曲线运动、万有引力应用例析(老师)

曲线运动、万有引力应用例析(老师)
曲线运动、万有引力应用例析(老师)

曲线运动、万有引力应用例析

(竞赛班辅导材料)

本章知识点,从近几年高考看,主要考查的有以下几点:(1)平抛物体的运动。(2)匀速圆周运动及其重要公式,如线速度、角速度、向心力等。(3)万有引力定律及其运用。(4)运动的合成及分解。注意圆周运动问题是牛顿运动定律在曲线运动中的具体应用,要加深对牛顿第二定律的理解,提高应用牛顿运动定律分析、解决实际问题的能力。近几年对人造卫星问题考查频率较高,它是对万有引力的考查。卫星问题及现代科技结合密切,对理论联系实际的能力要求较高,要引起足够重视。本章内容常及电场、磁场、机械能等知识综合成难度较大的试题,学习过程中应加强综合能力的培养。

一、夯实基础知识

1、深刻理解曲线运动的条件和特点

(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。

(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。

2、深刻理解运动的合成及分解

物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。

运动的合成及分解基本关系:分运动的独立性;运动的等效性(合运动和分运动是等效替代关系,不能并存);运动的等时性;运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)

3.深刻理解平抛物体的运动的规律

(1).物体做平抛运动的条件:只受重力作用,初速度不为零且沿水平方向。物体受恒力作用,且初速度及恒力垂直,物体做类平抛运动。

(2).平抛运动的处理方法

通常,可以把平抛运动看作为两个分运动的合动

动:一个是水平方向(垂直于恒力方向)的匀速直

线运动,一个是竖直方向(沿着恒力方向)的匀加

速直线运动。

(3).平抛运动的规律

以抛出点为坐标原点,水平初速度V 0方向为沿x 轴正方向,竖直向下的方向为y 轴正方向,建立如图1所示的坐标系,在该坐标系下,对任一时刻t.

①位移

分位移t V x 0 ,,合位移,.

图1

?为合位移及x 轴夹角.

②速度

分速度0V V x =, , 合速度220)(gt V V +=,.

θ为合速度V 及x 轴夹角

(4).平抛运动的性质

做平抛运动的物体仅受重力的作用,故平抛运动是匀变速曲线运动。

4.深刻理解圆周运动的规律

(1)匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的弧长相等,这种运动就叫做匀速周圆运动。

(2).描述匀速圆周运动的物理量

①线速度v ,物体在一段时间内通过的弧长S 及这段时间t 的比值,叫做物体的线速度,即。线速度是矢量,其方向就在圆周该点的切线方向。线速度方向是时刻在变化的,所以匀速圆周运动是变速运动。

②角速度ω,连接运动物体和圆心的半径在一段时间内转过的角度θ及这段时间t 的比值叫做匀速圆周运动的角速度。即ω=θ。对某一确定的匀速圆周运动来说,角速度是恒定不变的,角速度的单位是。

③周期T 和频率f

(3).描述匀速圆周运动的各物理量间的关系:

(4)、向心力:是按作用效果命名的力,其动力学效果在于产生向心加速度,即只改变线速度方向,不会改变线速度的大小。对于匀速圆周运动物

体其向心力应由其所受合外力提供。

r mf r T

m r m r V m ma F n n 2222

2244ππω=====. 5.深刻理解万有引力定律

(1)万有引力定律:自然界的一切物体都相互吸引,两个物体间的引力的大小,跟它们的质量乘积成正比,跟它们的距离的平方成反比。公式:,

6.67×10-1122.适用条件:适用于相距很远,可以看做质点的两物体间的相互作用,质量分布均匀的球体也可用此公式计算,其中r 指球心间的距离。

(2)万有引力定律的应用:讨论重力加速度g 随离地面高度h 的变化情况: 物体的重力近似为地球对物体的引力,即。所以重力加速度 G ,可见,g 随h 的增大而减小。求天体的质量:通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。求解卫星的有关问题:根据万有引力等于卫星做圆周运动的

向心力可求卫星的速度、周期、动能、动量等状态量。由2r Mm r V 2得,由2r

Mm (2π)2得2π。由2r

Mm ω2得ω=,由21221r Mm 。 (3)三种宇宙速度:第一宇宙速度V 17.9,人造卫星的最小发射速度;第二宇宙速度V 211.2,使物体挣脱地球引力束缚的最小发射速度;(3)第三宇宙速度V 316.7,使物体挣脱太阳引力束缚的最小发射速度。

二、解析典型问题

问题1:会用曲线运动的条件分析求解相关问题。

例1、质量为m的物体受到一组共点恒力作用而处于平衡状态,当撤去某个恒力F1时,物体可能做( )

A.匀加速直线运动;

B.匀减速直线运动;

C.匀变速曲线运动;

D.变加速曲线运动。

分析及解:当撤去F1时,由平衡条件可知:物体此时所受合外力大小等于F1,方向及F1方向相反。

若物体原来静止,物体一定做及F1相反方向的匀加速直线运动。

若物体原来做匀速运动,若F1及初速度方向在同一条直线上,则物体可能做匀加速直线运动或匀减速直线运动,故A、B正确。

若F1及初速度不在同一直线上,则物体做曲线运动,且其加速度为恒定值,故物体做匀变速曲线运动,故C正确,D错误。

正确答案为:A、B、C。

例2、图1中实线是一簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点。若带电粒子在运动中只受电场力作用,根据此图可作出正确判断的是()A.带电粒子所带电荷的符号;

B.带电粒子在a、b两点的受力方向;

图1

C.带电粒子在a、b两点的速度何处较大;

D.带电粒子在a、b两点的电势能何处较大。

分析及解:由于不清楚电场线的方向,所以在只知道粒子在a、b间受力情况是不可能判断其带电情况的。而根据带电粒子做曲线运动的条件可判定,在a、b两点所受到的电场力的方向都应在电场线上并大致向左。若粒子在电场中从a向b点运动,故在不间断的电场力作用下,动能不断减小,电势能不断增大。故选项B、C、D正确。

问题2:会根据运动的合成及分解求解船过河问题。

例3、一条宽度为L的河流,水流速度为,已知船在静水中的速度为,那么:

(1)怎样渡河时间最短?

(2)若>,怎样渡河位移最小?

(3)若<,怎样注河船漂下的距离最短?

分析及解:(1)如图2甲所示,设船上头斜向上游及河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V1θ,渡河所需时间为:.

可以看出:L、一定时,t随θ增大而减小;当θ=900时,θ=1,所以,当船头及河岸垂直时,渡河时间最短,.

2

图2甲

图2乙

图2丙

(2)如图2乙所示,渡河的最小位移即河的宽度。为了使渡河位移等于L ,必须使船的合速度V 的方向及河岸垂直。这是船头应指向河的上游,并及河岸成一定的角度θ。根据三角函数关系有:θ─0.

所以θ,因为0≤θ≤1,所以只有在>时,船才有可能垂直于河岸横渡。

(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?如图2丙所示,设船头及河岸成θ角,合速度V 及河岸成α角。可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以的矢尖为圆心,以为半径画圆,当V 及圆相切时,α角最大,根据θ,船头及河岸的夹角应为:θ. 船漂的最短距离为:θ

θsin )

cos (min c c s V L V V x -=. 此时渡河的最短位移为:.

问题3:会根据运动的合成及分解求解绳联物体的速度问题。

对于绳联问题,由于绳的弹力总是沿着绳

的方向,所以当绳不可伸长时,绳联物体的速

度在绳的方向上的投影相等。求绳联物体的速

度关联问题时,首先要明确绳联物体的速度,然

后将两物体的速度分别沿绳的方向和垂直于绳的方向进行分解,令两物体沿绳方向的速度相等即可求出。

图4

曲线运动万有引力定律知识点总结

曲线运动 1.曲线运动的特征 (1)曲线运动的轨迹是曲线。 (2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。 (3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。(注意:合外力为零只有两种状态:静止和匀速直线运动。) 曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。2.物体做曲线运动的条件 (1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。 (2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。 3.匀变速运动:加速度(大小和方向)不变的运动。 也可以说是:合外力不变的运动。 4曲线运动的合力、轨迹、速度之间的关系 (1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。 (2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。 ①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。 ②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。 ③当合力方向与速度方向垂直时,物体的速率不变。(举例:匀速圆周运动) 平抛运动基本规律 1.速度:0 x y v v v gt = ? ?= ? 合速度:2 2 y x v v v+ =方向: o x y v gt v v = = θ tan 2.位移 2 1 2 x v t y gt = ? ? ? = ?? 合位移:22 x x y =+ 合 方向: o v gt x y 2 1 tan= = α 3.时间由:2 2 1 gt y=得 g y t 2 =(由下落的高度y决定) 4.平抛运动竖直方向做自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。

曲线运动万有引力与航天测试题带答案

第4章曲线运动万有引力与航天 一、选择题(本大题共15小题) 1.一个物体受到恒定的合力作用而做曲线运动,则下列说法正确的是 A.物体的速率可能不变 B.物体一定做匀变速曲线运动,且速率一定增大 C.物体可能做匀速圆周运动 D.物体受到的合力与速度的夹角一定越来越小,但总不可能为零 2.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图1所示.关于物体的运动,下列说法正确的是 图1 A.物体做曲线运动 B.物体做直线运动 C.物体运动的初速度大小是50 m/s D.物体运动的初速度大小是10 m/s 3.小船过河时,船头偏向上游与水流方向成α角,船相对静水的速度为v,其航线恰好垂直于河岸.现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是 A.增大α角,增大船速v B.减小α角,增大船速v C.减小α角,保持船速v不变 D.增大α角,保持船速v不变 4.(2011·上海市闸北调研)质量为2 kg的质点在x-y平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图2所示,下列说法正确的是

图2 A .质点的初速度为5 m/s B .质点所受的合外力为3 N C .质点初速度的方向与合外力方向垂直 D .2 s 末质点速度大小为6 m/s 5.如图3所示,甲、乙、丙三个轮子依靠摩擦转动,相互之间不打滑,其半径分别为r 1、r 2、r 3.若甲轮的角速度为ω1,则丙轮的角速度为 图3 A.r 1ω1r 3 B.r 3ω1 r 1 C. r 3ω1r 2 D.r 1ω1 r 2 6.如图4所示,轻杆的一端有一个小球,另一端有光滑的固定轴O.现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力.则F 图4 A .一定是拉力 B .一定是推力 C .一定等于0 D .可能是拉力,可能是推力,也可能等于0

《万有引力与航天》测试题

一、选择题 1. 对于万有引力定律的表述式2 2 1r m m G F =,下面说法中正确的是( ) A.公式中 G 为引力常量,它是由实验测得的,而不是人为规定的 B.当r 趋近于零时,万有引力趋于无穷大 C. m 1与m 2受到的引力大小总是相等的,方向相反,是一对平衡力 D. m 1与m 2受到的引力总是大小相等的,而与m 1、m 2是否相等无关 2.人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小, 在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动。当它在较大的轨道半径r 1 上时运行线速度为v 1,周期为T 1,后来在较小的轨道半径r 2上时运行线速度为v 2,周期为T 2,则它们的关系是 ( ) A .v 1﹤v 2,T 1﹤T 2 B .v 1﹥v 2,T 1﹥T 2 C .v 1﹤v 2,T 1﹥T 2 D .v 1﹥v 2,T 1﹤T 2 3.下列关于地球同步卫星的说法正确的是 ( ) A .它的周期与地球自转同步,但高度和速度可以选择,高度增大,速度减小 B .它的周期、高度、速度都是一定的 C .我们国家发射的同步通讯卫星定点在北京上空 D .我国发射的同步通讯卫星也定点在赤道上空 4.人造卫星在太空绕地球运行中,若天线偶然折断,天线将 ( ) A .继续和卫星一起沿轨道运行 B .做平抛运动,落向地球 C .由于惯性,沿轨道切线方向做匀速直线运动,远离地球 D .做自由落体运动,落向地球 5. 两个质量均为M 的星体,其连线的垂直平分线为AB 。O 为两星体连线的中点,如图,一个质 量为M 的物体从O 沿OA 方向运动,则它受到的万有引力大小变化情况是( ) A.一直增大 B.一直减小 C.先减小,后增大 D.先增大,后减小 6.土星外层上有一个土星环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v 与该层到土星中心的距离R 之间的关系来判断 ①若v R ∝,则该层是土星的一部分②2 v R ∝,则该层是土星的卫星群.③若1 v R ∝ ,则该层是土星的一部分④若2 1 v R ∝ ,则该层是土星的卫星群.以上说法正确的是 ( ) A. ①② B. ①④ C. ②③ 4. ②④ 7.假如地球自转速度增大,关于物体重力的下列说法中不正确的是 ( ) A 放在赤道地面上的物体的万有引力不变 B.放在两极地面上的物体的重力不变 C 赤道上的物体重力减小 D 放在两极地面上的物体的重力增大 8.我们研究了开普勒第三定律,知道了行星绕恒星的运动轨道近似是圆形,周期T 的平方与轨道半径 R 的三次方的比为常数,则该常数的大小 ( ) A.只跟恒星的质量有关 B.只跟行星的质量有关 C.跟行星、恒星的质量都有关 D.跟行星、恒星的质量都没关 9.在太阳黑子的活动期,地球大气受太阳风的影响而扩张,这样使一些在大气层外绕地球飞行的太空垃圾被大气包围,而开始下落。大部分垃圾在落地前烧成灰烬,但体积较大的则会落到地面上给我们造成威胁和危害.那么太空垃圾下落的原因是 A .大气的扩张使垃圾受到的万有引力增大而导致的 B .太空垃圾在燃烧过程中质量不断减小,根据牛顿第二定律,向心加速度就会不断增大,所以垃圾落向地面 C .太空垃圾在大气阻力的作用下速度减小,那么它做圆运动所需的向心力就小于实际受到的万有引力,因此过大的万有引力将垃圾拉向了地面 D .太空垃圾上表面受到的大气压力大于下表面受到的大气压力,所以是大气的力量将它推向地面的 10.假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 ( ) A. 根据公式v=ωr ,可知卫星的线速度将增大到原来的2倍 B. 根据公式2v F m r =,可知卫星所需要的向心力将减小到原来的1 2 C. 根据公式2Mm F G r =,可知地球提供的向心力将减小到原来的1 4 D. 根据上述B 和C 中给出的公式,可知卫星运动的线速度将减小到原来的 2 2

第六章《万有引力与航天》测试题(含详细解答)

《万有引力与航天》测试题 一、选择题(每小题4分,全对得4分,部分对的得2分,有错的得0分,共48分。) 1.第一次通过实验比较准确的测出引力常量的科学家是( ) A . 牛顿 B . 伽利略 C .胡克 D . 卡文迪许 2.如图1所示a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( ) A .b 、c 的线速度大小相等,且大于a 的线速度; B .b 、c 的向心加速度大小相等,且大于a 的向心加速度; C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ; D .a 卫星由于某种原因,轨道半径变小,其线速度将变大 3.宇宙飞船为了要与“和平号“轨道空间站对接,应该:( ) A.在离地球较低的轨道上加速 B.在离地球较高的轨道上加速 C.在与空间站同一高度轨道上加速 D.不论什么轨道,只要加速就行 4、 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火, 使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( ) A .卫星在轨道3上的速率大于在轨道1上的速率。 B .卫星在轨道3上的角速度小于在轨道1上的角速度。 C .卫星在轨道1上经过Q 点时的速度大于它在轨道2 上经过Q 点时的速度。 D .卫星在轨道2上经过P 点时的加速度等于它在轨道3 b a c 地球 图1

上经过P 点时的加速度 5、 宇航员在围绕地球做匀速圆周运动的空间站中会处于完全失重中,下列说法中正确的是 ( ) A.宇航员仍受重力的作用 B.宇航员受力平衡 C.宇航员受的重力正好充当向心力 D.宇航员不受任何作用力 6.某星球质量为地球质量的9倍,半径为地球半径的一半,在该星球表面从某一高度以10 m/s 的初 速度竖直向上抛出一物体,从抛出到落回原地需要的时间为(g 地=10 m/s 2 )( ) A .1s B . 91s C .18 1 s D . 36 1 s 7.假如地球自转速度增大,关于物体重力,下列说法正确的是( ) A 放在赤道地面上的万有引力不变 B 放在两极地面上的物体的重力不变 C 放在赤道地面上物体的重力减小 D 放在两极地面上的物体的重力增加 8、设想把质量为m 的物体放在地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( ) A.零 B.无穷大 C.2 GMm R D.无法确定 9.对于质量m 1和质量为m 2的两个物体间的万有引力的表达式12 2m m F G r ,下列说法正确的是 ( ) 和m 2所受引力总是大小相等的 B 当两物体间的距离r 趋于零时,万有引力无穷大 C.当有第三个物体m 3放入之间时,m 1和m 2间的万有引力将增大 D.所受的引力性质可能相同,也可能不同 10地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物 体“飘” 起来,则地球的转速应为原来转速的( )

曲线运动+万有引力定律知识点总结

曲线运动+万有引力定律知识点总结 1、曲线运动的特征(1)曲线运动的轨迹是曲线。(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。(注意:合外力为零只有两种状态:静止和匀速直线运动。)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。 2、物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。 3、匀变速运动: 加速度(大小和方向)不变的运动。 也可以说是:合外力不变的运动。 4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。

①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。③当合力方向与速度方向垂直时,物体的速率不变。(举例:匀速圆周运动)平抛运动基本规律 1、速度: 合速度: 方向: 2、位移合位移: 方向: 3、时间由: 得(由下落的高度y决定) 4、平抛运动竖直方向做自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。 5、速度与水平方向夹角的正切值为位移与水平方向夹角正切值的2倍。 6、平抛物体任意时刻瞬时速度方向的反向延长线与初速度方向延长线的交点到抛出点的距离都等于水平位移的一半。(A是OB的中点)。绳拉物体合运动:实际的运动。对应的是合速度。方法:把合速度分解为沿绳方向和垂直于绳方向。小船渡河例1:一艘小船在200m宽的河中横渡到对岸,已知水流速度是3m/s,小船在静水中的速度是5m/s,求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多

万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2 成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

高中物理万有引力与航天专题训练答案及解析

高中物理万有引力与航天专题训练答案及解析 一、高中物理精讲专题测试万有引力与航天 1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月; (2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v . 【答案】(1)22h g t =月 (2)2 2 2hR M Gt =;2hR v t = 【解析】 【分析】 (1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度; (2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】 (1)月球表面附近的物体做自由落体运动 h =1 2 g 月t 2 月球表面的自由落体加速度大小 g 月=2 2h t (2)若不考虑月球自转的影响 G 2 Mm R =mg 月 月球的质量 2 2 2hR M Gt = 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2 v R 月球的“第一宇宙速度”大小 2hR v g R t 月== 【点睛】 结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v . 2.地球同步卫星,在通讯、导航等方面起到重要作用。已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求: (1)地球的质量M ; (2)同步卫星距离地面的高度h 。 【答案】(1) (2)

曲线运动、万有引力

高三曲线运动、万有引力辅导练习 纪甲富 2009年12月8日 一、选择题: 1.在质量为M 的电动机飞轮上,固定着一个质量为m 的重物,重物到轴的距离为R ,如图24所示,为了使电动机不从地面上跳起,电动机飞轮转动的最大角速度不能超过 A . g mR m M ?+, B . g mR m M ?+ C . g mR m M ?- D . mR Mg 2.如图所示,具有圆锥形状的回转器(陀螺),半径为R ,绕它的轴在光滑的桌面上以角速度ω快速旋转,同时以速度v 向左运动,若回转器的轴一直保持竖直,为使回转器从左侧桌子边缘滑出时不会与桌子边缘发生碰撞,v 至少应等于 A .ωR B .ωH , C .R H g 2 D .R H g 2 3.如图所示,从光滑的1/4圆弧槽的最高点滑下的小物块,滑出槽口时速度为水平方向,槽口与一个半球顶点相切,半球底面为水平,若要使小物块滑出槽口后不沿半球面下滑,已知圆弧轨道的半径为R 1,半球的半径为R 2,则R 1与R 2的关系为( ) A .R 1≤R 2 B .R 1≥R 2 C .R 1≤R 2/2 D .R 1≥R 2/2 4.早在19世纪,匈牙利物理学家厄缶就明确指出:“沿水平地面向东运动的物体,其重量(即:列车的视重或列车对水平轨道的压力)一定要减轻。”后来,人们常把这类物理现象称为“厄缶效应”。如图所示:我们设想,在地球赤道附近的地平线上,有一列质量是M 的列车,正在以速率v ,沿水平轨道匀速向东行驶。已知:(1)地球的半径R ;(2)地球的自转周期T 。今天我们象厄缶一样,如果仅考虑地球自转的影响(火车随地球做线速度为π2R/T 的圆周运动)时,火车对轨道的压力为N ;在此基础上,又考虑到这列火车匀速相对地面又附加了一个线速度v 做更快的圆周运动,并设此时火车对轨道的压力为N /,那么单纯地由于该火车向东行驶而引起火车对轨道压力减轻的数量(N -N /)为 ( ) A .Mv 2/R B .M [v 2/R +2(π2/T )v ] C .M (π2/T )v D .M [v 2/R + (π2/T )v ] 5.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是: A .卫星在轨道3上的速率大于在轨道1上的速率。 B .卫星在轨道3上的角速度小于在轨道1上的角速度。 C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度。 D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度。 6.根据观察,在土星外层有一个环,为了判断环是土星的连续物还是小卫星群。可测出环中各层的线速度V 与该层到土星中心的距离R 之间的关系。下列判断正确的是: A .若V 与R 成正比,则环为连续物; B .若V 2与R 成正比,则环为小卫星群; C .若V 与R 成反比,则环为连续物; D .若V 2与R 成反比,则环为小卫星群。 二、非选择题:

曲线运动与万有引力知识点总结与经典题

一、曲线运动 1、运动的合成与分解按平行四边形法则进行。 2、船过河所需最短时间(v 船垂直于河岸) t v v s d s t v s v t ?+=+=== 2 222d 水船水河实水水船 河宽 3、船要通过最短的路程(即船到达河对岸)则v 船逆水行驶与水平成α角 合 河宽水 船合船 水 v d v v v v v = -== t cos 2 2α 4、平抛运动是匀变速曲线运动: F 合=G ; a=g 平抛运动可以分解为 动 竖直方向的自由落体运动水平方向的匀速直线运 (1)水平位移g h v t v x 20 0== (2)竖直位移2 2 1gt y = (3)通过的合位移222022)gt 2 1 ()t V (y x s +=+= (4)水平速度0v v x == t x (5)竖直速度gt v y ==gh 2 (6)合速度22 022)(gt v v v v y x t +=+= (7)夹角 0 y v v tg x y tg = β=α (8)飞行时间由下落的高度决定:g h t 2= (9)实验求0v : a 、已知抛出点时: b 、不知抛出点时: t x v g h 2t 0= = 212t s s a -= g y y t 122 -=∴ ,t x v =0 5、匀速圆周运动是变加速曲线运动:0≠合F ,v F ⊥合,0≠a ,v a ⊥ (1)线速度V=s/t=2πr/T=2πrf=2πrn=ωr ,线速度是矢量,单位:米/秒(m/s ) (2)角速度ω=θ/t =2π/T= 2πf=2πn=V/r ,角速度是矢量,单位:弧度/秒(rad/s )

《万有引力与航天》测试题含答案

《万有引力与航天》单元测试 一、选择题 1.星球上的物体脱离星球引力所需的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系就是v 2=2v 1、已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的1 6 ,不计其她星球的影响,则该星球的第二宇宙速度为( ) A 、gr B 、 16 gr C 、 1 3 gr D 、13gr 解析:由题意v 1=g ′r = 1 6 gr ,v 2=2v 1= 1 3 gr ,所以C 项正确. 答案:C 2.太阳能电池就是将太阳能通过特殊的半导体材料转化为电能,在能量的利用中,它有许多优点,但也存在着一些问题,如受到季节、昼夜及阴晴等气象条件的限制.为了能尽量地解决这些问题,可设想把太阳能电池送到太空中并通过一定的方式让地面上的固定接收站接收电能,太阳能电池应该置于( ) A.地球的同步卫星轨道 B.地球大气层上的任一处 C.地球与月亮的引力平衡点 D.地球与太阳的引力平衡点 解析:太阳能电池必须与地面固定接收站相对静止,即与地球的自转同步.

答案:A 3.据媒体报道,“嫦娥”一号卫星绕月工作轨道为圆轨道,轨道距月球表面的高度为200 km,运行周期为127 min 、若要求出月球的质量,除上述信息外,只需要再知道( ) A.引力常量与“嫦娥”一号的质量 B.引力常量与月球对“嫦娥”一号的吸引力 C.引力常量与地球表面的重力加速度 D.引力常量与月球表面的重力加速度 解析:对“嫦娥”一号有G Mm (R +h )2=m 4π2T 2(R +h ),月球的质量为M =4π2GT 2(R +h )3,在月球表面g =G M R 2,故选项D 正确. 答案:D 4.地球同步卫星轨道半径约为地球半径的6、6倍,设月球密度与地球相同,则绕月心在月球表面附近做圆周运动的探月探测器的运行周期约为( ) A.1 h B.1、4 h C.6、6 h D.24 h 解析:因月球密度与地球的相同,根据ρ=m 4πR 3/3,可知m 地m 月=R 3 地R 3月 ,又 Gm 地m 卫 (6、6R 地)2=m 卫4π2T 2卫×6、6R 地,Gm 月m 探R 2 月=m 探4π2 T 2探R 月,已知T 卫=24 h,联立解得T 探≈1、4 h 、 答案:B 5、

专题03 曲线运动与万有引力(解析版)

2020年物理二轮专题过关宝典 专题三:曲线运动与万有引力 【知识回扣】 一、曲线运动 1、平抛运动的两个重要推论 ①任意时刻速度的反向延长线一定通过此时水平位移的中点。 ②设在任意时刻瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tanθ=2tanφ。 2、离心运动

①当F =mr ω2时,物体做匀速圆周运动; ②当F =0时,物体沿切线方向飞出; ③当F <mr ω2时,物体逐渐远离圆心,F 为实际提供的向心力。 ④当F >mr ω2时,物体逐渐向圆心靠近,做向心运动。 二、万有引力定律及航天 1.天体绕行是匀速圆周运动,可综合匀速圆周运动规律,根据G Mm r 2=m v 2r =mω2 r =m 4π2 T 2r =ma 2.在忽略地球自转时,万有引力近似等于物体重力。 【热门考点透析】 考点一 运动的合成与分解 1.(2018·全国卷Ⅰ) 如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点。一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动。重力加速度大小为g 。小球从a 点开始运动到其轨迹最高点,机械能的增量为( )

A.2mgR B.4mgR C.5mgR D.6mgR 【答案】C 【解析】小球始终受到与重力大小相等的水平外力的作用,机械能的增量ΔE机=W除G外力,机械能的增量等于水平外力在从a点开始运动到其轨迹最高点过程做的功。设小球运动到c点的速度为v c,由动能定理有:F·3R- mg·R=1 2mv 2 c ,解得:v c=2gR。小球运动到c点后,根据小球受力情况,可分解为水平方向初速度为零的匀加 速运动,加速度为a x=g,竖直方向的竖直上抛运动加速度也为g,小球上升至最高点时,竖直方向速度减小为 零,时间为t=v c g= 2gR g,水平方向的位移为:x= 1 2a x t 2= 1 2g? ? ? ? 2gR g 2=2R,综上所述小球从a点开始运动到其轨 迹最高点,机械能的增量为ΔE机=F·(3R+x)=5mgR,C正确。 2. (2019·鹤壁市期末)如图所示,物体A套在竖直杆上,经细绳通过定滑轮拉动物体B在水平面上运动,开始时 A、B间的细绳呈水平状态,现由计算机控制物体A的运动,使其恰好以速度v沿杆匀速下滑(B始终未与滑轮相碰),则() A.绳与杆的夹角为α时,B的速率为v sin α

第六章 万有引力与航天 单元测试

第六章 万有引力与航天 一、单项选择题 1.对于万有引力定律的表达式F =G m 1m 2 r 2,下列说法中正确的是( ) ①公式中G 为引力常量,它是由卡文迪许扭秤实验测得的;②当r 趋于零时,万有引力趋于无穷大;③m 1与m 2受到的引力大小总是相等的,与m 1、m 2是否相等无关;④m 1与m 2受到的引力是一对平衡力;⑤用该公式可求出任何两个物体之间的万有引力. A .①③⑤ B .②④ C .①②④ D .①③ 2.人造地球卫星在绕地球运行时,它的轨道半径R 与周期T 的关系是( ) A .R 与T 成正比 B .R 3与T 2成正比 C .R 2与T 3成正比 D .R 与T 无关 3.关于地球同步通信卫星的说法,正确的是( ) A .为避免通信卫星在轨道上相撞,应使它们运行在不同的轨道上 B .通信卫星定点在地球上空某处,各个通信卫星的角速度不同,但线速度大小相同 " C .不同国家发射通信卫星的地点不同,这些卫星轨道不一定在同一平面内 D .通信卫星只能运行在赤道上空某一恒定的高度上 4.随着“神舟”七号的发射成功,中国航天员在轨道舱内停留的时间将增加,体育锻炼成了一个必不可少的环节,下列在地面上正常使用的未经改装的器材最适宜航天员在轨道舱中进行锻炼的是( ) A .哑铃 B .弹簧拉力器 C .单杠 D .徒手跑步机 5.(2013·安徽名校联考)北京时间2012年10月25日23时33分,中国在西昌卫星发射中心用“长征三号丙”运载火箭,成功将第16颗北斗导航卫星发射升空并送入预定转移轨道.第16颗北斗导航卫星是一颗地球静止轨道卫星,它将与先期发射的15颗北斗导航卫星组网运行,形成区域服务能力.根据计划,北斗卫星导航系统将于2013年初向亚太大部分地区提供服务.下列关于这颗卫星的说法正确的是( ) A .该卫星正常运行时一定处于赤道正上方,角速度小于地球自转角速度 B .该卫星正常运行时轨道也可以经过地球两极 C .该卫星的速度小于第一宇宙速度 D .如果知道该卫星的周期与轨道半径可以计算出其质量 6.若取地球的第一宇宙速度为8 km/s ,某行星的质量是地球质量的6倍,半径是地球半径的倍,则这颗行星上的第一宇宙速度约为( ) & A .16 km/s B .32 km/s C .4 km/s D .2 km/s 7.“嫦娥”一号探月卫星沿地月转移轨道到达月球,在距月球表面200 km 的P 点进行第一次“刹车制动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,如图所示.之后,卫星在P 点经过几次“刹车制动”,最终在距月球表面200 km 的圆形轨道Ⅲ上绕月球做匀速圆周运动.用T 1、T 2、T 3分别表示卫星在椭圆轨道Ⅰ、Ⅱ和圆形轨道Ⅲ的周期,用a 1、a 2、a 3分别表示卫星沿三个轨道运动到P 点的加速度,则下面说法正确的是( ) A .T 1>T 2>T 3 B .T 1a 2>a 3 D .a 1

高中物理训练专题【曲线运动与万有引力】

限时规范训练(二) 曲线运动与万有引力 建议用时45分钟,实际用时________ 一、单项选择题 1.如图所示,绕过定滑轮的细线连着两个小球,小球a 、b 分别套在 水平杆和竖直杆上,某时刻连接两球的细线与竖直方向的夹角均为37°, 此时a 、b 两球的速度大小之比v a v b 为(已知sin 37°=0.6,cos 37°=0.8)( ) A.43 B .34 C.259 D .2516 解析:A 将a 、b 两小球的速度分解为沿细线方向的速度与垂直细线方向的速度,则a 球沿细线方向的速度大小为v 1=v a sin 37°,b 球沿细线方向的速度大小为v 2=v b cos 37°,又 v 1=v 2,解得v a v b =cos 37°sin 37°=43 ,A 正确. 2.羽毛球运动员林丹曾在某综艺节目中表演羽毛球定点击鼓,如图是他表演时的羽毛球场地示意图.图中甲、乙两鼓等高,丙、丁两鼓较低但也等高,若林丹各次发球时羽毛球飞出位置不变且均做平抛运动,则( ) A .击中甲、乙的两球初速度v 甲=v 乙 B .击中甲、乙的两球运动时间可能不同 C .假设某次发球能够击中甲鼓,用相同大小的速度发球可能击中丁鼓 D .击中四鼓的羽毛球中,击中丙鼓的初速度最大 解析:C 由题图可知,甲、乙高度相同,所以球到达两鼓用时相同,但由于两鼓离林 丹的水平距离不同,甲的水平距离较远,由v =x t 可知,击中甲、乙的两球初速度v 甲>v 乙,故A 、B 错误;甲鼓的位置比丁鼓位置较高,则球到达丁鼓用时较长,则若某次发球能够击中甲鼓,用相同大小的速度发球可能击中丁鼓,故C 正确;由于丁鼓与丙鼓高度相同,但由题图可知,丁鼓离林丹的水平距离大,所以击中丁鼓的球的初速度一定大于击中丙鼓的球的初速度,即击中丙鼓的球的初速度不是最大的,故D 错误.

曲线运动与万有引力综合试题

曲线运动与万有引力试题 时间:100分钟满分 100分 一、单项选择题(每题3分,共30分) 1.发现“所有行星绕太阳运动的轨道都是椭圆”的规律的科学家是( ) A.第谷 B.哥白尼 C.牛顿 D.开普勒 2. 物体在做平抛运动过程中,相等的时间内,下列哪个量是相等的( ) A. 重力做功 B. 位移 C. 速度增量 D. 速度大小的变化量 3. 关于曲线运动和圆周运动,以下说法中正确的是( ) A. 做曲线运动的物体受到的合力大小一定不变 B. 做曲线运动的物体,所受的合力可能是不变的 C. 做圆周运动的物体受到的合力方向一定指向圆心 D. 做曲线运动的物体的速度大小一定是变化的 4. 关于平抛运动和圆周运动,下列说法正确的是() A. 平抛运动是匀变速曲线运动 B. 匀速圆周运动是速度不变的运动 C. 圆周运动是匀变速曲线运动 D. 做平抛运动的物体落地时的速度可以变成竖直向下 5. 火星和木星沿各自的轨道绕太阳运行,根据开普勒行星运动定律可知( ) A. 火星与木星公转周期相等 B. 相同时间内,火星与太阳连线扫过的而积等于木星与太阳连线扫过的面积 C. 太阳位于它们的椭圆轨道的一个焦点上 D. 火星和木星绕太阳运行角速度始终相等 6. 小船在静水中的航速为5m/s,水的流速为3m/s,河宽120m。则小船以最短时间渡过河所需时间和以最短位移渡过河所需时间分别为() A. 24s、30s B. 30s、40s C. 24s、40s D. 40s、24s 7. 如图所示,O1和O2是摩擦传动的两个轮子,O1是主动轮,O2是从动轮,O1和O2两轮

的半径之比为1:2.a,b两点分别在O1、O2的轮边缘,c点在O2上且与其轴心距离为轮半径的一半,若两轮不打滑,则a,b,c三点的线速度大小之比为( ) A. 4:2:1 B. 1:2:2 C. 1:1:2 D. 2:2:1 8. 如图所示,窗子上、下沿间的高度H=1.6m,墙的厚度d=0.3m,某人在离墙壁距离L=1.2m、距窗子上沿h=0.2m处的P点,将可视为质点的小物件以v的速度水平抛出,小物件直接穿过窗口并落在水平地面上,取g=10m/s2。则v的取值范围是() A. 2m/s

曲线运动、万有引力应用例析(老师)

曲线运动、万有引力应用例析 (竞赛班辅导材料) 本章知识点,从近几年高考看,主要考查的有以下几点:(1)平抛物体的运动。(2)匀速圆周运动及其重要公式,如线速度、角速度、向心力等。(3)万有引力定律及其运用。(4)运动的合成及分解。注意圆周运动问题是牛顿运动定律在曲线运动中的具体应用,要加深对牛顿第二定律的理解,提高应用牛顿运动定律分析、解决实际问题的能力。近几年对人造卫星问题考查频率较高,它是对万有引力的考查。卫星问题及现代科技结合密切,对理论联系实际的能力要求较高,要引起足够重视。本章内容常及电场、磁场、机械能等知识综合成难度较大的试题,学习过程中应加强综合能力的培养。 一、夯实基础知识 1、深刻理解曲线运动的条件和特点 (1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。 (2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。 2、深刻理解运动的合成及分解

物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。 运动的合成及分解基本关系:分运动的独立性;运动的等效性(合运动和分运动是等效替代关系,不能并存);运动的等时性;运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。) 3.深刻理解平抛物体的运动的规律 (1).物体做平抛运动的条件:只受重力作用,初速度不为零且沿水平方向。物体受恒力作用,且初速度及恒力垂直,物体做类平抛运动。 (2).平抛运动的处理方法 通常,可以把平抛运动看作为两个分运动的合动 动:一个是水平方向(垂直于恒力方向)的匀速直 线运动,一个是竖直方向(沿着恒力方向)的匀加 速直线运动。 (3).平抛运动的规律 以抛出点为坐标原点,水平初速度V 0方向为沿x 轴正方向,竖直向下的方向为y 轴正方向,建立如图1所示的坐标系,在该坐标系下,对任一时刻t. ①位移 分位移t V x 0 ,,合位移,. 图1

万有引力和曲线运动

圆周运动与万有引力测试题 姓名 班级 一、选择题(每题4分,共32分) 1如图所示,以v 0=10 m / s 的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上,可知物体完成这段飞行的时间是( ) A . B . C . D .2s 2、2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 A 在轨道Ⅱ上经过A 的速度小于经过 B 的速度 B 在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度 C 在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 D 在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 3、我们在推导第一宇宙速度的公式gR v =时,需要做一些假设和 选择一些理论依据,下列必要的假设和理论依据有( ) A. 卫星做半径等于地球半径的匀速圆周运动 B.卫星所受的重力全部作为其所需的向心力 C.卫星所受的万有引力仅有一部分作为其所需的向心力 D.卫星的运转周期必须等于地球的自转周期 4、1798年英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人,若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径为R ,地球上一个昼夜的时间为T 1(地球自转周期),一年的时间T 2(地球公转的周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离为L 2.你估算出( ) A 、地球的质量 B 、太阳的质量 C 、月球的质量 D 、可求月球、地球及太阳的密度 5、2012年6月16日18时37分,执行我国首次载人交会对接任务的“神舟九号”载人飞船发射升空,在距地面343公里的近圆轨道上,与等待已久的“天宫一号”实现多次交会对接、分离,于6月29日10时许成功返回地面,下列关于“神舟九号”与“天宫一号”的说法正确的是( ) A .若知道“天宫一号”的绕行周期,再利用引力常量,就可算出地球的质量 B .在对接前,“神舟九号”轨道应稍低于“天宫一号”的轨道,然后让“神舟九号”加速追上“天宫一号”并与之对接 C .在对接前,应让“神舟九号”和“天宫一号”在同一轨道上绕地球做圆周运动,然后让“神舟九号”加速追上“天宫一号”并与之对接 D .“神舟九号”返回地面时应在绕行轨道上先减速 6、有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球表面一起转动,b 处于地面附近的近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置 G gR m 2=地22 3 224GT L m π=太2 13124GT L m π=月

高中物理【万有引力与航天】专题测试

【万有引力与航天】专题测试 (满分90分 用时45分钟) 一、选择题(1~7题为单选题,每小题6分,共42分;8~13题为多选题,每小题8分,共48分.) 1.地球质量大约是月球质量的81倍,地球半径大约是月球半径的4倍.不考虑地球、月球自转的影响,由以上数据可推算出( ) A .地球的平均密度与月球的平均密度之比约为9∶8 B .地球表面重力加速度与月球表面重力加速度之比约为9∶4 C .靠近地球表面运行的航天器与靠近月球表面运行的航天器的周期之比约为8∶9 D .靠近地球表面运行的航天器与靠近月球表面运行的航天器的速度之比约为81∶4 2. “嫦娥三号”无人登月探测器在距离月球表面112 km 的绕月轨道上近似做匀速圆周运动,其绕月一周所用时间为120.5 min.已知月球半径为 1.7×103 km ,引力常量G =6.67×10 -11 N·m 2/kg 2,π2取10,则由此可以估算月球的质量约为( ) A .6.73×1018 kg B.6.73×1020 kg C .6.73×1022 kg D.6.73×1025 kg 3.如图所示,A 、B 是绕地球做圆周运动的两颗卫星,A 、B 两卫星与地心的连线在相等时间内扫过的面积之比为k ∶1,则A 、B 两卫星的周期的比值为( ) A .k 23 B.k C .k 2 D.k 3 4.某航天器绕地球做匀速圆周运动,在轨运行时动能为E k ,轨道半径为r 1,向心加速度大小为a 1;运行一段时间后航天器变轨到新的轨道上继续做圆周运动,在新轨道上运行时的动能为4 5E k ,轨道半径为r 2,向心加速度大小为a 2;设变轨过程航天器的质量不变,则 下列关系正确的是( ) A.r 1r 2=45、a 1a 2=54 B.r 1r 2=45、a 1a 2=25 16 C.r 1r 2=25、a 1a 2=54 D.r 1r 2=25、a 1a 2=2516 5.某宇宙飞船在赤道所在平面内绕地球做匀速圆周运动,假设地球赤道平面与其公转平面共面,地球半径为R .日落后3小时时,站在地球赤道上的小明,刚好观察到头顶正上方的宇宙飞船正要进入地球阴影区,则( )

相关文档
最新文档