2021年山东省单县北城第三初级中学八下数学期末教学质量检测试题含解析
山东省部分地区2021年数学八年级第二学期期末教学质量检测模拟试题含解析

山东省部分地区2021年数学八年级第二学期期末教学质量检测模拟试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.要使代数式2x +有意义,实数x 的取值范围是( )A .0x ≥B .2x ≥-C .2x <-D .2x ≠-2.已知一次函数y 1=2x+m 与y 2=2x+n (m≠n )的图象如图所示,则关于x 与y 的二元一次方程组 2{?2x y m x y n-=--=- 的解的个数为( )A .0个B .1个C .2个D .无数个3.某校组织数学学科竞赛为参加区级比赛做选手选拔工作,经过多次测试后,有四位同学成为晋级的候选人,具体情况如下表,如果从这四位同学中选出一名晋级(总体水平高且状态稳定)你会推荐( )甲 乙 丙 丁 平均分92 94 94 92 方差35 35 23 23 A .甲 B .乙 C .丙 D .丁4.如图是小王早晨出门散步时,离家的距离s 与时间t 之间的函数图象.若用黑点表示小王家的位置,则小王散步行走的路线可能是( )A .B .C .D .5.如图,ABC ∆中,DE BC ∥,EF AB ∥,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .BE 平分ABC ∠B .AD BD =C .BE AC ⊥D .AB AC =6.已知:20n 是整数,则满足条件的最小正整数n 为( )A .2B .3C .4D .57.一组数据从小到大排列为1,2,4,x ,6,1.这组数据的中位数是5,那么这组数据的众数为( )A .4B .5C .5.5D .6 8.如图,在ABCD 中,AE ⊥BC ,垂足为E ,AF ⊥CD ,垂足为F ,若AE:AF=2:3,ABCD 的周长为20,则AB 的长为( )A .4B .5C .6D .89.将直线y =2x 向右平移2个单位,再向上移动4个单位,所得的直线的解析式是( )A .y =2xB .y =2x+2C .y =2x ﹣4D .y =2x+410.下列调查中,适合采用普查的是()A .了解一批电视机的使用寿命B .了解全省学生的家庭1周内丢弃塑料袋的数量C .了解某校八(2)班学生的身高D .了解淮安市中学生的近视率二、填空题(每小题3分,共24分)11.如图,字母A 所代表的正方形面积为____.12.小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.13.如图,以点O 为圆心的三个同心圆把以OA 1为半径的大圆的面积四等分,若OA 1=R,则OA 4:OA 3:OA 2:OA 1=______________,若有(1n )个同心圆把这个大圆n 等分,则最小的圆的半径是n OA =_______.14.在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,如果AC=14,BD=8,AB=x ,那么x 的取值范围是__________.15.如图在△ABC 中,AH ⊥BC 于点H,在AH 上取一点D,连接DC ,使DA=DC,且∠ADC=2∠DBC,若DH=2,BC=6,则AB=_________________。
山东省2021年八年级下学期期末考试数学试卷3

山东省202X-202X学年八年级下学期期末考试数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列从左到右的变形是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+4x+10=(x+2)2+6C.x2﹣6x+9=(x﹣3)2D.x2﹣4+3x=(x﹣2)(x+2)+3x2.若分式的值为0,则x的值是()A.﹣3 B.3 C.±3 D.03.下列变形正确的是()A.B.C.D.4.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5 B.C.5或D.不确定5.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是()A.B.C.D.6.下列命题中正确的是()A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644 D.100x+80x=3568.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直9.已知:在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可以假设()A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C10.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13.当x时,分式有意义.14.在△ABC中,∠A:∠B:∠C=1:2:3,AB=6cm,则BC=cm.15.分解因式:x3y﹣2x2y2+xy3=.16.若关于x的方程+=2有增根,则m的值是.17.两个连续整数的积为42,则这两个数是.18.如图,正方形ABCD中,点E在BC的延长线上,AC=CE,则下列结论:(1)∠ACE=135°;(2)∠E=22.5°;(3)∠DFE=112.5°;(4)AF平分∠DAC;(5)DF=FC.其中正确的有.三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)1)因式分解:m3n﹣9mn.(2)计算:.2)解方程:4x(2x+1)=3(2x+1);(2)解分式方程:﹣2.21.张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?22.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?23.如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25.如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列从左到右的变形是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+4x+10=(x+2)2+6C.x2﹣6x+9=(x﹣3)2D.x2﹣4+3x=(x﹣2)(x+2)+3x考点:因式分解的意义.分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解答:解:A、是多项式相乘,错误;B、右边不是积的形式;错误;C、x2﹣6x+9=(x﹣3)2,正确;D、右边不是积的形式;错误;故选C.点评:这类问题的关键在于能否正确应用分解因式的定义来判断.2.若分式的值为0,则x的值是()A.﹣3 B.3 C.±3 D.0考点:分式的值为零的条件.专题:计算题.分析:分母不为0,分子为0时,分式的值为0.解答:解:根据题意,得x2﹣9=0且x﹣3≠0,解得,x=﹣3;故选A.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.下列变形正确的是()A.B.C.D.考点:分式的基本性质.专题:计算题.分析:根据分式的性质,进行变形,再判断对错即可.解答:解:A、=,此选项错误;B、=﹣,此选项正确;C、=,此选项错误;D、=1,此选项错误.故选B.点评:本题考查了分式的性质.解题的关键是灵活利用分式的性质.4.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5 B.C.5或D.不确定考点:勾股定理的逆定理.专题:分类讨论.分析:此题要分两种情况进行讨论:;①当3和4为直角边时;②当4为斜边时,再分别利用勾股定理进行计算即可.解答:解;①当3和4为直角边时,第三边长为=5,②当4为斜边时,第三边长为:=,故选:C.点评:此题主要考查了勾股定理的应用,关键是掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.5.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是()A.B.C.D.考点:列表法与树状图法.分析:列举出所有情况,看两个指针同时落在奇数上的情况占总情况的多少即可.解答:解:列表得:9 (1,9)(2,9)(3,9)(4,9)(5,9)8 (1,8)(2,8)(3,8)(4,8)(5,8)7 (1,7)(2,7)(3,7)(4,7)(5,7)6 (1,6)(2,6)(3,6)(4,6)(5,6)5 (1,5)(2,5)(3,5)(4,5)(5,5)1 2 3 4 5∴一共有25种情况,两个指针同时落在奇数上的有9种情况,∴两个指针同时落在奇数上的概率是,故选D.点评:用到的知识点为:概率=所求情况数与总情况数之比.6.下列命题中正确的是()A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等考点:全等三角形的判定;等腰三角形的性质;等边三角形的性质.分析:根据题意举出反例得出A选项不对;同样根据举出的图形,结合已知得出B也不对;全等三角形的判定定理有SAS,ASA,AAS,SSS,根据三角对应相等不能推出两三角形全等,即可判断C;根据已知和等边三角形性质可以推出三边对应相等,根据SSS即可推出两三角形全等.解答:解:A、假如这两边是两腰,则不能推出第三个条件相等,如图AB=AC,DE=DF,AB=DE,AC=DF,但两三角形不全等,故本选项错误;B、如上图,两腰AB=DE=AC=DF,但两三角形不全等,故本选项错误;D、由三角形内角和定理可以推出第三个角也相等,但是根据AAA不能推出两三角形全等,故本选项错误;D、∵△ABC和△DEF中,AB=BC=AC,DE=DF=EF,AB=DE,∴AC=DF,BC=EF,∴根据SSS可以推出△ABC≌△DEF,故本选项正确;故选D.点评:本题考查了等边三角形性质,全等三角形的判定,等腰三角形的性质等知识点,主要考查学生的辨析能力,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644 D.100x+80x=356考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.解答:解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选C.点评:此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.8.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直考点:菱形的判定;同位角、内错角、同旁内角;平行四边形的判定;矩形的性质.分析:根据平行线的性质判断A即可;根据平行四边形的判定判断B即可;根据菱形的判定判断C 即可;根据矩形的性质判断D即可.解答:解:A、如果两直线平行,同位角才相等,故A选项错误;B、对角线互相平分的四边形是平行四边形,故B选项错误;C、四边相等的四边形是菱形,故C选项正确;D、矩形的对角线互相平分且相等,不一定垂直,故D选项错误;故选C.点评:本题考查了平行线的性质,平行四边形、菱形的判定、矩形的性质的应用,主要考查学生的理解能力和辨析能力.9.已知:在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可以假设()A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C考点:反证法.分析:反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.解答:解:∠B≠∠C的反面是∠B=∠C.故可以假设∠B=∠C.故选C.点评:本题主要考查了反证法的基本步骤,正确确定∠B≠∠C的反面,是解决本题的关键10.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°考点:旋转的性质.分析:旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′.解答:解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.故选:C.点评:本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.解答:解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.点评:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.12.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19考点:勾股定理.分析:由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.解答:解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选B.点评:本题考查了勾股定理,要充分利用正方形的性质,找到相等的量,再结合三角函数进行解答.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13.当x≠3时,分式有意义.考点:分式有意义的条件.专题:计算题.分析:根据分式存在的条件得到3﹣x≠0,解不等式即可.解答:解:要使分式有意义,必须3﹣x≠0,即x≠3.故答案为:≠3.点评:本题考查了分式有意义的条件:分式的分母不为0.14.在△ABC中,∠A:∠B:∠C=1:2:3,AB=6cm,则BC=3cm.考点:含30度角的直角三角形.专题:计算题.分析:先根据已知和三角形内角和定理求出∠A、∠C,根据含30度角的直角三角形性质求出即可.解答:解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:2:3,∴∠A=30°,∠C=90°,∵AB=6cm,∴BC=AB=3cm,故答案为:3.点评:本题考查了三角形内角和定理,含30度角的直角三角形性质的应用,关键是求出∠A、∠C 的度数和得出BC=AB.15.分解因式:x3y﹣2x2y2+xy3=xy(x﹣y)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式,再利用完全平方公式进行二次分解因式.解答:解:x3y﹣2x2y2+xy3,=xy(x2﹣2xy+y2),=xy(x﹣y)2.点评:本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.16.若关于x的方程+=2有增根,则m的值是0.考点:分式方程的增根.专题:计算题;压轴题.分析:方程两边都乘以最简公分母(x﹣2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.解答:解:方程两边都乘以(x﹣2)得,2﹣x﹣m=2(x﹣2),∵分式方程有增根,∴x﹣2=0,解得x=2,∴2﹣2﹣m=2(2﹣2),解得m=0.故答案为:0.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.两个连续整数的积为42,则这两个数是6,7或﹣6,﹣7.考点:一元二次方程的应用.专题:数字问题.分析:连续整数相差1,等量关系为:较小的数×(较小的数+1)=42,把相关数值代入求解即可.解答:解:设较小的数为x.x(x+1)=42,解得x1=6,x2=﹣7,∴x+1=7或﹣6,故答案为6,7或﹣6,﹣7.点评:考查一元二次方程的应用;表示出两个连续整数的积的等量关系是解决本题的关键.18.如图,正方形ABCD中,点E在BC的延长线上,AC=CE,则下列结论:(1)∠ACE=135°;(2)∠E=22.5°;(3)∠DFE=112.5°;(4)AF平分∠DAC;(5)DF=FC.其中正确的有(1)(2)(3)(4).考点:正方形的性质;等腰三角形的性质.分析:正方形ABCD中,点E在BC的延长线上,AC=CE,所以∠E=22.5°;∠DFE=112.5°;∠ACE=135°;AF平分∠DAC;均正确,而只有(5)不确定.解答:解:在正方形ABCD中,∵AC=CE,∴∠CAF=∠E,∵AD∥BC,∴∠E=∠EAD∴∠CAF=∠EAD,∴AE平分∠DAC,∴∠E=×45°=22.5°,∠DFE=∠E+90°=112.5°∠ACE=90°+45°=135°,∵AD∥CE,∴△AFD∽△EFC,∴AD:CE=DF:CF,∵AC=CE=AD,∴AD:CE=DF:CF=1:,∴DF≠FC.故(1)(2)(3)(4)正确.故答案为:(1)(2)(3)(4).点评:本题考查了正方形的性质,平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)1)因式分解:m3n﹣9mn.(2)计算:.考点:提公因式法与公式法的综合运用;分式的加减法.分析:(1)直接利用提取公因式法分解因式,进而利用平方差公式分解因式即可;(2)首先化简分式,进而利用同分母分式加减运算法则求出即可.解答:解:(1)m3n﹣9mn=mn(m2﹣9)=mn(m+3)(m﹣3);(2)=+=+=1.点评:此题主要考查了提取公因式法以及公式法分解因式和分式的加减运算,正确化简分式是解题关键.2)解方程:4x(2x+1)=3(2x+1);(2)解分式方程:﹣2.考点:解一元二次方程-因式分解法;解分式方程.分析:(1)先移项;然后提取公因式(2x+3)分解因式,利用因式分解法解方程.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)4x(2x+1)﹣3(2x+1)=0,∴(2x+1)(4x﹣3)=0,∴2x+1=0或4x﹣3=0,∴x1=﹣,x2=.(2)去分母得:x﹣1=1﹣2(2﹣x),去括号得:x﹣1=1﹣4+2x,解得:x=2,经检验x=2不是分式方程的解.∴原方程无解.点评:本题考查了解一元二次方程﹣﹣因式分解法解分式方程和.因式分解法解一元二次方程的思想就是把未知方程化成2个因式相乘等于0的形式;解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?考点:分式方程的应用.分析:设原计划每天铺设管道x米,根据需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,根据等量关系:铺设120米管道的时间+铺设(300﹣120)米管道的时间=27天,可列方程求解.解答:解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.点评:本题考查理解题意的能力,关键是设出原计划每天铺设管道x米,以天数做为等量关系列方程求解.22.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?考点:游戏公平性.分析:(1)本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.(2)添加适当的分值进行调节.解答:解:(1)不公平;∵P(配成紫色)=,P(配不成紫色)=.(2分)∴小刚得分:,小明得分:,∵,∴游戏对双方不公平.(4分)(2)修改规则的方法不惟一.(如改为:若配成紫色时小刚得(7分),否则小明得(2分).)(6分)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题;压轴题.分析:由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,又由∠AOE=∠COF,易证得△OAE ≌△OCF,则可得OE=OF.解答:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠OAE=∠OCF,∵在△OAE和△OCF中,,∴△OAE≌△OCF(ASA),∴OE=OF.点评:此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?考点:一元二次方程的应用.分析:根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.解答:解:设购买了x件这种服装且多于10件,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=20时,80﹣2(20﹣10)=60元>50元,符合题意;当x=30时,80﹣2(30﹣10)=40元<50元,不合题意,舍去;答:她购买了20件这种服装.点评:此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.25.如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.考点:一元二次方程的应用.专题:几何图形问题.分析:(1)边长为x的正方形面积为x2,矩形面积减去4个小正方形的面积即可.(2)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可.解答:解:(1)ab﹣4x2;(2)依题意有:ab﹣4x2=4x2,将a=6,b=4,代入上式,得x2=3,解得x1=,x2=﹣(舍去).即正方形的边长为点评:本题是利用方程解答几何问题,充分体现了方程的应用性.依据等量关系“剪去部分的面积等于剩余部分的面积”,建立方程求解.26.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.考点:平行四边形的判定;全等三角形的判定与性质;等边三角形的性质.分析:(1)首先连接CE,根据直角三角形的性质可得CE=AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB;(2)当AC=或AB=2AC时,四边形DCBE是平行四边形.根据(1)中所求得出DC∥BE,进而得到四边形DCBE是平行四边形.解答:(1)证明:连结CE.∵点E为Rt△ACB的斜边AB的中点,∴CE=AB=AE.∵△ACD是等边三角形,∴AD=CD.在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE=30°.∵∠DCB=150°,∴∠EDC+∠DCB=180°.∴DE∥CB.(2)解:当AC=或AB=2AC时,四边形DCBE是平行四边形,理由:∵AC=,∠ACB=90°,∴∠B=30°,∵∠DCB=150°,∴∠DCB+∠B=180°,∴DC∥BE,又∵DE∥BC,∴四边形DCBE是平行四边形.点评:此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.。
2021年初中数学八年级下期末测试题(答案解析)

一、选择题1.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >2.(0分)[ID :10197]随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( ) A .90万元 B .450万元 C .3万元 D .15万元3.(0分)[ID :10144]如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3 4.(0分)[ID :10139]已知y =(k -3)x |k |-2+2是一次函数,那么k 的值为( ) A .3±B .3C .3-D .无法确定5.(0分)[ID :10195]如图,菱形ABCD 中,∠B =60°,AB =2cm,E,F 分别是BC,CD 的中点,连接AE,EF,AF ,则△AEF 的周长为( )A .2√3cmB .3cmC .4√3cmD .3√3cm6.(0分)[ID :10188]如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC=8,OB=5,则OM的长为()A.1B.2C.3D.47.(0分)[ID:10186]如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.88.(0分)[ID:10185]若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线互相垂直的四边形D.对角线相等的四边形9.(0分)[ID:10181]若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或√313 10.(0分)[ID:10179]若正比例函数的图象经过点(−1,2),则这个图象必经过点().A.(1,2)B.(−1,−2)C.(2,−1)D.(1,−2)11.(0分)[ID:10175]函数y=x的自变量取值范围是( )√x+3A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10169]直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1B.5C.7D.5或713.(0分)[ID:10166]如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6B.12C.24D.不能确定14.(0分)[ID:10162]一列火车由甲市驶往相距600km的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .15.(0分)[ID :10151]如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .5二、填空题16.(0分)[ID :10331]如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.17.(0分)[ID :10316]45与最简二次根式321a -是同类二次根式,则a =_____. 18.(0分)[ID :10304]若x <2,化简22)x -(+|3﹣x|的正确结果是__.19.(0分)[ID :10300]如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.20.(0分)[ID :10298]函数1y x =-x 的取值范围是 . 21.(0分)[ID :10294]如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.22.(0分)[ID :10293]已知()()1,32,1A B -、,点P 在y 轴上,则当y 轴平分APB ∠时,点P 的坐标为______.23.(0分)[ID :10273]在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= .24.(0分)[ID :10257]如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若DQ =2QC ,BC =3,则平行四边形ABCD 周长为_____.25.(0分)[ID :10248]已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.三、解答题26.(0分)[ID :10413]在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A 、B 、C 三个等级,其中相应等级的得分依次记为A 级100分、B 级90分、C 级80分,达到B 级以上(含B 级)为优秀,其中8(2)班有2人达到A 级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C 级的人数为_______人; (3)小明同学根据以上信息制作了如下统计表:平均数(分) 中位数(分) 方差 8(1)班 m 90 n 8(2)班919029请分别求出m 和n 的值,并从优秀率和稳定性方面比较两个班的成绩;27.(0分)[ID :10408]如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.28.(0分)[ID :10349]我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分) 中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.29.(0分)[ID:10338]如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?30.(0分)[ID:10429]如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.D4.C5.D6.C7.D8.D9.D10.D11.B12.D13.B14.A15.D二、填空题16.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF 是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD17.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及18.5-2x【解析】【分析】本题首先根据题意得出x-203-x0然后根据绝对值的性质进行化简从而得出答案【详解】解:+|3﹣x|=+|3﹣x|∵x<2∴x-203-x0∴原式=2-x+3-x=5-2x故19.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D20.x>1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是21.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠22.【解析】【分析】作点A关于y轴对称的对称点求出点的坐标再求出直线的解析式将代入直线解析式中即可求出点P的坐标【详解】如图作点A关于y轴对称的对称点∵点A 关于y轴对称的对称点∴设直线的解析式为将点和点23.5【解析】试题分析:∵四边形ABCD是矩形∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质24.【解析】试题解析:∵由题意可知AQ是∠DAB的平分线∴∠DAQ=∠BAQ∵四边形ABCD是平行四边形∴CD∥ABBC=AD=3∠BAQ=∠DQA∴∠DAQ=∠DAQ∴△AQD是等腰三角形∴DQ=AD25.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x 的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】根据两函数图象平行k相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线1l向下平移若干个单位后得直线2l,∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.2.A解析:A 【解析】1(3.4 2.9 3.0 3.1 2.6)35x =++++=.所以4月份营业额约为3×30=90(万元).3.D解析:D 【解析】 【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【详解】解:由题意可知:中间小正方形的边长为:-a b 每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-=2()25169a b ∴-=-=3a b ∴-= 故选:D 【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.4.C解析:C 【解析】【分析】根据一次函数的定义可得k-3≠0,|k|-2=1,解答即可. 【详解】一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1. 所以|k|-2=1, 解得:k=±3, 因为k-3≠0,所以k≠3, 即k=-3. 故选:C . 【点睛】本题主要考查一次函数的定义,一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.5.D解析:D 【解析】 【分析】首先根据菱形的性质证明△ABE ≌△ADF ,然后连接AC 可推出△ABC 以及△ACD 为等边三角形.根据等边三角形三线合一的性质又可推出△AEF 是等边三角形.根据勾股定理可求出AE 的长,继而求出周长. 【详解】解:∵四边形ABCD 是菱形,∴AB =AD =BC =CD =2cm ,∠B =∠D , ∵E 、F 分别是BC 、CD 的中点, ∴BE =DF ,在△ABE 和△ADF 中,{AB =AD∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ), ∴AE =AF ,∠BAE =∠DAF . 连接AC , ∵∠B =∠D =60°,∴△ABC 与△ACD 是等边三角形, ∴AE ⊥BC ,AF ⊥CD , ∴∠BAE =∠DAF =30°, ∴∠EAF =60°,BE=12AB=1cm ,∴△AEF 是等边三角形,AE =√AB 2−BE 2=√22−12=√3, ∴周长是3√3cm . 故选:D .【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.6.C解析:C【解析】【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD 的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB22AC BC-22108-6,∵M是AD的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.7.D解析:D【解析】【分析】根据三角形中位线定理得出AC的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=12 AC;∵FD=8∴AC=16又∵E是线段AC的中点,AH⊥BC,∴EH=12 AC,∴EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.8.D解析:D【解析】【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=12BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【详解】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.9.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边=√122+132=√313,当13,12分别是斜边和一直角边时,第三边=√132−122=5.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.10.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.11.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.12.D解析:D【解析】【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边;当第三边为斜边时,3和4为直角边,第三边=5,故选:D .【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.13.B解析:B【解析】【分析】由矩形ABCD 可得:S △AOD =14S 矩形ABCD ,又由AB=15,BC=20,可求得AC 的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果.【详解】连接OP ,如图所示: ∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.14.A解析:A【解析】【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s与t的函数关系式为s=600-200t,其中0≤t≤3,所以函数图象是A.故选A.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.15.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE=12BC=3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.二、填空题16.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF 是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF 是平行四边形,∵AD=DB ,AE=EC ,∴DE=12BC , ∴DF=BC ,∵CA=CB ,∴AC=DF , ∴四边形ADCF 是矩形,点D. E 分别是边AB 、AC 的中点,∴DE//BC ,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF 是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则17.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及 解析:3【解析】【分析】化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a 的方程,解出即可.【详解】=与最简二次根式∴215a -=,解得:3a =故答案为:3【点睛】本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于a 的方程是解题的关键.18.5-2x 【解析】【分析】本题首先根据题意得出x-203-x0然后根据绝对值的性质进行化简从而得出答案【详解】解:+|3﹣x|=+|3﹣x|∵x<2∴x -203-x0∴原式=2-x+3-x=5-2x 故解析:5-2x【解析】【分析】本题首先根据题意得出x-2<0,3-x>0,然后根据绝对值的性质进行化简,从而得出答案.【详解】解:﹣x|=2x-+|3﹣x|∵x<2∴x-2<0,3-x>0∴原式=2-x+3-x=5-2x故答案为:5-2x【点睛】本题主要考查的就是二次根式的化简.2的区别,第一个a的取值范围为全体实数,第二个a的取值范围为非负数,第一个的运算结果为a,然后根据a的正负性进行去绝对值,第二个的运算结果就是a.本题我们知道原式=x2-+3x-,然后根据x的取值范围进行化简.19.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO,由直线y x b=-+交线段OC于点B,交x轴于点A可知OB=b,OA=b,∵点C(0,6),∴OC=6,∴BC=6-b,在△DBC和△BAO中,DBC BAODCB AOBBD AB∠∠⎧⎪∠∠⎨⎪⎩===∴△DBC≌△BAO(AAS),∴BC=OA,即6-b=b,∴b=3;②当∠ADB=90°时,如图2,作AF⊥CE于F,同理证得△BDC≌△DAF,∴CD=AF=6,BC=DF,∵OB=b,OA=b,∴BC=DF=b-6,∵BC=6-b,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴b=6;综上,b的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.20.x >1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是解析:x >1【解析】【分析】【详解】解:依题意可得10x ->,解得1x >,所以函数的自变量x 的取值范围是1x >21.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.22.【解析】【分析】作点A 关于y 轴对称的对称点求出点的坐标再求出直线的解析式将代入直线解析式中即可求出点P 的坐标【详解】如图作点A 关于y 轴对称的对称点∵点A 关于y 轴对称的对称点∴设直线的解析式为将点和点 解析:()0,5【解析】【分析】作点A 关于y 轴对称的对称点A ',求出点A '的坐标,再求出直线BA '的解析式,将0x =代入直线解析式中,即可求出点P 的坐标.【详解】如图,作点A 关于y 轴对称的对称点A '∵()1,3A ,点A 关于y 轴对称的对称点A '∴()1,3A '-设直线BA '的解析式为y kx b =+将点()1,3A '-和点()2,1B -代入直线解析式中312k b k b =-+⎧⎨=-+⎩解得2,5k b ==∴直线BA '的解析式为25y x =+将0x =代入25y x =+中解得5y =∴()0,5P故答案为:()0,5.【点睛】本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.23.5【解析】试题分析:∵四边形ABCD是矩形∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质解析:5。
山东省菏泽市单县2021-2022学年八年级下学期期末数学试题

山东省菏泽市单县2021-2022学年八年级下学期期末数学试题(共10题;共20分)1.(2分)下列说法中,正确的是()A.16的平方根是4B.0.4的算术平方根是0.2C.64的立方根是±4D.-64的立方根是-4【答案】D【解析】【解答】解:A、16的平方根是±4,不符合题意;B、0.04的算术平方根是0.2,不符合题意;C、64的立方根是4,不符合题意;D、-64的立方根是-4,符合题意;故答案为:D.【分析】利用平方根,算术平方根和立方根的计算方法逐项判断即可。
2.(2分)式子√2−x+1x+1有意义,则x的取值范围是()A.x≤2B.x≤2且x≠−1 C.x≥2D.x≥2且x≠−1【答案】B【解析】【解答】解:式子√2−x+1x+1有意义,则2−x≥0且x+1≠0,解得:x≤2且x≠−1,故答案为:B.【分析】利用分式及二次根式有意义的条件列出不等式求解即可。
3.(2分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB∠BC【答案】B【解析】【解答】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,不符合题意;B、∠A=∠C不能判定这个平行四边形为矩形,符合题意;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,不符合题意;D 、AB∠BC ,所以∠B=90°,可以判定这个平行四边形为矩形,不符合题意, 故答案为:B .【分析】在平行四边形的基础上,要判断出一个图形是矩形,只需要添加矩形具有的一个特殊条件,一个角是直角,或对角线相等即可。
4.(2分)若 a =√73 , b =√5 , c =2 ,则a ,b ,c 的大小关系为( )A .b <c <aB .b <a <cC .a <c <bD .a <b <c【答案】C【解析】【解答】解:∵√73<√83 , √5>√4又∵√83=2 , √4=2 ∴a <c <b 故答案为:C .【分析】根据估算无理数大小的方法可得 √73<√83=2 , √5>√4=2,据此进行比较.5.(2分)已知A 、B 两地相距600米,甲、乙两人同时从A 地出发前往B 地,所走路程y (米)与行驶时间x (分)之间的函数关系如图所示,则下列说法中: ①甲每分钟走100米; ②两分钟后乙每分钟走50米; ③甲比乙提前3分钟到达B 地, 正确的有( )个.A .0B .1C .2D .3【答案】C【解析】【解答】解:由图象可知,甲每分钟走的路程:600÷6=100米,故①符合题意;两分钟后乙每分钟走的路程:(500-300)÷(6-2)=50米,故②符合题意; 乙到达B 地的时间:2+(600-300)÷50=8分钟, 甲比乙提前了2分钟到达B 地,故③不符合题意;故答案为:C .【分析】结合函数图象,再利用路程、速度和时间的关系逐项判断即可。
2021年山东省八年级下学期数学期末试卷 (2).doc

D ABC山东省八年级下学期数学期末试卷1、下列方程,是一元二次方程的是( )①3x 2+x=20,②2x 2-3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2-3x+3=0A .①②B .①②④⑤C .①③④D .①④⑤2、若2(7)x =7-x ,则x 的取值范围是( )A .x ≥7B .x ≤7C .x>7D .x<73、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2kx (k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行,并且对角线互相垂直且相等的四边形是( )A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、下列图形中,既是中心对称图形又是轴对称图形的是7、如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、 以上答案都不对8、如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是 ( )A 、1516B 、516C 、1532D 、17169、如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( )A 、x <-1B 、x >2C 、-1<x <0,或x >2D 、x <ABCABCDEGF -1,或0<x <210、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为2S 172甲=,2S 256乙=。
下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好。
2021-2022学年度第二学期期末质量检测八年级数学参考答案

八年级数学试题参考答案第1页共3页2021—2022学年度第二学期期末考试八年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分题号12345678910答案C A A B D C A D B D 二、填空题:本题共5小题,每题3分,共15分11.3;12.5或7;13.-1;14.2x +1;15.3.三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.解:2)5(-+)16)(16(-+-01.0=5+6-1-0.1……………………………………………………………………4分=9.9.…………………………………………………………………………6分17.解:连接DB ,在Rt △ABD 中,AD =11,AB =5,∠BAD =90°,∴BD =22AB AD +=6.…………………………2分∵BC =10,CD =8,∴62+82=102.∴BD 2+CD 2=BC 2.∴∠BDC =90°.…………………………4分∴S 四边形ABCD =S △ABD +S △BCD =862151121⨯⨯+⨯⨯=1125+24.…………………………6分18.(1)90,90;…………………………………………………………………………2分(2)解:∵n =101×(85+85+95+80+95+90+90+90+100+90)=90,………………………4分∴222221[(8090)2(8590)4(9090)2(9590)(10090)]3010q =⨯-+⨯-+⨯-+⨯-+-=;…6分(3)答:八年级的学生成绩好.理由:七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定.综上所述,八年级的学生成绩好.………………………………………………………7分八年级数学试题参考答案第2页共3页19.(1)证明:∵OC ∥DE ,OD ∥CE ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴OC =OD .∴四边形OCED 是菱形;………………………………………………………………………4分(2)解:∵四边形ABCD 是矩形,AC =12,∴OC =OD=21AC =6.∵∠DOC =60°,∴△OCD 是等边三角形.∴CD =OC =6.∵四边形OCED 是菱形,∴∠BAD =90°,∠DOF=21∠DOC =30°.∴OF =33.∴OE =2OF =63.∴S 四边形ABCD =21OE ·CD =21⨯63⨯6=183.……………………………………8分20.解:(1)由题意,得y =550x +400(7﹣x ).即y =150x +2800.…………………………………………………………4分(2)由题意,得50x +35(7﹣x )≥330.…………………………………………………………5分解得,x ≥317.……………………………………………………………………6分又由题意得:x ≤7.所以317≤x ≤7.……………………………………………7分∵x 为整数∴x =6或7.∵k =150>0,∴y 随x 的增大而增大.∴x =6时,租车费用最少,y =150×6+2800=3700(元).即当甲种客车有6辆时,最少费用是3700元.………………………………………8分21.(1)画图:(如图所示).………………4分(2)①>.…………………………………………5分②0<a <3.……………………………………7分③解:当y =5时,2-x =5.解得:x =7或x =-3.……………………8分∵x =-3<-1,且此时-3+4=1,∴x =-3舍去,只取x =7.………………………………9分(第19题)八年级数学试题参考答案第3页共3页22.(1)(0,5),(2,0),(7,2),(5,7);…………………………………………………4分(2)证明:∵四边形ABCD 正方形,∴BD 平分∠ABC ,BC =BA .∴∠ABD =∠CBD =45°.∵BF =BF ,∴△ABF ≌△CBF (SAS ).∴∠EAB =∠GCB .………………………………………………………………7分(3)答:存在这样的m 值,使CG ⊥y 轴.解:∵CG ⊥y 轴,∴CG ∥x 轴.∵点C 的坐标(7,2),∴点F 的纵坐标是2.设直线BD 的解析式是y =kx +b ,由(1),得2k +b =0,解得:k =37,5k +b =7.b =-314.∴直线BD 的解析式是y =37x -314.∴当y =2时,37x -314=2.解得:x =720.∴点F 的坐标是(720,2).………………………………………………………9分设直线AF 的解析式是y =k 1x +b 1,得720k +b =2,解得:k =-2021,b =5.b =5.∴直线AF 的解析式是y =-2021x +5.∵点E(m ,0)在直线AF 上,∴-2021m +5=0.解得:m =21100.…………………………………………………11分。
山东省2021年八年级下学期期末考试数学试题4.doc

山东省八年级下学期期末考试数学试题第一部分试题一、选择题(每小题3分,共27分)1.(202X春•高密市期末)下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣1考点:一次函数的定义;正比例函数的定义.分析:根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.解答:解:A、y=2x是正比例函数,故A错误;B、y=+2是反比例函数的变换,故B错误;C、y=﹣x是一次函数,故C正确;D、y=2x2﹣1是二次函数,故D错误;故选:C.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.(202X春•高密市期末)下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合考点:中心对称.分析:依据中心对称图形的定义和性质解答即可.解答:解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选:B.点评:本题主要考查的是中心对称图形的定义和性质,掌握中心对称图形的定义和性质是解题的关键.3.(2006•青岛)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0 C.y1<y2D. y1=y2考点:一次函数图象上点的坐标特征.分析:根据一次函数y=kx+b(k≠0,k,b为常数),当k<0时,y随x的增大而减小解答即可.解答:解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选A.点评:本题考查了一次函数的增减性,比较简单.4.(202X春•高密市期末)下列问题中,是正比例函数的是()A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系考点:正比例函数的定义.分析:根据正比例函数的定义对各选项进行逐一分析即可.解答:解:A、∵S=ab,∴矩形的长和宽成反比例,故本选项错误;B、∵S=a2,∴正方形面积和边长是二次函数,故本选项错误;C、∵S=ah,∴三角形的面积一定,底边和底边上的高是反比例关系,故本选项错误;D、∵S=vt,∴速度固定时,路程和时间是正比例关系,故本选项正确.故选D.点评:本题考查的是正比例函数的定义,即一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数.5.(2013•烟台)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)考点:坐标与图形变化-平移.专题:推理填空题.分析:四边形ABCD与点A平移相同,据此即可得到点A′的坐标.解答:解:四边形ABCD先向左平移3个单位,再向上平移2个单位,因此点A也先向左平移3个单位,再向上平移2个单位,由图可知,A′坐标为(0,1).故选:B.点评:本题考查了坐标与图形的变化﹣﹣平移,本题本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.(2012•本溪)下列各网格中的图形是用其图形中的一部分平移得到的是()A.B.C.D.考点:利用平移设计图案.专题:探究型.分析:根据平移及旋转的性质对四个选项进行逐一分析即可.解答:解:A、是利用图形的旋转得到的,故本选项错误;B、是利用图形的旋转和平移得到的,故本选项错误;C、是利用图形的平移得到的,故本选项正确;D、是利用图形的旋转得到的,故本选项错误.故选C.点评:本题考查的是利用平移设计图案,熟知图形经过平移后所得图形与原图形全等是解答此题的关键.7.(202X春•高密市期末)据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100考点:函数关系式.分析:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.解答:解:y=100×0.05x,即y=5x.故选:B.点评:本题主要考查了根据实际问题列一次函数解析式,正确表示出一分钟滴的水的体积是解题的关键.8.(202X•潍坊)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.考点:一次函数图象与系数的关系;零指数幂;二次根式有意义的条件.分析:首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.解答:解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.点评:(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.9.(202X春•高密市期末)星期天晚饭后,小红从家里出去散步,如图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的关系.依据图象,下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,就找同学去了,18min后才开始返回考点:函数的图象.分析:根据函数图象的纵坐标,可得答案.解答:解:由纵坐标看出,0到4分钟从家到了报亭,由横坐标看出4到10分钟在报亭读报,由纵坐标看出10到12分钟看报后继续前行,由纵坐标看出12到18分钟返回家,故B正确;故选:B.点评:本题考查了函数图象,观察函数图象的纵坐标是解题关键.二、填空题(每小题3分,共21分)10.(202X春•高密市期末)已知点(a,1)在函数y=3x+4的图象上,则a=﹣1.考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据一次函数图象上点的坐标特征,把(a,1)代入解析式得到a的一元一次方程,然后解一元一次方程即可.解答:解:把(a,1)代入y=3x+4得3a+4=1,解得a=﹣1.故答案为﹣1.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.11.(202X春•高密市期末)直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.考点:一次函数与二元一次方程(组).分析:利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.解答:解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.点评:本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.12.(2012•无锡)如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB=90°.考点:旋转的性质.分析:根据旋转的性质可知∠CAF=60°;然后在△CAF中利用三角形内角和定理可以求得∠CFA=90°,即∠AFB=90°.解答:解:∵△ADE是由△ABC绕点A顺时针旋转60°得到的,∴∠CAF=60°;又∵∠C=30°(已知),∴在△AFC中,∠CFA=180°﹣∠C﹣∠CAF=90°,∴∠AFB=90°.故答案是:90.点评:本题考查了旋转的性质.根据已知条件“将△ABC绕点A顺时针旋转60°得到△ADE”找到旋转角∠CAF=60°是解题的关键.13.(202X春•高密市期末)直线y=x+3与x轴,y轴所围成的三角形的面积为3.考点:一次函数图象上点的坐标特征.专题:计算题.分析:先根据坐标轴上点的坐标特征求出直线与坐标轴的交点坐标,然后根据三角形面积公式求解.解答:解:当x=0时,y=x+3=3,则直线与y轴的交点坐标为(0,3),当y=0时,x+3=0,解得x=﹣2,则直线与x轴的交点坐标为(﹣2,0),所以直线y=x+3与x轴,y轴所围成的三角形的面积=×3×2=3.故答案为3.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.14.(202X春•高密市期末)已知一次函数y=kx﹣k,若y随着x的增大而减小,则该函数图象经过第一、二、四象限.考点:一次函数图象与系数的关系.分析:根据已知条件“y随x的增大而减小”判断k的取值,再根据k,b的符号即可判断直线所经过的象限.解答:解:∵一次函数y=kx﹣k,y随着x的增大而减小,∴k<0,即﹣k>0,∴该函数图象经过第一、二、四象限.故答案为一、二、四.点评:本题考查了一次函数图象与系数的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.15.(202X春•高密市期末)如图,在Rt△ABC,∠C=90°,BC=3厘米,AC=4厘米.将△ABC 沿BC方向平移1厘米,得到△A′B′C′,则四边形ABC′A′的面积为10平方厘米.考点:平移的性质.分析:根据平移的性质求出AA′、CC′,然后求出BC′,再根据梯形的面积公式列式计算即可得解.解答:解:∵△ABC沿BC方向平移1厘米,得到△A′B′C′,∴AA′=CC′=1厘米,∴BC′=BC+CC′=3+1=4厘米,∵∠C=90°,∴四边形ABC′A′是梯形且AC是梯形的高,∴四边形ABC′A′的面积=×(1+4)×4=10平方厘米.故答案为:10.点评:本题考查了平移的性质,梯形的面积,主要利用了对应点间的长度等于平移距离.16.(2010•武汉模拟)如图,已知一次函数y=kx+b和y=mx+n的图象交于点P,则根据图象可得不等式组0<mx+n<kx+b的解集是﹣3<x<﹣1.考点:一次函数与一元一次不等式.专题:数形结合.分析:由已知一次函数y=kx+b和y=mx+n的图象交于点P(﹣1,3),根据一次函数的增减性,由图象上可以看出当x>﹣1是y=mx+n>kx+b,当x<﹣1时,一次函数y=kx+b>mx+n,从而可以求出不等式组0<mx+n<kx+b的解集.解答:解:∵一次函数y=kx+b和y=mx+n的图象交于点P(﹣1,3),由图象上可以看出:当x<﹣1时,y=mx+n<kx+b=y,又∵0<mx+n,∴x>﹣3,∴不等式组0<mx+n<kx+b的解集为:﹣3<x<﹣1.点评:此题考查一次函数的基本性质:函数的增减性,把函数图象与不等式的解集联系起来,是道非常好的题,难度适中.三、解答题(本大题共计52分)17.直线l与直线y=2x+1的交点的横坐标为2,与直线y=﹣x+2的交点的纵坐标为1,求直线l对应的函数解析式.考点:待定系数法求一次函数解析式.专题:待定系数法.分析:设直线l与直线y=2x+1的交点坐标为A,与直线y=﹣x+2的交点为B,把x=2代入y=2x+1,可求出A点坐标为(2,5);B点坐标为(1,1),设直线l的解析式为y=kx+b,把A,B两点坐标代入即可求出函数的关系式.解答:解:设直线l与直线y=2x+1的交点坐标为A(x1,y1),与直线y=﹣x+2的交点为B(x2,y2),∵x1=2,代入y=2x+1,得y1=5,即A点坐标为(2,5),∵y2=1,代入y=﹣x+2,得x2=1,即B点坐标为(1,1),设直线l的解析式为y=kx+b,把A,B两点坐标代入,得:,解得:,故直线l对应的函数解析式为y=4x﹣3.点评:本题考查的是用待定系数法求一次函数的解析式,比较简单.18.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.考点:二次根式的化简求值;整式的加减—化简求值.分析:观察可知:(1)式是完全平方和公式,(2)是平方差公式.先转化,再代入计算即可.解答:解:(1)当x=+1,y=﹣1时,原式=(x+y)2=(+1+﹣1)2=12;(2)当x=+1,y=﹣1时,原式=(x+y)(x﹣y)=(+1+﹣1)(+1﹣+1)=4.点评:先化简变化算式,然后再代入数值,所以第一步先观察,而不是直接代入数值.19.(202X春•高密市期末)如图所示,在直角三角形ABC中,∠C=90°,四边形ECFD为正方形,若AD=3,DB=4,求阴影部分的面积.(提示:将△AED绕D点按逆时针方向旋转90°,得到△A1FD,把阴影部分构造成规则的图形)考点:旋转的性质.专题:计算题.分析:根据正方形的性质得DE=DF,∠EDF=∠DFC=∠DEC=90°,则将△AED绕D点按逆时针方向旋转90°,得到△A1FD,根据旋转的性质得∠ADA′=90°,∠DEA=∠DFA′=90°,则可判断点A′在CF上,所以DA′=DA=3,然后利用阴影部分的面积等于Rt△DA′B的面积求解.解答:解:∵四边形ECFD为正方形,∴DE=DF,∠EDF=∠DFC=∠DEC=90°,∴将△AED绕D点按逆时针方向旋转90°,得到△A1FD,如图,∴∠ADA′=90°,∠DEA=∠DFA′=90°,∴点A′在CF上,DA′=DA=3,∴S△DEA=S△DFA′,∴阴影部分的面积=S△DA′B=×3×4=6.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质.通过旋转把阴影部分构造成规则的图形是解决此题的关键.20.(202X春•高密市期末)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位,再向左平移1个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)作出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,并直接写出C2点的坐标;(3)作出△ABC关于原点O成中心对称的△A3B3C3,并直接写出B3的坐标.考点:作图-旋转变换;作图-平移变换.分析:(1)将A、B、C分别向下平移4个单位,再向左平移1个单位,顺次连接即可得出△A1B1C1,即可得出写出C1点的坐标;(2)根据旋转的性质,找到各点的对应点,顺次连接可得出△A2B2C2,即可写出C2点的坐标;(3)根据关于原点对称的性质,找到各点的对应点,顺次连接可得出△A3B3C3,即可写出C3点的坐标.解答:解:(1)如图1,C1(1,﹣2)(2)如图2,C2(﹣1,1)(3)如图3,B3(﹣3,﹣4)点评:本题考查了旋转作图及平移作图的知识,解答此类题目的关键是就是寻找对应点,要求掌握旋转三要素、平移的特点.21.(2012•德州)现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?考点:一次函数的应用.专题:压轴题.分析:(1)根据题意A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,可得解.(2)根据从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨可列出总费用,从而可得出答案.(3)首先求出x的取值范围,再利用w与x之间的函数关系式,求出函数最值即可.解答:解:(1)如图所示:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)由题意,得W=50x+30(14﹣x)+60(15﹣x)+45(x﹣1)=5x+1275(1≤x≤14).(3)∵A,B到两地运送的蔬菜为非负数,∴,解不等式组,得:1≤x≤14,在W=5x+1275中,∵k=5>0,∴W随x增大而增大,∴当x最小为1时,W有最小值,∴当x=1时,A:x=1,14﹣x=13,B:15﹣x=14,x﹣1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.点评:本题考查了利用一次函数的有关知识解答实际应用题,一次函数是常用的解答实际问题的数学模型,是中考的常见题型,同学们应重点掌握.22.(202X•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.考点:两条直线相交或平行问题.专题:几何综合题.分析:(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解析式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣a+3),D点坐标为(a,a),所以a﹣(﹣a+3)=3,然后解方程即可.解答:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.第二部分试题一、选择题(每小题3分,共9分)23.(202X春•高密市期末)已知两个五边形相似,其中一个五边形的最长边为20,最短边为4,另一个五边形的最短边为3,则它的最长边为()A.15 B.12 C.9 D. 6考点:相似多边形的性质.分析:利用相似多边形的性质得出相似比,进而得出另一五边形的最长边.解答:解:∵两个五边形相似,其中一个五边形的最长边为20,最短边为4,另一个五边形的最短边为3,设它的最长边为x,∴=,解得:x=15.故选:A.点评:此题主要考查了相似多边形的性质,得出两图形的相似比是解题关键.24.(2002•十堰)如图,若DC∥FE∥AB,则有()A.B.C.D.考点:平行线分线段成比例.分析:根据平行线分线段成比例定理,根据题意直接列出比例等式,对比选项即可得出答案.解答:解:∵DC∥FE∥AB,∴OD:OE=OC:OF(A错误);OF:OE=OC:OD(B错误);OA:OC=OB:OD(C错误);CD:EF=OD:OE(D正确).故选D.点评:考查了平行线分线段成比例定理,要明确线段之间的对应关系.25.(202X春•高密市期末)如图所示,点A,B,C,D,E,F,G,H,K都是8×8方格纸中的格点,为使△EDM∽△ABC,则点M应是F、G、H、K四点中的()A. F B.G C.H D. K考点:相似三角形的判定.专题:网格型.分析:由图形可知△ABC的边AB=4,AC=6 DE=2,当△DEM∽△ABC时,AB和DE是对应边,相似比是1:2,则AC的对应边是3,则点M的对应点是H.解答:解:根据题意,△DEM∽△ABC,AB=4,AC=6,DE=2,∴DE:AB=DM:AC,∴DM=3,∴M应是H,故选C.点评:本题主要考查相似三角形的性质:相似三角形的对应边的比相等,解题的关键是熟练掌握相似三角形的各种性质.二、填空题(每小题3分,共6分)26.(2007•南昌)在△ABC中,AB=6,AC=8,在△DEF中,DE=4,DF=3,要使△ABC与△DEF 相似,需添加的一个条件是BC=10,EF=5或∠A=∠D.(写出一种情况即可)考点:相似三角形的判定.专题:开放型.分析:根据已知利用相似三角形的判定方法即可得到所缺的条件.解答:解:∵在△ABC中,AB=6,AC=8,在△DEF中,DE=4,DF=3∴AB:DF=AC:DE=2:1,∴当∠A=∠D或BC=10,EF=5时,△ABC与△DEF相似.点评:此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.27.(2013•临夏州)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.考点:相似三角形的应用.专题:压轴题.分析:易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.解答:解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.点评:本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.三、解答题(本大题5分)28.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.考点:相似三角形的判定.专题:证明题.分析:由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,根据三角形相似的判定定理可知:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.。
2021届山东省菏泽单县联考数学八下期末检测试题含解析

2021届山东省菏泽单县联考数学八下期末检测试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.下列各组数据中,能做为直角三角形三边长的是( )。
A .1、2、3B .3、5、7C .32,42,52D .5、12、132.分解因式x 2-4的结果是A .2(2)x -B .2(2)x +C .(2)(2)x x +-D .(2)(2)x x ---3.等腰三角形的两条边长分别为3和4,则其周长等于( )A .10B .11C .10或11D .不确定4.下列分解因式正确的是( )A .22a 9(a 3)-=-B .()24a a a 4a -+=-+C .22a 6a 9(a 3)++=+D .()2a 2a 1a a 21-+=-+ 5.下列多项式能分解因式的是( )A .22x y +B .22x y xy -C .22x xy y ++D .244x x +-6.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是 ( ) A .19% B .20% C .21% D .22%7.下列说法中正确的是 ( )A .四边相等的四边形是正方形B .一组对边相等且另一组对边平行的四边形是平行四边形C .对角线互相垂直的四边形是菱形D .对角线相等的平行四边形是矩形8.如图,ABCD 的对角线AC 与BD 相交于点O ,90BAC ∠=︒,6AC =,8BD =,则CD 的长为( )A .7B .5C .43D .109.某市要组织一次足球邀请赛,参赛的每两个队都要比赛一场,赛程计划安排3天,每天安排2场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .B .C .D .10.如图,ABC ∆为等边三角形,AE CD =,AD 、BE 相交于点P ,BQ AD ⊥于点Q ,且4PQ =,1PE =,则AD 的长为( )A .7B .8C .9D .1011.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( )A .4 2.110-⨯kgB .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg12.下列各点中,不在函数 12y x=的图象上的点是( ) A .(3,4)B .(﹣2,﹣6)C .(﹣2,6)D .(﹣3,﹣4)二、填空题(每题4分,共24分)13.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是__________.14.直线 y =2x +3 与 x 轴相交于点 A ,则点 A 的坐标为_____.15.如图,AD 是ABC 的角平分线,//DE AC 交AB 于E ,//DF AB 交AC 于F .且AD 交EF 于O ,则AOF ∠=________度.16.分式21x x -与21x x+的最简公分母是__________. 17.如图,折线ABC 是某市在2018年乘出租车所付车费y (元)与行车里程x (km )之间的函数关系图像,观察图像回答,乘客在乘车里程超过3千米时,每多行驶1km ,要再付费__________元.18.如图,在四边形ABCD 中,已知AB=CD ,再添加一个条件 _______(写出一个即可),则四边形ABCD 是平行四边形.(图形中不再添加辅助线)三、解答题(共78分)19.(8分)先化简,后求值:22211(1)(1)x x x--÷-,其中,x 从0、﹣1、﹣2三个数值中适当选取. 20.(8分)为了了解某种电动汽车的性能,某机构对这种电动汽车进行抽检,获得如图中不完整的统计图,其中A ,B ,C ,D 表示 一次充电后行驶的里程数分别为150km ,180km ,210km ,240km .(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;电动汽车一次充电后行驶里程数的条形统计图电动汽车一次充电后行驶里程数的扇形统计图(2)求扇形统计图中表示一次充电后行驶路为240km 的扇形圆心角的度数;(3)估计这种电动汽车一次充电后行驶的平均里程多少km ?21.(8分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环 中位数/环 众数/环 方差 甲a 7 7 1.2 乙 7b 8 c(1)求a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?22.(10分)若抛物线上21y ax bx c =++,它与y 轴交于()0,4C ,与x 轴交于()1,0A -、(),0B k ,P 是抛物线上B 、C 之间的一点,(1)当4k =时,求抛物线的方程,并求出当BPC ∆面积最大时的P 的横坐标.(2)当1a =时,求抛物线的方程及B 的坐标,并求当BPC ∆面积最大时P 的横坐标.(3)根据(1)、(2)推断P 的横坐标与B 的横坐标有何关系?23.(10分)如图1,在△ABC 中,AB=BC=5,AC=6,△ECD 是△ABC 沿BC 方向平移得到的,连接AE 、BE ,且AC 和BE 相交于点O.(1)求证:四边形ABCE 是菱形;(2)如图2,P 是线段BC 上一动点(不与B .C 重合),连接PO 并延长交线段AE 于点Q ,过Q 作QR ⊥BD 交BD 于R. ①四边形PQED 的面积是否为定值?若是,请求出其值;若不是,请说明理由;②以点P 、Q 、R 为顶点的三角形与以点B .C .O 为顶点的三角形是否可能相似?若可能,请求出线段BP 的长;若不可能,请说明理由.24.(10分)为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,共调查名学生;(2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;(4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.25.(12分)我市遗爱湖公园内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积.经技术人员测量,,米,米,米,米.(1)请你帮助管理人员计算出这个四边形对角线的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.26.已知A,B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s(km)与时问t(h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?参考答案一、选择题(每题4分,共48分)1、D【解析】【分析】先求出两小边的平方和,再求出大边的平方,看看是否相等即可.【详解】解:A、12+22≠32,所以以1、2、3为边不能组成直角三角形,故本选项不符合题意;B、32+52≠72,所以以3、5、7为边不能组成直角三角形,故本选项不符合题意;C、(32)2+(42)2≠(52)2,所以以32、42、52为边不能组成直角三角形,故本选项不符合题意;D、52+122=132,所以以5、12、13为边能组成直角三角形,故本选项符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.2、C【解析】【分析】本题考查用公式法进行因式分解.根据该题特点:两项分别是x和2的平方,并且其符合相反,可以用平方差公式进行分解. 【详解】x2-4=(x-2)(x+2).故选C.【点睛】本题考查用公式法进行因式分解,解题的关键是能熟记用公式法进行因式分解的式子的特点.3、C【解析】【分析】根据等腰三角形的性质即可判断.【详解】∵等腰三角形的两条边长分别为3和4∴第三边为3或4,故周长为10或11,故选C【点睛】此题主要考查等腰三角形的周长,解题的关键是熟知等腰三角形的性质.4、C【解析】【分析】根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.【详解】A. ()2a 9a 3a 3-=-+)(,分解因式不正确; B. ()24a a a 4a -+=--,分解因式不正确; C. 22a 6a 9(a 3)++=+ ,分解因式正确;D. ()2a 2a 1a 1-+=-2,分解因式不正确. 故选:C【点睛】本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.5、B【解析】【分析】直接利用分解因式的基本方法分别分析得出答案.【详解】解:A 、x 2+y 2,无法分解因式,故此选项错误;B 、x 2y-xy 2=xy (x-y ),故此选项正确;C 、x 2+xy+y 2,无法分解因式,故此选项错误;D 、x 2+4x-4,无法分解因式,故此选项错误;故选:B .【点睛】本题考查对分解因式的方法的理解和运用,分解因式的步骤是:第一步,先看看能否提公因式;第二步,再运用公式法,①平方差公式:a 2-b 2=(a+b )(a-b );② a 2±2ab+b 2=(a±b )2,第三步:再考虑用其它方法,如分组分解法等. 6、B【解析】试题分析:设这两年平均每年绿地面积的增长率是x ,则过一年时间的绿地面积为1+x ,过两年时间的绿地面积为(1+x )2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x ,由题意得(1+x )2=1+44%解得x 1=0.2,x 2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.7、D【解析】【分析】正方形:有一个角是直角且有一组邻边相等的平行四边形.平行四边形:有两组对边分别平行的四边形.菱形:在一个平面内,有一组邻边相等的平行四边形.矩形:有一个角是直角的平行四边形,矩形也叫长方形.【详解】A 选项中四边相等的四边形不能证明是正方形,有可能是菱形.则A 错误.B 选项一组对边相等且另一组对边平行的四边形不一定是平行四边形,有可能是等腰梯形,所以B 错误.C 选项中,对角线互相垂直,不能判定四边形是菱形.根据正方形、平行四边形、菱形、矩形的性质与判定,即可得出本题正确答案为D.【点睛】本题的关键在于:熟练掌握正方形、平行四边形、菱形、矩形的性质与判定.8、A【解析】【分析】由平行四边形ABCD 得OA=OC ,OB=OD ,在Rt △ABO 中,由勾股定理得AB 的长,即可得出答案.【详解】解:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵6AC =,8BD =,,∴OA=3,OB=4,∵90BAC ∠=︒,在Rt △ABO 中,由勾股定理得 AB=22OB OA -=22437-=,∴CD=AB=7.故选A .【点睛】本题考查平行四边形的性质,勾股定理.正确的理解平行四边形的性质勾股定理是解决问题的关键.9、B【解析】【分析】每个队要比(x-1)场,根据题意可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,x(x−1)=3×2,即x(x−1)=6,故选:B .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的单循环问题.10、C【解析】【分析】分析:由已知条件,先证明△ABE≌△CAD 得∠BPQ=60°,可得BP =2PQ =8,AD =BE .则易求.【详解】解:∵△ABC 为等边三角形,∴AB=CA ,∠BAE=∠ACD=60°;又∵AE=CD ,在△ABE 和△CAD 中,AB CA BAE ACD AE CD ⎪∠⎪⎩∠⎧⎨===∴△ABE≌△CAD(SAS );∴BE=AD ,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=10°,则∠PBQ=10°−60°=30°∵PQ=3,∴在Rt△BPQ 中,BP =2PQ =8;又∵PE=1,∴AD=BE =BP +PE =1.故选:C .【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、含有30°的直角三角形的性质,解题的关键是证明△BAE ≌△ACD .11、A【解析】【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年山东省单县北城第三初级中学八下数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.在△ABC中,已知∠A、∠B、∠C的度数之比是1:1:2,BC=4,△ABC的面积为()A.2B.C.4D.82.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h3.若点P在一次函数的图像上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限4.小华的爷爷每天坚持体育锻炼,某天他慢跑从家到中山公园,打了一会儿太极拳后坐公交车回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图像是().A.B.C.D.5.下列式子中,属于最简二次根式的是A .9B .7C .20D .136.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B .6C .236223+--D .23225+-7.某地开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480480420x x +=+ B .480480420x x -=+ C .480480420x x -=+ D .480480204x x -=+ 8.若m 个数的平均数x ,另n 个数的平均数y ,则m +n 个数的平均数是( )A .2x y +B .x y m n ++C .mx ny m n ++D .mx ny x y++ 9.如图,在▱ABCD 中,AB=5,AD=6,将▱ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为( )A .3B .12C .15D .410.如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,AB ∥CD ,添加下列条件不能使四边形ABCD 成为平行四边形的是( )A .AB =CDB .OB =ODC .∠BCD+∠ADC =180°D .AD =BC 11.函数1x y x +=-的自变量取值范围是( ) A .0x > B .0x < C .0x ≠ D .1x ≠-12.在直角坐标系中,若点Q 与点 P (2,3)关于原点对称,则点Q 的坐标是( )A .(-2,3)B .(2,-3)C .(-2,-3)D .(-3,-2)二、填空题(每题4分,共24分)13.如图,直线为1y x m =+和22y x n =-的交点是A ,过点A 分别作x 轴、y 轴的垂线,则不等式2x m x n +≤-的解集为__________.14.不等式组21040x x -≥⎧⎨->⎩的解集为_________. 15.如图,在平面直角坐标系中,已知A (﹣2,1),B (1,0),将线段AB 绕着点B 顺时针旋转90°得到线段BA′,则A′的坐标为_____.16.如图,在Rt ABC ∆中,90ACB ∠=,CA CB =,2AB =,过点C 作CD AB ⊥,垂足为D ,则CD 的长度是______.17.某种服装原价每件80元,经两次降价,现售价每件1.8元,这种服装平均每次降价的百分率是________。
18.因式分解:32-=m n m ____________.三、解答题(共78分)19.(8分)如图,将△ABC 绕点A 顺时针旋转得到△ADE (点B ,C 的对应点分别是D ,E ),当点E 在BC 边上时,连接BD ,若∠ABC =30°,∠BDE =10°,求∠EAC .20.(8分)如图,在平面直角坐标系中,直线y=12x+2与x轴、y轴的交点分别为A、B,直线y=﹣2x+12交x轴于C,两条直线的交点为D;点P是线段DC上的一个动点,过点P作PE⊥x轴,交x轴于点E,连接BP;(1)求△DAC的面积;(2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;(3)若四边形BOEP的面积为S,设P点的坐标为(x,y),求出S关于x的函数关系式,并写出自变量x的取值范围.21.(8分)解不等式组32(1)2913532x xxx--≤+⎧⎪⎨-->⎪⎩,并在数轴上表示出它的解集.22.(101232+(2﹣π)06223.(10分)已知a、b、c满足(a﹣3)24b-|c﹣5|=1.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.24.(10分)如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).25.(12分)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.26.如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由.参考答案一、选择题(每题4分,共48分)1、D【解析】【分析】根据比例设∠A=k,∠B=k,∠C=2k,然后根据三角形的内角和等于180°列方程求出k的值,从而得到三个内角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半求出AB,利用勾股定理列式求出AC,然后根据三角形的面积公式列式计算即可得解.解:设∠A=k,∠B=k,∠C=2k,由三角形的内角和定理得,k+k+2k=180°,解得k=45°,所以,∠A=45°,∠B=45°,∠C=90°,∴AC=BC=4,,所以,△ABC的面积=.故选:D.【点睛】本题考查的知识点是直角三角形的性质和三角形的内角和定理,解题关键是利用“设k法”求解三个内角的度数.2、C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.3、C【解析】【分析】根据一次函数的性质进行判定即可.【详解】一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限,又点P在一次函数y=-x+4的图象上,所以点P一定不在第三象限,【点睛】本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b:当k>0,b>0时,函数的图象经过一,二,三象限;当k>0,b<0时,函数的图象经过一,三,四象限;当k<0,b>0时,函数的图象经过一,二,四象限;当k<0,b<0时,函数的图象经过二,三,四象限.4、C【解析】【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【详解】图象应分三个阶段,第一阶段:慢步到离家较远的绿岛公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿太极拳,这一阶段离家的距离不随时间的变化而改变。
故D错误;第三阶段:搭公交车回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点睛】本题考查函数图象,解题的关键是由题意将图象分为三个阶段进行求解.5、B【解析】【分析】【详解】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.==属于最简二次根式.故选B.336、D【解析】【分析】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积((222323=222233+=23225故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.7、C【解析】【分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:设原计划每天挖x米,则原计划用时为:480x天,实际用时为:48020x+天,∴480480420x x-=+,故选:C.【点睛】本题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.8、C【解析】【分析】【详解】m+n个数的平均数=mx nynπ++,故选C.9、D 【解析】【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴=4,故选D.【点睛】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.10、D【解析】【分析】已知AB∥CD,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组对边分别平行的四边形是平行四边形来判定.【详解】∵在四边形ABCD中,AB∥CD,∴可添加的条件是:AB=CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),故选项A不符合题意;∵AB∥CD,∴∠ABD=∠CDB,在△AOB和△COD中ABO CDO OB ODAOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOB≌△COD(ASA),∴AB=CD,∴四边形ABCD为平行四边形,故选项B不符合题意;∵∠BCD+∠ADC=180°,∴AD∥BC,∵AB∥CD,∴四边形ABCD 是平行四边形,故选项C 不符合题意;∵AB ∥CD ,AD =BC 无法得出四边形ABCD 是平行四边形,故选项D 符合题意.故选:D .【点睛】本题考查了平行四边形的定义、平行四边形的判定定理;熟练掌握平行四边形的判定方法是解决问题的关键. 11、C【解析】【分析】自变量的取值范围必须使分式有意义,即:分母不等于0。