣y乙=100x﹣150000.当y甲=y乙时,100x﹣150000=0,解得x=1500,当x=1500时,到两家购买所需费用一样;当y甲<y乙时,100x﹣150000<0,解得x<1500,∴当500<x<1500时,到甲家购买合算;当y甲>y乙时,100x﹣150000>0,解得x>1500,∴当x>1500时,到乙家购买合算.综上所述,当0≤x≤500时或x=1500时,到两家购买所需费用一样;当500<x<1500时,到甲家购买合算;当x>1500时,到乙家购买合算.八、(本题满分14分)23.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵OA=OC,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE为菱形.(2)设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=5,∴AF=5.(3)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒1cm,点Q的速度为每秒0.8cm,运动时间为t秒,∴PC=t,QA=12﹣0.8t,∴t=12﹣0.8t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.考试注意事项1、准备充分,忙中有序考试前的准备是否充分对临场的情绪状态和水平的发挥有重要的影响。
沪科版八年级下册数学期末测试卷及含答案

沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较2、▱ABCD一内角的平分线与边相交并把这条边分成2cm,3cm的两条线段,则▱ABCD的周长是()A.5cmB.7cmC.14cm或15cmD.14cm或16cm3、下列计算正确的是()A. B. C. D.若,则x=14、要使代数式有意义,则x的取值范围是()A.x>B.x<C.x≥D.x≤5、参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同.设共有x家公司参加商品交易会,则x满足的关系式为()A. x(x+1)=45B. x(x﹣1)=45C.x(x+1)=45 D.x(x﹣1)=456、四边形ABCD的对角线相交于点O,能判定四边形是正方形的条件是()A.AC=BD,AB=CD,AB//CDB.AO=BO=CO=DO,AC⊥BDC.AD//BC,∠A=∠CD.AO=CO,BO=DO,AB=BC7、以下列各组数为边长,能组成直角三角形的是()A.2,3,4B.10,8,4C.7,25,24D.7,15,128、如图,数轴上点C所表示的数是()A. B. C.3.6 D.3.79、一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,它们离开港口3小时相距()海里.A.60B.30C.20D.8010、下列方程中,没有实数根的是 ( )A.x 2-x-1=0B.x 2+1=0C.-x 2+x+2=0D.x 2=-3x11、阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖镶嵌地面,在每个顶点的周围正方形、正三角形地砖的块数可以分别是( )A.2,2B.2,3C.1,2D.2,112、如图,在平行四边形ABCD中,点E在AD上,∠ABE=20°,∠BED=∠BCD,则∠D的度数为()A.70°B.75°C.80°D.85°13、四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠D=180°C.∠B+∠A=180°D.∠A+∠D=180°14、以面积为9cm2的正方形的对角线为边长的正方形面积为()A.18cm 2B.20cm 2C.24cm 2D.28cm 215、关于的方程ax2+bx+c=2与方程(x+1)(x-3)=0的解相同,则a-b+c的值等()A.-2B.0C.1D.2二、填空题(共10题,共计30分)16、如果代数式有意义,那么字母x的取值范围是________.17、函数自变量x的取值范围是 ________.18、已知一组数据:0,2,x , 4,5的众数是4,那么这组数据的中位数是________.19、离中考还有20天,为了响应“还时间给学生”的号召,学校领导在全年级随机的调查了20名学生每天作业完成时间,绘制了如下表格:每天作业完成时间:(小2 2.53 3.5时)人数:(人) 5 5 8 2则这20个学生每天作业完成的时间的中位数为________ 小时20、如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是________.21、已知等腰的两边长分别为、,且,则的周长为________.22、如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD的边长为________cm.23、一元二次方程根的判别式的值为________.24、如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,交CB于点D,DE⊥AB,垂足为E.若AC=3,AB=5,则DE的长为________。
沪科版八年级数学下册期末测试卷附答案
沪科版八年级数学下册期末测试卷一、选择题(每题4分,共40分)1.要使式子aa-2有意义,则a的取值范围是( )A.a≠2 B.a≥0 C.a>0且a≠2 D.a≥0且a≠2 2.已知2是关于x的方程x2-2ax+4=0的一个解,则a的值是( ) A.1 B.2 C.3 D.43.下列说法中不正确的是( )A.三个内角度数之比为3∶4∶5的三角形是直角三角形B.三边长之比为3∶4∶5的三角形是直角三角形C.三个内角度数之比为1∶2∶3的三角形是直角三角形D.三边长之比为1∶2∶3的三角形是直角三角形4.一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A.9 B.8 C.7 D.65.某班级采用小组学习制,在一次数学单元测试中,第一组成员的测试成绩(单位:分)分别为95,90,100,85,95,其中成绩为85分的同学有一道题目被老师误判,其实际成绩应为90分,那么该小组的实际成绩与之前的成绩相比,下列说法正确的是( )A.数据的中位数不变B.数据的平均数不变C.数据的众数不变D.数据的方差不变6.下列计算,正确的是( )A.(-2)2=-2B.(-2)×(-2)=2C.3 2-2=3 D.8+2=107.若关于x的一元二次方程x2-4x+m+2=0有两个不相等的实数根,且m为正整数,则此方程的解为( )A.x1=-1,x2=3 B.x1=-1,x2=-3C.x1=1,x2=3 D.x1=1,x2=-38.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=( )A.2 B.3 C.4 D.2 3(第8题) (第9题)9.《九章算术》中的“方田章”论述了三角形面积的求法:“圭田术曰:半广以乘正从”,就是说:“三角形的面积=底×高÷2”,我国著名的数学家秦九韶在《数书九章》中也提出了“三斜求积术”,即利用三角形的三条边长来求三角形的面积,用式子可表示为S=14⎣⎢⎡⎦⎥⎤a2b2-⎝⎛⎭⎪⎫a2+b2-c222(其中a,b,c为三角形的三条边长,S为三角形的面积).如图,在平行四边形ABCD中,已知AB=6,AD=3,对角线BD=5,则平行四边形ABCD的面积为( )A.11B.14C.142D.7210.如图,在正方形ABCD的对角线BD上截取BE=BC,连接CE并延长交AD于点F,连接AE,过点B作BH⊥AE于点G,交AD于点H,则下列结论错误的是( ) A.AH=DF B.S四边形EFHG=S△DEF+S△AGHC.∠AEF=45°D.△ABH≌△DCF(第10题) (第13题)二、填空题(每题5分,共20分)11.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=________.12.关于x的一元二次方程(m-5)x2+2x+2=0有实根,则m的最大整数值是________.13.如图,平行四边形ABCD中,AB∶BC=3∶2,∠DAB=60°,点E在AB上且AE∶EB=1∶2,点F是BC中点,过点D作DP⊥AF于点P,DQ⊥CE于点Q,则DP∶DQ=______________.14.边长为2的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB 于点F,且BC=2BF,则线段DE的长为______________.三、(每题8分,共16分)15.计算:2 13×9-12+54-1.16.解方程:x2+4x-3=0.四、(每题8分,共16分)17.如图,在由边长为1的小正方形组成的5×6的网格中,△ABC的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断△ABC的形状;(2)在图中确定一个格点D,连接AD,CD,使四边形ABCD为平行四边形,并求出▱ABCD的面积.(第17题)18.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2018年该企业投入科研经费5 000万元,2020年投入科研经费7 200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2022年该企业投入科研经费多少万元.五、(每题10分,共20分)19.如图,把一个等腰直角三角形零件(△ABC,其中∠ACB=90°)放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠D=∠E=90°,测得AD=5 cm,BE=7 cm,求该三角形零件的面积.(第19题)20.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,建造花圃时,在BC上用其他材料做了宽为1米的两扇小门.(1)设花圃的一边AB长为x米,则另一边AD的长为________米(用含x的代数式表示);(2)若花圃的面积刚好为45平方米,求此时花圃的长与宽.(第20题)六、(12分)21.某校要从王同学和李同学中挑选一人参加县知识竞赛,在五次选拔测试中他们的成绩(单位:分)如下表.第1次第2次第3次第4次第5次王同学60 75 100 90 75李同学70 90 100 80 80根据上表解答下列问题:(1)完成下表.平均成绩/中位数/分众数/分方差分王同学80 75 75 190李同学(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?请说明理由.七、(12分)22.如图,已知点D是△ABC的边BC的中点,直线AE∥BC,过点D作DE∥AB,分别交AE,AC于点E,F.(1)求证:四边形ADCE是平行四边形;(2)如果四边形ADCE是矩形,△ABC应满足什么条件?并说明理由;(3)如果四边形ADCE是菱形,直接写出△ABC应满足的条件:__________________.(第22题) 八、(14分)23.对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图①,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:如图②,垂美四边形ABCD的对角线AC,BD交于点O.猜想:AB2+CD2与AD2+BC2有什么关系?并证明你的猜想.(3)解决问题:如图③,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE.已知AC=4,AB=5,求GE的长.(第23题)答案一、1.D 2.B 3.A 4.B 5.A 6.B 7.C8.C 9.B10.B二、11.-212.413.2 3∶1314.22或3 22三、15.解:2 13×9-12+54-1=213×9-2 3+14=2 3-23+12=12.16.解:原方程可化为x2+4x+4-7=0,即(x+2)2=7,开平方,得x+2=±7,解得x1=-2+7,x2=-2-7. 四、17.解:(1)由题意可得,AB=12+22=5,AC=22+42=2 5,BC=32+42=5.∵(5)2+(2 5)2=25=52,即AB2+AC2=BC2,∴△ABC是直角三角形.(2)如图所示.(第17题)▱ABCD 的面积为AB ·AC =5×2 5=10.18.解:(1)设这两年该企业投入科研经费的年平均增长率为x ,根据题意得5 000(1+x )2=7 200, 解得x 1=0.2=20%,x 2=-2.2(舍去).答:这两年该企业投入科研经费的年平均增长率为20%. (2)7 200×(1+20%)2=10 368(万元).答:预算2022年该企业投入科研经费10 368万元. 五、19.解:∵△ABC 是等腰直角三角形,∠ACB =90°,∴AC =BC ,∠ACD +∠BCE =90°. ∵∠D =90°,∴∠ACD +∠DAC =90°, ∴∠DAC =∠BCE . 在△ADC 和△CEB 中,⎩⎨⎧∠D =∠E ,∠DAC =∠ECB ,AC =BC ,∴△ADC ≌△CEB (AAS), ∴DC =BE =7 cm ,∴AC =52+72=25+49=74(cm), ∴BC =AC =74 cm ,∴该三角形零件的面积为12×74×74=37(cm 2).20.解:(1)(24-3x )(2)由题意可得(24-3x )x =45, 解得x 1=3,x 2=5,当AB =3米时,AD =15米>14米,不符合题意,舍去, 当AB =5米时,AD =9米,符合题意. 答:花圃的长为9米,宽为5米. 六、21.解:(1)84;80;80;104(2)在这五次测试中,成绩比较稳定的是李同学.王同学的优秀率为25×100%=40%,李同学的优秀率为45×100%=80%.(3)选李同学参加比赛比较合适,因为李同学的优秀率高,成绩比较稳定,获奖机会大.七、22.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵点D是△ABC的边BC的中点,∴BD=CD,∴AE=CD.又∵AE∥CD,∴四边形ADCE是平行四边形.(2)解:△ABC是等腰三角形,且AB=AC.理由如下:∵四边形ADCE是矩形,∴AD⊥BC.∵点D是△ABC的边BC的中点,∴AB=AC,即△ABC是等腰三角形.(3)△ABC是直角三角形,且∠BAC=90°八、23.解:(1)四边形ABCD是垂美四边形,理由如下:如图①,连接AC,BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,即AC⊥BD,∴四边形ABCD是垂美四边形.①(第23题)(2)AB 2+CD 2=AD 2+BC 2,证明如下:∵四边形ABCD 是垂美四边形,∴AC ⊥BD ,∴∠AOD =∠AOB =∠BOC =∠COD =90°,由勾股定理得AD 2+BC 2=OA 2+OD 2+OB 2+OC 2,AB 2+CD 2=OA 2+OB 2+OC 2+OD 2,∴AB 2+CD 2=AD 2+BC 2.(3)如图②,设CE 交AB 于点M ,交BG 于点N ,连接BE ,CG , ∵四边形ACFG 和四边形ABDE 都是正方形,∴∠CAG =∠BAE =90°,AG =AC =4,AE =AB =5,∴∠CAG +∠BAC =∠BAE +∠BAC ,即∠GAB =∠CAE .在△GAB 和△CAE 中,⎩⎨⎧AG =AC ,∠GAB =∠CAE ,AB =AE ,∴△GAB ≌△CAE (SAS),∴∠ABG =∠AEC ,易知∠AEC +∠AME =90°,又∵∠AME =∠BMN ,∴∠ABG +∠BMN =90°,∴∠BNM =90°,即CE ⊥BG ,∴四边形CGEB是垂美四边形.由(2)可得CG2+BE2=CB2+GE2,在Rt△ACB中,AC=4,AB=5,∴BC2=AB2-AC2=9,在Rt△ACG中,CG2=AC2+AG2=32,在Rt△ABE中,BE2=AB2+AE2=50,∴9+GE2=32+50,解得GE=73或GE=-73(不合题意,舍去),∴GE的长为73.。
(考试真题)沪科版八年级下册数学期末测试卷及含答案
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A. B. C.D.2、下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形D.四条边都相等的四边形是菱形3、下列命题中是真命题的是()A.如果a 2=b 2,那么a=bB.对角线互相垂直的四边形是菱形C.线段垂直平分线上的点到这条线段的两个端点的距离相等D.对应角相等的两个三角形全等4、如图,下列四组条件中,能判定□ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个5、式子有意义,则实数x的取值范围是( )A.x>2B.x>-2C.x≥2D.x≥-26、如图,在Rt△ABC中,∠A=90°,P为边BC上一动点,PE⊥AB于E , PF ⊥AC于F ,动点P从点B出发,沿着BC匀速向终点C运动,则线段EF的值大小变化情况是().A.一直增大B.一直减小C.先减小后增大D.先增大后减少7、如图,在平面直角坐标系中,点P的坐标为(0,2),直线y= 与x 轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A.3B.4C.5D.68、在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.709、下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形10、a= ,b= ,则a+b﹣ab的值是()A.3B.4C.5D.11、用配方法解方程x2﹣4x﹣1=0时,配方后得到的方程为()A.(x+2)2=3B.( x+2)2=5C.(x﹣2)2=3D.( x﹣2)2=512、如图,在长方形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,连结EF,若AB=6,BC=4 ,则FD的长为()A.2B.4C.D.213、某校在计算学生的数学期评成绩时,规定期中考试成绩占40%,期末考试成绩占60%.王林同学的期中数学考试成绩为80分,期末数学考试成绩为90分,那么他的数学期评成绩是()A.80分B.82分C.84分D.86分14、如图,已知一张纸片▱ABCD,∠B>90°,点E是AB的中点,点G是BC上的一个动点,沿BG将纸片折叠,使点B落在纸片上的点F处,连接AF,则下列各角中与∠BEG不一定相等的是()A.∠FEGB.∠EAFC.∠AEFD.∠EFA15、在如图的网格中,每个小正方形的边长为1,A、B、C三点均在正方形格点上,若是的高,则的长为()A. B. C. D.2二、填空题(共10题,共计30分)16、如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥CD,OE∥BC交CD于E,若OC=4,CE=3,则BC的长是________.17、如图,在矩形ABCD中,BC=6,AB=2,Rt△BEF的顶点E在边CD或延长线上运动,且∠BEF=90°,EF=BE,DF=,则BE=________.18、如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快________ s后,四边形ABPQ成为矩形.19、如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,且,C为线段上一点,,若M为y轴上一点,且,设直线与直线相交于点N,则的长为________.20、以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y= (x >0)经过点D,则OB•BE的值为________.21、一次数学测验中,某小组七位同学的成绩分别是:90,85,90,95,90,85,95.则这七个数据的众数是________.22、《九章算术》是我国古代数学的扛鼎之作,其中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,铭道长一尺,问径几何?”。
沪科版八年级数学下册期末考试试卷(含答案)
沪科版八年级数学下册期末考试试卷(含答案)沪科版八年级数学下册期末考试试卷一.选择题(本大题共6题,满分18分)1.下列函数中,一次函数是()A.y=xB.y=kx+bC.y=x^2-2x+1D.y=(x+3)/(x+2)2.下列判断中,错误的是()A.方程x(x-1)=0是一元二次方程B.方程xy+5x=0是二元二次方程C.方程(x+3)/(x+2)=2是分式方程D.方程2x^2-x=0是无理方程3.已知一元二次方程x^2-2x-m=0有两个实数根,那么m 的取值范围是()A.m≤-1B.m≥-1C.m>-1D.m<-14.下列事件中,必然事件是()A.“奉贤人都爱吃___”B.“2018年上海中考,___数学考试成绩是满分150分” C.“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只” D.“在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A.平行四边形的对角线相等B.矩形的对角线平分对角C.菱形的对角线互相平分 D.梯形的对角线互相垂直6.等腰梯形ABCD中,AD//BC。
E、F、G、H分别是AB、BC、CD、AD的中点,那么四边形EFGH一定是()A.矩形B.菱形C.正方形D.等腰梯形二.填空题。
(本大题共12题,每小题2分,共24分)7.一次函数y=2x-1的图像在y轴上的截距为-18.方程(1/4)x-8=0的根是89.方程2x+10-x=1的根是310.一次函数y=kx+3的图像不经过第3象限,那么k的取值范围是k>=-3/411.用换元法解方程2y^2-2y-1=0,如果设x=y-1/2,那么原方程化成以“x”为元的方程是4x^2-3=012.化简:(AB-CD)(-AC-BD)=AD^2-BC^213.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:(1+x)^2=179/10014.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=1215.既是轴对称图形有事中心对称图形的四边形为平行四边形16.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8.S四边形ABCD=16,那么对角线BD=419.给定方程19.x=-1.20.给定方程组:y=4,y=-2或者x=8,x=2.21.给定方程组:1) y=14-x2) 1/222.给定几何图形:1) OD,BO2) AC23.解:假设和谐号速度为x km/h,则复兴号列车速度为(x+70) km/h。
沪科版八年级数学下册《期末考试测试卷》(附答案)
一、选择题(本大题共有6题,每题3分,满分18分)1、直线23y x =-的截距是 ( )(A )—3; (B )—2; (C )2; (D )32、如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( )(A )3a <; (B )3a = ; (C )3a >; (D )3a ≠3、下列说法正确的是( )(A )410x +=是二项方程; (B )22x y y -=是二元二次方程;(C )132x x -=是分式方程; (D210-=是无理方程 4、下列事件中,属于确定事件的是( )(A )抛掷一枚质地均匀的骰子,正面向上的点数是6;(B )抛掷一枚质地均匀的骰子,正面向上的点数大于6;(C )抛掷一枚质地均匀的骰子,正面向上的点数小于6;(D )抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次5、如果平行四边形ABCD 两条对角线的长度分别为8,12AC cm BD cm ==,那么BC 边的长度可能是( )(A )2BC cm =; (B )6BC cm =; (C )10BC cm =; (D )20BC cm =6、已知平行四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是( )(A )90D ∠= (B )AB CD = (C )AB BC = (D )AC BD =二、填空题(本大题共12题,每题2分,满分24分)7、已知一次函数()32f x x =+,那么(2)f -=学校 姓名 班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……8、已知函数37y x =-+,当2x >时,函数值y 的取值范围是9、将直线2y x =向上平移1个单位,那么平移后所得直线的表达式是10、二项方程32540x +=在实数范围内的解是11、用换元法解方程22111x x x x --=-时,如果设21x y x =-,那么所得到的关于y 的整式方程为 12、如果2x =是关于x 的方程21124k x x =+--的增根,那么实数k 的值为 13、不透明的布袋里有2个黄球,3个红球,5个白球,它们除颜色外其他都相同,那么从布袋中随机摸出一个球恰好为红球的概率是14、已知一个多边形的每个外角都是30,那么这个多边形是 边形15、如果向量AD BC =,那么四边形ABCD 的形状可以是 (写出一种情况即可)16、写出一个轴对称图形但不是中心对称图形的四边形:17、已知正方形ABCD 的边长为1,如果将向量AB AC -的运算结果记为向量m ,那么向量m 的长度为18、已知四边形ABCD 是矩形,点E 是边AD 的中点,以直线BE 为对称轴将ABE ∆翻折至FBE ∆,联结DF ,那么图1中与相等的角的个数为(图1)三、解答题(本大题共有7题,满分58分)19、(本题6x =-20、(本题8分)解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩(不写作法,画出图21、(本题4分)已知向量,a b,(如图2),请用向量的加法的平行四边形法则作向量a b形)图222、(本题8分)甲、乙两位同学同时从学校出发,骑自行车前往距离学校20千米的郊野公园。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(本大题10小题,每小题4分,共40分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)• 1.如果a 为任意实数,下列根式一定有意义的是( )A B C D 2.下列式子中y 是x 的正比例函数的是( )A .y=3x-5B .y=2xC .y=25xD .3.直线y=x-2与x 轴的交点坐标是( )A .(2,0)B .(-2,0)C .(0,-2)D .(0,2)A .2-3之间B .3-4之间C .4-5之间D .5-6之间5.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:则该校排球队21名同学身高的众数和中位数分别是(单位:cm )( )学校 姓名 班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……A.185,178 B.178,175 C.175,178 D.175,175A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在正方形ABCD中,BD=2,∠DCE是正方形ABCD的外角,P是∠DCE的角平分线CF上任意一点,则△PBD的面积等于()A.1 B.1.5 C.2 D.2.58.如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是()A.-2 B.C.-1 D.()A .x≥3B .x≤3C .x≤2D .x≥210.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2016的值为( )A .(2)2013B .(2)2014C .(12)2013D .(12)201412.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的 (填”平均数”“众数”或“中位数”)13.如图,△ABC 的中位线DE=5cm ,把△ABC 沿DE 折叠,使点A 落在边BC 上的点F 处,若A 、F 两点间的距离是8cm ,则△ABC 的面积为 cm 2.14.如图,将平行四边形ABCD 折叠,使顶点D 恰好落在AB 边上的点M 处,折痕为AN ,有以下四个结论①MN ∥BC ;②MN=AM ;③四边形MNCB 是矩形;④四边形MADN 是菱形,以上结论中,你认为正确的有 (填序号).(2)求第几天每千克的利润w(元)最大?最大利润是多少?(利润=售价-成本)19.如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP 于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.(1)求证:DP=CG;(2)判断△PQR的形状,请说明理由.20.为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.21.某项工程由甲、乙两个工程队合作完成,先由甲队单独做3天,剩下的工作由甲、乙两工程队合作完成,工程进度满足如图所示的函数关系:(1)求出图象中②部分的解析式,并求出完成此项工程共需的天数;(2)该工程共支付8万元,若按完成的工作量所占比例支付工资,甲工程队应得多少元?22.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.【发现与证明】▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;结论2:B′D∥AC…【应用与探究】在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)参考答案与试题解析1.【分析】根据二次根式的性质,被开方数大于等于0【解答】解:被开方数大于或等于0时,二次根式一定有意义,几个被开方数中,不论a取何值,一定大于0的只有a2+1.故选C.【点评】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.【分析】根据正比例函数的定义:形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数进行分析即可.【解答】解:A、y=3x-5,是一次函数,不是正比例函数,故此选项错误;B、y=2x,是反比例函数,不是正比例函数,故此选项错误;C、y=25x是正比例函数,故此选项正确;D、故选:C.【点评】此题主要考查了正比例函数定义,关键是掌握正比例函数的一般形式.3.【分析】令y=0,求出x的值即可.【解答】解:∵令y=0,则x=2,∴直线y=x-2与x轴的交点坐标为(2,0).故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的坐标特点是解答此题的关键.4.【分析】在哪两个整数之间.【解答】解:∵22=4,32=9,∴23;∴3<4.故选:B.【点评】此题主要考查了无理数的估算能力,需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.5.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【解答】解:因为175出现的次数最多,所以众数是:175cm;因为第十一个数是175,所以中位数是:175cm.故选:D.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.【分析】根据ab>0,ac<0,可以得到a、b、c的正负,从而可以判断一次函数a c y xb b =--的图象经过哪几个象限,不经过哪个象限,本题得以解决.【解答】解:∵ab>0,ac<0,∴当a>0时,b>0,c<0,当a<0时,b<0,c>0,∴当a>0时,b>0,c<0时,一次函数a cy xb b=--的图象经过第一、二、四象限,不经过第三象限,当a<0时,b<0,c>0时,一次函数a cy xb b=--的图象经过第一、二、四象限,不经过第三象限,由上可得,一次函数a cy xb b=--的图象不经过第三象限,故选:C.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.7.【分析】由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.【解答】解:过C点作CG⊥BD于G,∵CF是∠DCE的平分线,∴∠FCE=45°,∵∠DBC=45°,∴CF∥BD,∴CG等于△PBD的高,∵BD=2,∴CG=1,△PBD的面积等于12×2×1=1.故选A.【点评】考查了三角形面积公式以及代入数值求解的能力,注意平行线间三角形同底等高的情况.8.【分析】先求出AC的长度,再根据勾股定理求出AB的长度,然后根据B1到原点的距离是-1,即可得到点B1所表示的数.【解答】解:根据题意,AC=3-1=2,∵∠ACB=90°,AC=BC,∴AB=∴B1到原点的距离是-1.又∵B′在原点左侧,∴点B1表示的数是1-.故选:D.【点评】本题主要考查了实数与数轴,勾股定理,求出AB的长度是解题的关键.解题时注意实数与数轴上的点是一一对应关系.9.【分析】以交点为分界,结合图象写出不等式kx≥-12x+4的解集即可.【解答】解:∵函数y=kx和y=-12x+4的图象相交于点A(3,m),∴由图象知,当x≥3时,kx≥-12x+4.即:不等式kx≥-12x+4的解集为:x≥3.故选:A.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.10.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=(12)n−3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S3=12S2=1,S4=12S3=12,…,∴S n=(12)n−3.当n=2016时,S2016=(12)2016−3=(12)2013.故选:C.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=(12)n−3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.11.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=63⨯==故答案为:【点评】本题考查了二次根式的加减运算,掌握二次根式的化简及同类二次根式的合并是关键.12.【分析】七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,【解答】解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.故答案为:中位数.【点评】考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.13.【分析】根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,BC=2DE=10cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=12BC×AF=12×10×8=40cm2.故答案为:40.【点评】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.14.【分析】根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵根据折叠可得∠D=∠NMA,∴∠B=∠NMA,∴MN∥BC;①正确;∵四边形ABCD是平行四边形,∴DN∥AM,AD∥BC,∵MN∥BC,∴AD∥MN,∴四边形AMND是平行四边形,根据折叠可得AM=DA,∴四边形AMND为菱形,∴MN=AM;②④正确;没有条件证出∠B=90°,④错误;故答案为:①②④.【点评】本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.15.【分析】首先取绝对值以及化简二次根式和利用二次根式乘法运算去括号,进而合并同类项得出即可.【解答】|3|3(3-=-6.【点评】此题主要考查了二次根式的混合运算,正确掌握运算法则是解题关键.16.【分析】(1)根据四边形ABCD的面积=S矩形AEFH-S△AEB-S△BFC-S△CGD-S梯形AHGD即可得出结论;(2)四边形ABCD中有直角.根据勾股定理得到CD=5,再根据勾股定理的逆定理即可求解.【解答】解:(1)如图,∵四边形ABCD的面积=S矩形AEFH-S△AEB-S△BFC-S△CGD-S梯形AHGD=5×5-12×1×5-12×2×4-12×1×2-12×(1+5)×1=1412;(2)四边形ABCD中有直角.理由:连结BD ,CD=5,∵CD 2=BC 2+CD 2,∴∠C=90°,∴四边形ABCD 中有直角.【点评】本题考查的是勾股定理的逆定理、勾股定理,熟知勾股定理及勾股定理的逆定理是解答此题的关键.17. 【分析】根据AAS 证△AFE ≌△DBE ,推出AF=BD .结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF 是菱形.【解答】证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE=DE ,BD=CD ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠∠∠∠⎧⎪⎨⎪⎩===,∴△AFE ≌△DBE (AAS );∴AF=DB .∵DB=DC ,∴AF=CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点,∴AD=DC=12BC , ∴四边形ADCF 是菱形.【点评】本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,解题的关键是正确寻找全等三角形,演艺圈的三角形的性质解决问题,属于中考常考题型.18. 【分析】(1)根据题意和当x=10时,y=7,当x=15时,y=6.5,可以求得一次函数的解析式并写出自变量x 的取值范围;(2)根据题意,可以得到w 与x 的函数关系式,再根据一次函数的性质和(1)中x 的取值范围即可解答本题.【解答】解:(1)设成本y (元千克)与第x 天的函数关系式是y=kx+b ,10715 6.5k b k b ⎩+⎨+⎧==,得0.18k b -⎧⎨⎩==, 即成本y (元千克)与第x 天的函数关系式是y=-0.1x+8(0<x≤20且x 为整数);(2)w=15-(-0.1x+8)=0.1x+7,∵0<x≤20且x 为整数,∴当x=20时,w 取得最大值,此时w=0.1×20+7=9,答:第20天每千克的利润w (元)最大,最大利润是9元/千克.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.19. 【分析】(1)正方形对角线AC 是对角的角平分线,可以证明△ADP ≌△DCG ,即可求证DP=CG .(2)由(1)的结论可以证明△CEQ ≌△CEG ,进而证明∠PQR=∠QPR .故△PQR 为等腰三角形.【解答】解:(1)证明:在正方形ABCD 中,AD=CD ,∠ADP=∠DCG=90°,∠CDG+∠ADH=90°,∵DH ⊥AP ,∴∠DAH+∠ADH=90°,∴∠CDG=∠DAH ,∴△ADP ≌△DCG ,∵DP ,CG 为全等三角形的对应边,∴DP=CG .(2)△PQR 为等腰三角形.∠QPR=∠DPA ,∠PQR=∠CQE ,∵CQ=DP ,由(1)的结论可知∴CQ=CG ,∵∠QCE=∠GCE ,CE=CE ,∴△CEQ ≌△CEG ,即∠CQE=∠CGE ,∴∠PQR=∠CGE,∵∠QPR=∠DPA,且(1)中证明△ADP≌△DCG,∴∠PQR=∠QPR,所以△PQR为等腰三角形.【点评】本题中证明△ADP≌△DCG是关键,并且利用(1)的结论来证明(2)的推论.本题考查的是正方形对角线即角平分线,考查全等三角形的证明,并把所求角转换为全等三角形对应角进行证明.20.【分析】(1)根据11-12点闯红灯的人数除以所占的百分比即可求出7-12这一时间段共有的人数;(2)根据7-8点所占的百分比乘以总人数即可求出7-8点闯红灯的人数,同理求出8-9点及10-11点的人数,补全条形统计图即可;求出9-10及10-11点的百分比,分别乘以360度即可求出圆心角的度数;(3)找出这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数即可.【解答】解:(1)根据题意得:40÷40%=100(人),则这一天上午7:00~12:00这一时间段共有100人闯红灯;(2)根据题意得:7-8点的人数为100×20%=20(人),8-9点的人数为100×15%=15(人),9-10点占10100=10%,10-11点占1-(20%+15%+10%+40%)=15%,人数为100×15%=15(人),补全图形,如图所示:9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°;(3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为15人.【点评】此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.21.【分析】(1)由题意知道甲乙合作了2天,完成了总工程的111244-=,剩余的工程还是合作,那么需要的天数=112424⎛⎫÷⨯=⎪⎝⎭(天),已经做了5天,总天数=5+4=9;(2)根据甲的工作效率是112,于是得到甲9天完成的工作量是9×112=34,即可得到结论.【解答】解:(1)设一次函数的解析式(合作部分)是y=kx+b(k≠0,k,b是常数).∵(3,14),(5,12)在图象上.代入得134152k bk b ⎧=+⎪⎪⎨⎪=+⎪⎩解得:1818 kb⎧=⎪⎪⎨⎪=-⎪⎩∴一次函数的表达式为y=18x-18.当y=1时,18x-18=1,解得x=9,∴完成此房屋装修共需9天;(2)由图象知,甲的工作效率是1 12,∴甲9天完成的工作量是:9×112=34,∴34×8=6万元.【点评】本题主要考查了一次函数的应用,待定系数法求函数解析式,数学公式(工作效率=工作总量÷工作时间)的灵活运用,能根据图象提供的数据进行计算是解此题的关键,题型较好.22.【分析】[发现与证明]由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA= 12(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;[应用与探究]:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=2.【解答】解:[发现与证明]:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=12(180°-∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;[应用与探究]:分两种情况:①如图1所示:∵四边形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,;∴AC=2②如图2所示:AC=BC=2;综上所述:AC2.【点评】本题考查了平行四边形的性质、正方形的性质、翻折变换、等腰三角形的判定以及平行线的判定;熟练掌握平行四边形的性质、翻折变换的性质,并能进行推理计算是解决问题的关键.。