3多目标进化算法ppt课件
多目标差分进化算法

多目标差分进化算法
多目标差分进化算法(Multi-Objective Differential Evolution,MODE)是一种用于解决多目标优化问题的进化算法。
与单目标差分进化算法类似,MODE也是一种基于群体的全局优化方法,它可以在不使用任何显式约束的情况下解决复杂的多目标问题。
MODE是由Kalyanmoy Deb和Amrit Pratap等人于2002年提出的。
这种方法通过维护一组个体来进行多目标优化,并使用不同的权重向量(或目标向量)来评估每个个体的适应度。
在MODE中,每个权重向量都被视为一个目标问题的不同实例,个体的适应度被定义为它们在所有目标问题中的表现。
采用差分进化算法的操作方式,MODE在每一代中对群体进行进化。
具体来说,对于每个个体,MODE将选择三个不同的个体作为参考点(也称为候选个体)。
然后,通过与参考个体进行差分操作,生成一个试探个体。
试探个体的适应度被评估,并与当前个体进行比较。
如果试探个体的适应度更优,则将其保留到下一代中,并用其替换当前个体。
在MODE中,采用了一种精英策略来维护较好的解。
具体来说,在每一代中,由于同一权重向量的多个个体可能收敛到同一解决方案,MODE将更新每一个权重向量中最优的个体,并将其保留到下一代中。
因此,这种策略可以确保每个权重向量都有一个最优解,进而使模型达到更好的全局优化效果。
总之,多目标差分进化算法是一种有效的全局优化方法,能够高效地解决多目标优化问题。
在实践中,MODE已被广泛应用于各种领域中,如机器学习、工程设计、经济学和环境管理等。
《多目标优化方法》PPT课件

cij
b1, b2 , b3, b4
解: 设变量 xij ,i 1,2,3; j 1表,2,3示,4 由 运Ai往
总吨公里数为
,总d运ij xi费j 为
求解
i1 j1
的B j货物数,于是
,问题ci优j xij化为
i1 j1
34
min
dij * xij
i1 j1
34
min
cij * xij
点 B1, B2 , B。3, 其B4 需要量分别为
b1, b2 , b3, b4
且
3
ai
,4 b已j 知
到
i
j
的A距i 离和B单j 位运价分别为
(km)和 (元di)j ,现要决定如ci何j 调运多少,才能使总的
吨,公里数和总运费都尽量少?
解: 设变量 xij , i 1,2,3; 表j 示1由,2,3,4运往 的货物Ai数,于是总
可以看到:
当P=1时,(VP)就是非线性规划, 称为单目标规划。
对于单目标问题Min f (x,) x1, x2 总D可比较
与 f (x2的) 大小.
f (x1)
对于多目标规划(VP),对于 x1, x2 D, f (x1与) f (都x2 ) 是P 维向量,如何比较两个向量的大小?
多目标优化的非劣解集 Noninferior solution for the model
积为
,它x决1 *定x2重量,而梁的强度取决于截面
形
。
1 6
x1
*
x22
因此,容易列出 梁的数学模型:
min
x1 * x2
max
1 6
*
x1
*
多目标进化算法

多目标进化算法
多目标进化算法是基于进化计算的搜索算法,用于求解多目标优化问题,它模仿自然进化过程,以改进个体的适应度进行进化。
多目标进化算法通过精心设计的表示和进化策略来解决多目标优化问题,有效地探索多目标空间,以准确地表征多目标最优解(Pareto 最优解),因此在工程实践中被越来越广泛地应用。
多目标进化算法主要由以下步骤组成:
1、初始化种群:随机生成若干种群个体,作为初始种群,用于分析求解问题。
2、进化:基于进化规则,使用遗传算子改变当前种群,产生新一代种群。
3、评价:评估当前种群中每个个体的多目标函数适应度。
4、多目标选择:从最优种群中进行择优选择,得到Pareto最优解。
5、重复:将上述进化过程重复多次,至全局最优解。
目前,多目标进化算法已经被广泛应用于各种工程实践中,在服务器负载平衡、自适应控制、系统性能调优、工业机器人位置分配等领域都实现了良好的优化效果。
未来,多目标进化算法将会进一步改进,可以应用于更大规模和复杂环境中,以更准确地寻找最佳可行解决方案。
多目标智能拆分差分进化算法

多目标智能拆分差分进化算法说到“多目标智能拆分差分进化算法”这个话题,咱们先得深呼吸一下——嘿,别紧张,咱们一块儿慢慢来聊聊。
听上去是个超级复杂的东西,对吧?你可能会想,“这听起来像是从科幻电影里跑出来的怪物名!”其实啊,它说的就是一种方法,用来解决在做决策时,面对多个目标的情况下,怎么选个最优方案。
哦,不是那种像吃饭时犹豫“要不要加辣”的纠结,而是面对多个目标,怎么能聪明地找到最合适的解法。
先别急,别皱眉,咱们从生活中的小事聊起。
你可能在考虑买个新手机,是选择功能强大的旗舰款,还是看中性价比的中档款?两者各有优缺点,这就是咱们说的“多目标”。
每个人都有自己的需求,有人要拍照好,有人要电池耐用,或者看个性价比等等。
你能不能立刻做出决定?肯定很难。
你要是在想,“我到底该怎么做?”这就和咱们今天聊的这个算法有点像。
差分进化算法是啥呢?想象一下,差分进化就像一群人排队投票,每个人都有个投票的权利。
大家根据自己手头上的经验(也就是算法中的“候选解”),一步一步地去修改自己的想法,然后看看哪一方案最靠谱。
就像买手机一样,你可以看到别人试过什么,做了哪些选择,再根据自己的情况调整选项。
差分进化的关键,简而言之,就是“跟随群体的智慧”,大致上是通过“变异”和“重组”来不断优化,直到找到一个最好的解决方案。
你问那“多目标”怎么办?别急,没那么复杂,咱们可以理解为,它是在同一时间考虑好几个目标,有点像考试的时候,既要兼顾题目的难度,又要考虑时间的限制。
你想着拿到高分,但也得抓紧时间答完试卷。
这个多目标拆分的精髓就是,如何能让这两个目标同时尽可能达到最理想的平衡,而不是偏重一个,忽视了另一个。
你可能会问,为什么这个算法叫“拆分”?好问题!拆分嘛,意思就是说,把复杂的问题拆成几个小块来处理。
就像你做饭,得先切菜、备料,然后炒菜,再加点调味品,最后上桌。
没有哪个步骤能省略,只有一步步来,才能做出最美味的菜肴。
差分进化算法也差不多,首先把复杂问题拆成多个小目标,再逐个突破,最后合力解决。
多目标优化和进化算法

多目标优化和进化算法
多目标优化(Multi-Objective Optimization,简称MOO)是指在优化问题中存在多个目标函数需要同时优化的情况。
在实际问题中,往往存在多个目标之间相互制约、冲突的情况,因此需要寻找一种方法来平衡这些目标,得到一组最优解,这就是MOO的研究范畴。
进化算法(Evolutionary Algorithm,简称EA)是一类基于生物进化原理的优化算法,其基本思想是通过模拟进化过程来搜索最优解。
进化算法最初是由荷兰学者Holland于1975年提出的,随后经过不断的发展和完善,已经成为了一种重要的优化算法。
在实际应用中,MOO和EA经常被结合起来使用,形成了一种被称为多目标进化算法(Multi-Objective Evolutionary Algorithm,简称MOEA)的优化方法。
MOEA通过模拟生物进化过程,利用选择、交叉和变异等操作来生成新的解,并通过多目标评价函数来评估每个解的优劣。
MOEA能够在多个目标之间进行平衡,得到一组最优解,从而为实际问题提供了有效的解决方案。
MOEA的发展历程可以追溯到20世纪80年代初,最早的研究成果是由美国学者Goldberg和Deb等人提出的NSGA(Non-dominated Sorting Genetic Algorithm),该算法通过非支配排序和拥挤度距离来保持种群的多样性,从而得到一组最优解。
随后,又出现了许多基于NSGA的改进算法,如NSGA-II、
MOEA/D、SPEA等。
总之,MOO和EA是两个独立的研究领域,但它们的结合产生了MOEA这一新的研究方向。
MOEA已经在许多领域得到了广泛应用,如工程设计、决策分析、金融投资等。
多目标优化方法及实例解析ppt课件

s.t. (X )G(2)
是与各目标函数相关的效用函数的和函数。
在用效用函数作为规划目标时,需要确定一组权值 i
来反映原问题中各目标函数在总体目标中的权重,即:
k
maxii
i1
i ( x 1 , x 2 , x n ) g i ( i 1 , 2 , , m )
1(X)
g1
s .t.
( X)
2(X)
G
g2
m(X)
gm
式中: X [x 1 ,x 2 , ,x n ] T为决策变量向量。
缩写形式:
max(Zm Fi(n X)) (1) s.t. (X )G (2)
有n个决策变量,k个目标函数, m个约束方程, 则:
Z=F(X) 是k维函数向量, (X)是m维函数向量; G是m维常数向量;
在图1中,max(f1, f2) .就 方案①和②来说,①的 f2 目标值比②大,但其目 标值 f1 比②小,因此无 法确定这两个方案的优 与劣。
在各个方案之间, 显然:④比①好,⑤比 ④好, ⑥比②好, ⑦比 ③好……。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
8
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
✓ 效用最优化模型 ✓ 罚款模型 ✓ 约束模型 ✓ 目标达到法 ✓ 目标规划模型
方法一 效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效用 函数建立相关关系,各目标之间通过效用函数协调, 使多目标规划问题转化为传统的单目标规划问题:
几种多目标进化算法简介

绪 论 – 问题描述
假设有 r 个优化目标,则目标函数表示为:
f ( X ) ( f1 ( X ), f 2 ( X ),
约束条件:ຫໍສະໝຸດ , f r ( X ))gi ( X ) 0 i 1, 2, hi ( X ) 0 i 1, 2,
* * 任务:寻求目标集合 X * ( x1 , x2 , 足约束条件的同时获得最优解
小生境技术的基本思想是将生物学中的小生境概念应 用于进化计算中,将进化计算中的每一代个体划分为若 干类,每个类中选出若干适应度较大的个体作为一个类 的优秀代表组成一个群,再在种群中,以及不同种群之 间,杂交、变异产生新一代的个体种群。
小生境(niche)
小生境计数(Niche Count) 用来估计个体 i 所有邻居(小生境内)的拥挤程度
帕累托(Pareto)最优解
多目标优化的解称为 Pareto 最优解(1896年,Vilfredo Pareto) 给定一个多目标优化问题 f ( X ) , 最优解定义为:
f ( X * ) opt f ( X )
X
其中, f :
{X
Vilfredo Pareto 意大利 经济学家
NPGA-共享机制
NPGA-Selection
NPGA – 总结评价
1. 选择一定数目的个体之后 2. 利用交叉变异等方法产生一个新的种群 3. 并循环,直至达到一定条件结束 优点:能够快速找到一些好的非支配最优解域 能够维持一个较长的种群更新期 缺点:需要设臵共享参数,比较困难 需要选择一个适当的锦标赛机制
多目标进化算法

多目标进化算法
多目标进化算法(MOEA)是一种智能优化技术,用于解决带有多个目标的复杂优化问题。
它与单目标优化算法最大的不同在于,它可以同时优化多个目标函数。
多目标进化算法的设计主要集中在三个方面:种群初始化,适应度函数设计和更新策略。
种群初始化是多目标进化算法的第一步,它决定了多目标优化算法的初始状态。
在多目标优化算法中,一般采用随机策略来初始化种群。
具体而言,可以使用随机数发生器随机生成一组数据,并根据优化问题的要求,确定这些数据是否符合要求,然后将其作为种群的初始解。
适应度函数是多目标优化算法的核心,它负责对种群中每个个体进行评估,从而实现有效的进化。
多目标优化算法可以根据不同的优化目标设计不同的适应度函数,以更好地评估种群中每个个体的拟合度。
最后,多目标进化算法的更新策略是它的核心,它通过改变种群中每个个体的属性,使种群的整体质量得到改善。
多目标进化算法的更新策略可以采用相互作用策略,例如交叉、变异、选择等,以改善种群的整体质量。
总而言之,多目标进化算法是一种用于解决带有多个目标的复杂优
化问题的智能优化技术,它的设计集中在种群初始化、适应度函数设计和更新策略三个方面。
多目标进化算法的应用范围很广,它可以用于控制、计算机视觉、机器学习、模糊控制等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
决策空间和目标空间
X 决策空间 -3 -2.9 …
f1 目标空间 9 8.41 …
f2 目标空间 25 24.01 …
2.9 3 8.41 9 0.81 1
•
定义2:给定一个多目标优化问题
Min
ur f
(
X
),称
X*是最优解(即Pareto optimal solution),
若 X ,满足下列条件:
一般描述
• 给定决策向量,它满足下列约束:
gi ( X ) 0 i 1, 2,L , k (1)
hi ( X ) 0 i 1, 2,L ,l (2)
• 设有r个优ur f ( X ) ( f1( X ), f2 ( X ),L , fr ( X )) (3)
多目标进化算法简介
郑金华
jhzheng@
多目标进化算法历史
• 1967年Rosenberg就建议采用基于进化的搜索来处理多目 标优化问题。
• 1984年,David Schaffer首次在机器学习中实现了向量评估 遗传算法。
• 1989年David Goldberg在其著作《Genetic algorithms for search, optimization, and machine learning》中,提出了 用进化算法实现多目标的优化技术。
• 从2001年以来,每二年召开一次有关多目标进化的国际会 议(EMO:evolutionary multi-criterion optimization)
• 国际刊物“IEEE Transactions on Evolutionary Computation”(1997年创刊)
• Evolutionary Computation (1993年创刊) • Genetic Programming and Evolvable Machines (1999年)
• 2.300 5.290
• 2.400 5.760
• 2.500 6.250
• 2.600 6.760
• 2.700 7.290
• 2.800 7.840
• 2.900 8.410
• ………..
f2 25.000 24.010 23.040 22.090 21.160 20.250 19.360 0.000 0.010
•
其中:
ur X f :¡
r
(3) (4)
• 这里Ω为满足式(1)和式(2)的可行解集,即:
{X n | gi (X ) 0, hj (X ) 0;(i 1, 2, , k; j 1, 2, ,l)}
•
我们称Ω为决策变量空间(简称决策空间),向量函数
ur f
(X将)
¡ n 映射到集合 ¡ r,∏是目标函数空间(称目标空间)。
• 如果f (X1) f (X2),则称 X1 比 X 2 更优越; • 定义 X* :
• 若X*比更优越的X 不存在,则称X*为弱Pareto
最优解。
• 若X*比任何X 都优越,则称X*为完全Pareto 最优解。
0.49
• 1.4 1.96
0.36
• 1.5 2.25
0.25
• 1.6 2.56
0.16
• 1.7 2.89
0.09
• 1.8 3.24
0.04
• 1.9 3.61
0.01
•2
4
0
Pareto最优解
•
定义4:给定一个多目标优化问题
Min
ur f
(
X
)
,设
X1
,
X
2
• 如果f (X1) f (X2),则称 X1 比 X 2优越;
•
定义3:给定一个多目标优化问题
Min
ur f(
X
)
,
•
若 X*
,且不存在其它的
*
X
使得:
• f j (X *) f j (X *),( j 1,2,L ,r) 成立,且其中至少一
个是严格不等式,
•
则称X*是
ur Min f ( X )
的Pareto最优解。
• X f1
f2
•0
0
4
• 0.1 0.01
3.61
• 0.2 0.04
3.24
• 0.3 0.09
2.89
• 0.4 0.16
2.56
• 0.5 0.25
2.25
• 0.6 0.36
1.96
• 0.7 0.49
1.69
• 0.8 0.64
1.44
• 0.9 0.81
1.21
•1
1
1
• 1.1 1.21
0.81
• 1.2 1.44
0.64
• 1.3 1.69
0.040 0.090 0.160 0.250 0.360 0.490 0.640 0.810
Pareto最优解基本定义
• 多目标优化的最优解称为Pareto最优解。(1896年
Vilfredo Pareto)
•
定义1:给定一个多目标优化问题
ur f
(X
),它的最优解x*定义为:
•
ur
uur
f ( X * ) opt f ( X )
• 寻求 X* (x1*, x2*,L , xn*) ,使ufr(X *)在满足约束(1)和(2)的同时 达到最优。
例子
• 决策变量x,满足约束条件:-3≤x ≤ 3 • 设有2个优化目标:f(x)=(f1(x),f2(x)),其中 • f1=x2 • f2=(x-2)2 • 求解x*,使得f(x*)同时达到最小。
• 或者 ( fi ( X ) fi ( X *))
(5)
iI
• 或至少存在一个 j I ,I={1,2,…r},使:
• fj(X) fj(X*)
(6)
• 其中Ω满足式(1)和式(2)的可行解集,即:
{X n | gi (X ) 0, hj (X ) 0;(i 1, 2, , k; j 1, 2, ,l)}
基本概念
• 进化算法(evolutionary algorithm, EA)得到 了非常广泛应用。
• 现实中,一般对多个目标同时优化,往往 优化的多个目标之间是相互冲突。
• 如:企业生产中,产品质量与生产成本的 关系。
• 为达到总目标的最优化,对各子目标进行 折衷,出现了多目标进化算法(multiobjective EA,MOEA)。
值空间分布图
•X
f1
• -3.000 9.000
• -2.900 8.410
• -2.800 7.840
• -2.700 7.290
• -2.600 6.760
• -2.500 6.250
• -2.400 5.760
• 2.000 4.000
• 2.100 4.410
• …………
• 2.200 4.840