广东省佛山((狮山)石门实验中学2019—2020学年第二学期北师大版七年级数学第一次月考(Word

合集下载

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (18)

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (18)

北师大版2019-2020学年第二学期七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列图形中,为轴对称图形的是()A.B.C.D.2.(3分)下面运算结果为a6的是()A.a3+a3B.a8÷a2C.a2•a3D.(﹣a2)33.(3分)2019年3月16日成都市龙泉驿区第三十三届桃花节正式拉开序幕,桃花花粉的直径约为0.00005m,数据”0.00005”可用科学记数法表示为()A.50×10﹣5B.0.5×10﹣4C.5×l0﹣4D.5×10﹣54.(3分)在下列事件中,是必然事件的是()A.买一张电影票,座位号一定是偶数B.随时打开电视机,正在播新闻C.通常情况下,抛出的篮球会下落D.阴天就一定会下雨5.(3分)如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE6.(3分)如图,在△ABC中,DC=2BD,若△ABD的面积为2平方厘米,则△ABC的面积为()平方厘米.A.18B.12C.9D.67.(3分)如图,∠1=38°,如果CD∥BE,那么∠B的度数为()A.142°B.162°C.62°D.52°8.(3分)已知(x+2)(x+3)=x2+mx+6,则m的值是()A.﹣1B.1C.5D.﹣59.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为26cm,则△ABC的周长为()A.32B.29C.38D.3610.(3分)小李计划通过社会实践活动赚钱买一本标价43元的书,他以每千克1.1元的价格从批发市场购进若干千克西瓜到交大路子云市场上去销售,在销售了40千克之后,余下的打七五折全部售完.销售金额y(元)与售出西瓜的千克数x(千克)之间的关系如图所示.下列结论正确的是()A.降价后西瓜的单价为2元/千克B.小李一共进了50千克西瓜C.小李这次社会实践活动赚的钱可以买到43元的书D.降价前的单价比降价后的单价多0.6元二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)等腰三角形的一个底角为35°,则顶角的度数是度.12.(4分)若关于x的多项式x2+3x+m是一个完全平方式,则常数m=.13.(4分)某汽车生产厂对其生产的A型汽车进行油耗试验:匀速行驶的汽车在行驶过程中,油箱的剩余油量y(升)与行驶时间(小时)之间的关系如下表;t(小时)0123…y(升)100928476…由表格中y与t的关系可知,当汽车行驶小时,油箱的剩余油量为28升.14.(4分)如图,在Rt△ABC中,∠C=90°,以点A为圆心,适当的长度为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,以大于MN的长度为半径画弧,两弧交于点O,作射线AO交BC于点D,若∠B=50°,则∠CDA=度.三、解答题(本大题共6个小题,共54分)15.(10分)计算(1)(﹣1)2019+(π﹣3.14)0﹣(﹣)﹣2(2)(﹣3ab3)22a2b÷(6a3b4)16.(8分)先化简再求值:[(a+b)(a﹣b)+(a+b)2﹣(2a﹣b)(a+6b)]÷3b,其中a=﹣1,b=﹣2.17.(8分)如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.18.(9分)已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(9分)A袋中有5张除上面写的数据以外其他完全相同的卡片,分别写有1cm、2cm、3cm、4cm、5cm.A袋外面另有两张卡片,上面分别写有3m和5cm.现随机从A袋中取出一张卡片,与A袋外面这两张卡片放在一起,以卡片上的数据分别作为三条线段的长度,回答下列问题:(1)写出组合成的三条线段的长度的所有可能的结果;(2)求出这三条线段能组成三角形的概率;(3)求这三条线段能组成等腰三角形的概率.20.(10分)如图.已知∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAB+∠DAE的度数;(3)请问线段CE、BF、DE之间有什么数量关系?请说明理由.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知2m=4,2n=16,则m+n=.22.(4分)已知x2﹣x﹣1=0,则x3﹣2x2+3=.23.(4分)如图,在△ABC中,AD平分∠BAC交BC于点D,点M,N分别是AD和AB上的动点,当S=12,AC=8时,BM+MN的最小值等于.△ABC24.(4分)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为厘米/秒时,能够使△BPE与以C、P、Q三点所构成的三角形全等.25.(4分)如图,已知在等边三角形ABC中,点P为边AB的中点,点D、E分别为边AC、BC 上的点,∠APD+∠BPE=60°.点F、H分别在线段BC、AC上.连接PH、PF、HF.若PD⊥PF且PD=PF,HP⊥EP.连接DE,则=,∠PHF=度.二、解答题(共30分)26.(8分)若我们规定三角表示为abc;方框表示为:(x m+y n).例如:÷=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:÷=(2)代数式:+为完全平方式,则常数k=(3)当x为何值时,代数式﹣有最小值,最小值是多少?27.(10分)高铁的开通,给大家出行带来了极大的方便,五一期间,小张和小李到剑门关风景区游玩,小张乘私家车从成都东站出发0.5小时后,小李乘坐高铁从成都东站出发,先到广元站,然后转乘出租车到剑门关风景区(换车时间忽略不计),两人恰好同时到达剑门关风景区,他们离开成都的距离y(千米)与时间t(小时)的关系如图所示,请结合图象解决下面问题:(1)小李乘坐高铁的平均速度是千米/小时;(2)小张乘的私家车平均速度是小李乘的高铁平均速度的,小张乘的私家车平均速度是小李乘的出租车的平均速度的1倍,求a,b的值.(3)求线段AB所表示的y与t的关系式.28.(12分)已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠FAC的度数;(2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G为线段EF 的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.参考答案一、选择题(每小题3分,共30分)1.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.解:A、a3+a3=2a3,此选项不符合题意;B、a8÷a2=a6,此选项符合题意;C、a2•a3=a5,此选项不符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:B.3.解:0.00005=5×10﹣5.故选:D.4.解:A是随机事件,故A不符合题意;B、是随机事件,故B不符合题意;C、是必然事件,故C符合题意;D、是随机事件,故D不符合题意;故选:C.5.解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.6.解:∵DC=2BD,∴BC=2CD,∴S△ABC =3S△ABD=2×3=6,故选:D.7.解:∵CD∥BE,∴∠2=∠B,∵∠2=180°﹣∠1=142°,∴∠B=142°,故选:A.8.解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,∵(x+2)(x+3)=x2+mx+6,∴m=5,故选:C.9.解:∵DE是边AC的垂直平分线,∴DA=DC,AC=2AE=10,∵△ABD的周长为26,∴AB+BD+AD=AB+BD+CD=AB+BC=26,∴△ABC的周长=AB+BC+AC=26+10=36(cm),故选:D.10.解:降价前西瓜的单价为:80÷40=2(元/千克),故选项A不合题意;降价后售出西瓜的数量为:(110﹣80)÷1.5=20(千克),40+20=60(千克),即小李一共进了60千克西瓜,故选项B不合题意;110﹣60×1.1=44(元),小李这次社会实践活动赚的钱为44元,可以买到43元的书,故选项C符合题意;降价后西瓜的单价为:2×0.75=1.5(元/千克),2﹣1.5=0.5(元),即降价前的单价比降价后的单价多0.5元,故选项D不合题意.故选:C.二、填空题(本大题共4个小题,每小题4分,共16分)11.解:∵等腰三角形的一个底角为35°,∴这个等腰三角形的顶角的度数=180°﹣35°﹣35°=110°,故答案为110.12.解:∵(x+)2=x2+3x+,∴m=,故答案为:13.解:由题意可得:y=100﹣8t,当y=28时,28=100﹣8t解得:t=9.故答案为:9.14.解:∵∠C=90°,∠B=50°,∴∠CAB=90°﹣50°=40°,∵AD平分∠CAB,∴∠DAB=∠CAB=20°,∴∠CDA=∠DAB+∠B=70°,故答案为70.三、解答题(本大题共6个小题,共54分)15.解:(1)原式=﹣1+1﹣4=﹣4;(2)原式=9a2b6×2a2b÷(6a3b4)=18a4b7÷(6a3b4)=3ab3.16.解:原式=[a2﹣b2+a2﹣2ab+b2﹣2a2﹣12ab+ab+6b2]÷3b =[6b2﹣13ab]÷3b=2b﹣a,当a=﹣1,b=﹣2时,原式=﹣4+=﹣.17.解:(1)△ABC关于直线MN的对称图形如图所示;(2)△ABC的面积=4×5﹣×1×4﹣×1×4﹣×5×3,=20﹣2﹣2﹣7.5,=8.5.18.证明:∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF,∴∠A=∠D.19.解:(1)共有5种可能的结果数,它们是:1,3,5;2,3,5;3,3,5;4,3,5;5,3,5;(1)这三条线段能构成一个三角形的结果数为3,所以这三条线段能构成一个三角形的概率=;(2)这三条线段能构成等腰三角形的结果数2,所以这三条线段能构成等腰三角形的概率是.20.(1)证明:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)解:∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠CAB=∠DAE,∠BCA=∠E=45°,∠FAB+∠DAE=∠FAB+∠CAB=∠FAC,∵∠AFC=90°,∠BCA=45°,∴∠FAC=45°,∴∠FAB+∠DAE=45°;(3)解:CE=2BF+2DE;理由如下:延长BF到G,使得FG=FB,连接AG,如图所示:∵AF⊥BG,∴AB=AG,∴∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE,∴CE=2BF+2DE.一、填空题(本大题共5个小题,每小题4分,共20分)21.解:∵2m=4,2n=16,∴2m+n=4×16=64,∴m+n=6.故答案为:6.22.解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴x3﹣2x2+3=x(x2﹣x)﹣(x2﹣x)﹣x+3=x×1﹣1﹣x+3=x﹣1﹣x+3=2,故答案为:2.23.解:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,=20,∵AC=8,S△ABC∴×8•BE=12,解得BE=3,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=3,即BM+MN的最小值是3.故答案为:3.24.解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=6,BP=CQ时,△BPE与△CQP全等,此时,6=8﹣3t,解得t=,∴BP=CQ=2,此时,点Q的运动速度为2÷=3厘米/秒;②当BE=CQ=6,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t=,∴点Q的运动速度为6÷=厘米/秒;故答案为:3或.25.解:如图,作PG∥BC交AC于G,连接DF.∵△ABC是等边三角形,AP=PB,PG∥BC,∴AG=GC,∵AC=AB,∴AG=AP,∵∠A=60°,∴△APG是等边三角形,∴PG=PA=PB,∠APG=60°,∴∠BPG=∠DPE=120°,∴∠DPG=∠EPB,∵∠PGD=∠B=60°,∴△PDG≌△PEB(ASA),∴PD=PE,=1,∵PD⊥PF,HP⊥EP,∴∠DPF=∠EPH=90°,∴∠DPH=∠EPF=30°,∵PD=PF=PE,∴∠PFE=∠PEF=75°,∴∠PEB=∠PDG=105°,∴∠AHP=180°﹣105°﹣30°=45°,∵PD=PF,∠DPF=90°,∴∠DFP=∠PHD=∠PDF=45°,∴P,F,H,D四点共圆,∴∠PHF=∠PDF=45°.故答案为1,45..二、解答题(共30分)26.解:(1)原式=(﹣2×3×1)÷((﹣2)2+31)=,故答案为;(2)原式=(4xyk)+(x2+(5y)2)=x2+4kxy+25y2是完全平方公式,∴4k=±10,∴k=,故答案为;(3)原式=(3x﹣2)(3x+2)﹣[(x+2)(3x﹣2)+9]=6x2﹣4x﹣9═,当.27.解:(1)由图可得,小李乘坐高铁的平均速度是:(千米/小时),故答案为:;(2)小张乘的私家车平均速度是:×=70(千米/小时),小李乘的出租车的平均速度是:70÷1=40(千米/小时),,解得,b=210,a=210÷70=3,即a的值是3,b的值是210;(3)设线段AB所表示的y与t的关系式是y=kt+b,,得,即线段AB所表示的y与t的关系式是(0.5≤t≤2).28.(1)解:∵AE=AB,∴∠AEB=∠ABE=63°,∴∠EAB=54°,∵∠BAC=45°,∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠FAC=180°,∴54°+2×45°+∠FAC=180°,∴∠FAC=36°;(2)EF=2AD;理由如下:延长AD至H,使DH=AD,连接BH,如图1所示:∵AD为△ABC的中线,∴BD=CD,在△BDH和△CDA中,,∴△BDH≌△CDA(SAS),∴HB=AC=AF,∠BHD=∠CAD,∴AC∥BH,∴∠ABH+∠BAC=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABH,在△ABH和△EAF中,,∴△ABH≌△EAF(SAS),∴EF=AH=2AD;(3);理由如下:由(2)得,AD=EF,又点G为EF中点,∴EG=AD,由(2)△ABH≌△EAF,∴∠AEG=∠BAD,在△EAG和△ABD中,,∴△EAG≌△ABD(SAS),∴∠EAG=∠ABC=70°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠CAF=180°,即:70°+2∠BAC+∠CAF=180°,∴∠BAC+∠CAF=55°,∴∠BAC=55°﹣∠CAF,∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣∠ACB=110°﹣∠ACB,∴55°﹣∠CAF=110°﹣∠ACB,∴∠ACB﹣∠CAF=55°.。

2019-2020学年北京师大附属实验中学七年级下期中考试数学模拟试卷及答案解析

2019-2020学年北京师大附属实验中学七年级下期中考试数学模拟试卷及答案解析

2019-2020学年北京师大附属实验中学七年级下期中考试数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)2.的算术平方根是()A.2B.4C.±2D.±43.在实数、0.5757757775…(相邻两个5之间7的个数逐次加1)、、2.、π、0、|﹣3|中,无理数的个数是()A.3个B.4个C.5个D.6个4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°5.下列不等式中,变形不正确的是()A.若a>b,则b<a B.若a>b,则a+c>b+cC.若ac2>bc2,则a>b D.若﹣x>a,则x>﹣a6.下列运算正确的是()A.a12÷a4=a3B.(﹣4x3)3=4x6C.(x+7)2=x2+49D.a7•a5=a127.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°8.下列命题的逆命题为真命题的是()A.如果a=b,那么a2=b2B.若a=b,则|a|=|b|C.对顶角相等D.两直线平行,同旁内角互补9.如图,点A表示的实数是()A.﹣B.C.1﹣D.10.已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=35°,则∠2等于()A.25°B.35°C.40°D.45°二.填空题(共10小题,满分20分,每小题2分)11.(2分)把命题“等角的补角相等”改写成“如果…那么…”的形式是.12.(2分)一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为.13.(2分)若2a+3b=3,则9a•27b的值为.14.(2分)如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.15.(2分)如图,A岛在B岛的北偏东30°方向,C岛在B岛的北偏东80°方向,A岛在C岛北偏西40°方向,从A岛看B,C两岛的视角∠BAC是度.。

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (24)

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (24)

北师大版2019-2020学年第二学期七年级(下)期末数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.(3分)化简a2•a3的结果是()A.a B.a5C.a6D.a82.(3分)下列事件中,是不确定事件的是()A.三条线段可以组成一个三角形B.内错角相等,两条直线平行C.对顶角相等D.平行于同一条直线的两条直线平行3.(3分)一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似的刻画出该汽车在这段时间内的速度变化情况()A.B.C.D.4.(3分)西樵山是广东四大名山之一,享有国家AAAAA级旅游景区、中国国家森林公园等美誉.西樵山春夏之季鲜花烂漫,空气中弥漫着各种花粉,有一种花粉的直径是0.000063米,将0.000063用科学记数法表示应为()A.6.3×10﹣4B.0.63×10﹣4C.63×10﹣5D.6.3×10﹣55.(3分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个6.(3分)如图,线段AD、AE、AF分别是△ABC的高线,角平分线,中线,比较线段AC、AD、AE、AF的长短,其中最短的是()A.AF B.AE C.AD D.AC7.(3分)如图,若直线a∥b,AC⊥AB,∠1=34°,则∠2的度数为()A.34°B.56°C.66°D.146°8.(3分)如图,已知∠1=∠2,欲得到△ABD≌△ACD,则从下列条件中补选一个,错误的选法是()A.∠ADB=∠ADC B.DB=DC C.∠B=∠C D.AB=AC9.(3分)下列式子不能用平方差公式计算的是()A.(a﹣b)(b﹣a)B.(﹣x+y)(﹣x﹣y)C.(a﹣b)(a+b)D.(﹣x﹣1)(x﹣1)10.(3分)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(本大题共6小题,每小题4分,共24分)11.(4分)2a•(ab﹣1)=.12.(4分)如果一个角的补角是140°,那么这个角的余角是.13.(4分)如图是某市某天的气温T(℃)随时间t(时)变化的图象,则由图象可知,该天最高气温与最低气温之差为℃.14.(4分)某篮球运动员在同一条件下进行投篮训练,结果如下表:投篮总次数n1020501002005001000投中次数m8184286169424854投中的频率0.80.90.840.860.8450.8480.854根据上表,该运动员投中的概率大约是(结果精确到0.01).15.(4分)把七巧板按如图所示,进行①~⑦编号,①~⑦号分别对应着七巧板的七块,如果编号④对应的面积等于4,则由这七块拼成的正方形的面积等于.16.(4分)如图,在△ABC中,AB=AC=10cm,BC=8cm,AB的垂直平分线交AB于点M,交AC于点N,在直线MN上存在一点P,使P、B、C三点构成的△PBC的周长最小,则△PBC的周长最小值为.三.解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:22﹣(π﹣3.14)0﹣|﹣4|+()﹣118.(6分)如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为.19.(6分)如图,在△ABC中,∠ABC=∠C,D是BA延长线上一点,E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC的平分线AM;②连接BE并延长,交AM于点F.(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并证明你的结论.四.解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是,因变量是,小南家到该度假村的距离是km.(2)小南出发小时后爸爸驾车出发,爸爸驾车的平均速度为km/h,图中点A表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是km.21.(7分)先化简,再求值:[(3x﹣y)(3x+y)+(y﹣x)2﹣2x(x﹣y+1)]÷2x,其中x =505,y=504.22.(7分)如图,已知AB∥CD,DA平分∠BDC,∠A=∠C.(1)试说明:CE∥AD.(2)若∠C=25°,求∠B的度数.五.解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图1,在△ABC中,∠BAC=90°,AB=AC,直线MN过点A,且MN∥BC,点D是直线MN上一点,不与点A重合.若点E是线段AB上一点,且DE=DA.(1)请说明线段DE⊥DA.(2)如图2,连接BD,过点D作DP⊥DB交线段AC于点P,请判断线段DB与DP的数量关系,并说明理由.24.(9分)数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1、图2、图3分别能解释的乘法公式.(2)用4个全等的长和宽分别为a、b的长方形拼摆成一个如图4的正方形,请你写出这三个代数式(a+b)2、(a﹣b)2、ab之间的等量关系.(3)根据(2)中你探索发现的结论,完成下列问题:①当a+b=5,ab=﹣6时,则a﹣b的值为.②设,B=x﹣2y﹣3,计算:(A+B)2﹣(A﹣B)2的结果.25.(9分)如图,在长方形ABCD中,AB=8cm,BC=12cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒.(1)如图1,S△DCP=.(用t的代数式表示)(2)如图1,当t=3时,试说明:△ABP≌△DCP.(3)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/秒的速度沿CD 向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.2018-2019学年广东省佛山市南海区七年级(下)期末数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分)1.(3分)化简a2•a3的结果是()A.a B.a5C.a6D.a8【分析】根据同底数幂的乘法,底数不变指数相加,可得计算结果.【解答】解:原式=a2+3=a5,故B正确.故选:B.2.(3分)下列事件中,是不确定事件的是()A.三条线段可以组成一个三角形B.内错角相等,两条直线平行C.对顶角相等D.平行于同一条直线的两条直线平行【分析】找到可能发生,也可能不发生的事件即可.【解答】解:A、三条线段可以组成一个三角形,属于随机事件,符合题意;B、内错角相等,两条直线平行,是一定发生的事件,属于必然事件,不符合题意;C、对顶角相等,属于必然事件,不符合题意;D、在平面内,平行于同一条直线的两条直线平行,属于必然事件,不符合题意;故选:A.3.(3分)一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似的刻画出该汽车在这段时间内的速度变化情况()A.B.C.D.【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速﹣匀速﹣减速到站﹣加速﹣匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象是否符合题干要求,只有B选项符合.故选:B.4.(3分)西樵山是广东四大名山之一,享有国家AAAAA级旅游景区、中国国家森林公园等美誉.西樵山春夏之季鲜花烂漫,空气中弥漫着各种花粉,有一种花粉的直径是0.000063米,将0.000063用科学记数法表示应为()A.6.3×10﹣4B.0.63×10﹣4C.63×10﹣5D.6.3×10﹣5【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000063=6.3×10﹣5.故选:D.5.(3分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选:C.6.(3分)如图,线段AD、AE、AF分别是△ABC的高线,角平分线,中线,比较线段AC、AD、AE、AF的长短,其中最短的是()A.AF B.AE C.AD D.AC【分析】根据垂线段的性质:垂线段最短可得答案.【解答】解:根据垂线段最短可得AD最短,故选:C.7.(3分)如图,若直线a∥b,AC⊥AB,∠1=34°,则∠2的度数为()A.34°B.56°C.66°D.146°【分析】先根据平行线的性质求出∠BAD的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:如图:∵直线a∥b,∴∠2+∠BAD=180°,∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°,故选:B.8.(3分)如图,已知∠1=∠2,欲得到△ABD≌△ACD,则从下列条件中补选一个,错误的选法是()A.∠ADB=∠ADC B.DB=DC C.∠B=∠C D.AB=AC【分析】由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法得出B不正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出C正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出D正确.【解答】解:A正确;理由:在△ABD和△ACD中,,∴△ABD≌△ACD(ASA);B不正确,由这些条件不能判定三角形全等;C正确;理由:在△ABD和△ACD中,,∴△ABD≌△ACD(AAS);D正确;理由:在△ABD和△ACD中,,∴△ABD≌△ACD(SAS);故选:B.9.(3分)下列式子不能用平方差公式计算的是()A.(a﹣b)(b﹣a)B.(﹣x+y)(﹣x﹣y)C.(a﹣b)(a+b)D.(﹣x﹣1)(x﹣1)【分析】根据能用平方差公式计算的式子特点:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数进行分析即可.【解答】解:A、不能用平方差公式计算,故此选项正确;B、能用平方差公式计算,故此选项错误;C、能用平方差公式计算,故此选项错误;D、能用平方差公式计算,故此选项错误;故选:A.10.(3分)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(本大题共6小题,每小题4分,共24分)11.(4分)2a•(ab﹣1)=a2b﹣2a.【分析】单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.y依此计算即可求解.【解答】解:2a•(ab﹣1)=a2b﹣2a.故答案为:a2b﹣2a.12.(4分)如果一个角的补角是140°,那么这个角的余角是50°.【分析】先依据补角的定义求得这个角的度数,然后再求得这个角的余角即可.【解答】解:这个角=180°﹣140°=40°.这个角的余角=90°﹣40°=50°.故答案为:50°.13.(4分)如图是某市某天的气温T(℃)随时间t(时)变化的图象,则由图象可知,该天最高气温与最低气温之差为12℃.【分析】根据观察函数图象的纵坐标,可得最高气温、最低气温,根据有理数的减法,可得温差.【解答】解:如图:,由纵坐标看出最高气温是10℃,最低气温是﹣2℃,该天最高气温与最低气温之差为10﹣(﹣2)=12℃.故答案为:1214.(4分)某篮球运动员在同一条件下进行投篮训练,结果如下表:1020501002005001000投篮总次数n8184286169424854投中次数m投中的频0.80.90.840.860.8450.8480.854率根据上表,该运动员投中的概率大约是0.85(结果精确到0.01).【分析】利用频率估计概率结合表格中数据得出答案即可;【解答】解:大量重复试验后投中的概率逐渐稳定到0.85左右,所以去投篮一次,投中的概率大约是0.85,故答案为:0.85.15.(4分)把七巧板按如图所示,进行①~⑦编号,①~⑦号分别对应着七巧板的七块,如果编号④对应的面积等于4,则由这七块拼成的正方形的面积等于32.【分析】由七巧板的作图原理,可知④是平行四边形,并且它的一边长是正方形边长的一半,这条边上的高是正方形边长的,再由平行四边形面积即可求解.【解答】解:设正方形的边长为a,则④是平行四边形,它的面积=a×a=4,∴a2=32,故答案为32.16.(4分)如图,在△ABC中,AB=AC=10cm,BC=8cm,AB的垂直平分线交AB于点M,交AC于点N,在直线MN上存在一点P,使P、B、C三点构成的△PBC的周长最小,则△PBC的周长最小值为18cm.【分析】如图,连接P A.因为△PBC的周长=BC+PB+PC,BC=8cm,推出PB+PC的值最小时,△PBC的周长最小.由题意P A=PB,推出PB+PC=P A+PC≥AC=10cm,由此即可解决问题.【解答】解:如图,连接P A.∵△PBC的周长=BC+PB+PC,BC=8cm,∴PB+PC的值最小时,△PBC的周长最小,∵MN垂直平分线段AB,∴P A=PB,∴PB+PC=P A+PC≥AC=10cm,∴PB+PC的最小值为10cm,∴△PBC的周长的最小值为18cm.故答案为18cm三.解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:22﹣(π﹣3.14)0﹣|﹣4|+()﹣1【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:22﹣(π﹣3.14)0﹣|﹣4|+()﹣1=4﹣1﹣4+3=218.(6分)如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为.【分析】(1)根据题意先得出偶数的个数,再根据概率公式即可得出答案;(2)根据概率公式设计如:自由转动的转盘停止时,指针指向大于2的区域,答案不唯一.【解答】解:(1)P(指针指向偶数区域)==;(2)方法一:如图,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为;方法二:自由转动转盘,当它停止时,指针指向数字不大于4的区域的概率是.故答案为:19.(6分)如图,在△ABC中,∠ABC=∠C,D是BA延长线上一点,E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC的平分线AM;②连接BE并延长,交AM于点F.(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并证明你的结论.【分析】(1)利用作一个已知角的平分线的方法即可得出结论;(2)利用三角形的内角和和角平分线的性质得出∠C=∠CAM.即可得出AF∥BC,再判断出△BCE≌△F AE,即可得出BC=AF.【解答】解:(1)如图所示,AM是∠DAC的平分线;(2)BC=AF,BC∥AF.理由:在△ABC中,AB=AC,∴∠ABC=∠C,∠C+∠ABC+∠BAC=180°,∴∠C=90°﹣∠BAC,∵AM是∠CAD的平分线,∴2∠CAM=∠CAD,∵∠BAC+∠CAD=180°,∴2∠CAM+∠BAC=180°,∴∠CAM=90°﹣∠BAC,∴∠C=∠CAM,∴AF∥BC,∵点D是AC中点,∴AE=CE,在△BCE和△F AE中,,∴△BCE≌△F AE,∴BC=AF即:BC=AF,BC∥AF.四.解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是时间(t),因变量是距离(s),小南家到该度假村的距离是60km.(2)小南出发1小时后爸爸驾车出发,爸爸驾车的平均速度为60km/h,图中点A 表示小南出发2.5小时后,离度假村的距离还有10km.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是30或45km.【分析】(1)直接利用常量与变量的定义得出答案;(2)利用函数图象求出爸爸晚出发1小时,以及当爸爸第一次到达度假村后,小亮离度假村的距离;(3)利用函数图象得出交点的位置进而得出答案.【解答】解:(1)自变量是时间(t),因变量是距离(s);小南家到该度假村的距离是60km.故答案为:时间(t);距离(s);60;(2)小南出发1小时后爸爸驾车出发,爸爸驾车的平均速度为60km/h,图中点A表示小亮出发2.5小时后,离度假村的距离为10km;故答案为:1;60;小亮出发2.5小时后,离度假村的距离为10km;(3)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45km.故答案为:30或4521.(7分)先化简,再求值:[(3x﹣y)(3x+y)+(y﹣x)2﹣2x(x﹣y+1)]÷2x,其中x =505,y=504.【分析】直接利用乘法公式进而化简,再把已知数据代入求出答案.【解答】解:原式=(9x2﹣y2+y2﹣2xy+x2﹣2x2+2xy﹣2x)÷2x=(8x2﹣2x)÷2x=4x﹣1当x=505时,原式=2019.22.(7分)如图,已知AB∥CD,DA平分∠BDC,∠A=∠C.(1)试说明:CE∥AD.(2)若∠C=25°,求∠B的度数.【分析】(1)欲证明CE∥AD,只需推知∠ADC=∠C即可;(2)利用(1)中平行线的性质来求∠B的度数.【解答】解:(1)∵AB∥CD,∴∠A=∠ADC.∵∠A=∠C,∴∠ADC=∠C,∴CE∥AD.(2)由(1)可得∠ADC=∠C=25°,∵DA平分∠BDC,∴∠CDB=2∠ADC=50°,∵AB∥DC,∴∠B+∠CDB=180°,∴∠B=180°﹣∠CDB=130°.五.解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图1,在△ABC中,∠BAC=90°,AB=AC,直线MN过点A,且MN∥BC,点D是直线MN上一点,不与点A重合.若点E是线段AB上一点,且DE=DA.(1)请说明线段DE⊥DA.(2)如图2,连接BD,过点D作DP⊥DB交线段AC于点P,请判断线段DB与DP的数量关系,并说明理由.【分析】(1)根据等腰直角三角形的性质得到∠B=45°,根据平行线的性质、垂直的定义证明;(2)根据同角的余角相等得到∠BDE=∠ADP,证明△DEB≌△DAP,根据全等三角形的性质定理证明结论.【解答】解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°.∵MN∥BC,∴∠DAE=∠B=45°.∵DA=DE,∴∠DEA=∠DAE=45°.∴∠ADE=180°﹣∠DEA﹣∠DAE=90°,∴DE⊥DA.(2)DB=DP.理由如下:∵DP⊥DB,∴∠BDE+∠EDP=90°.由(1)知DE⊥DA,∴∠ADP+∠EDP=90°,∴∠BDE=∠ADP.∵∠DEA=∠DAE=45°,∴∠BED=180°﹣45°=135°,∠DAP=∠DAE+∠BAC=135°,∴∠BED=∠DAP.在△DEB和△DAP中,∴△DEB≌△DAP(ASA),∴DB=DP.24.(9分)数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1、图2、图3分别能解释的乘法公式.(2)用4个全等的长和宽分别为a、b的长方形拼摆成一个如图4的正方形,请你写出这三个代数式(a+b)2、(a﹣b)2、ab之间的等量关系.(3)根据(2)中你探索发现的结论,完成下列问题:①当a+b=5,ab=﹣6时,则a﹣b的值为±7.②设,B=x﹣2y﹣3,计算:(A+B)2﹣(A﹣B)2的结果.【分析】(1)根据图形面积直接得出即可;(2)用两种方法表示阴影部分的面积可得结论;(3)①根据(2)中的等量关系代入计算可得结论;②同理根据(2)中的公式代入可得结论.【解答】解:(1)图1:(a+b)2=a2+2ab+b2;图2:(a﹣b)2=a2﹣2ab+b2;图3:(a+b)(a﹣b)=a2﹣b2,(2)图4:(a+b)2﹣(a﹣b)2=4ab;(3)①由(2)知:(a+b)2﹣(a﹣b)2=4ab,∵a+b=5,ab=﹣6,∴52﹣(a﹣b)2=4×(﹣6),(a﹣b)2=25+24=49,∴a﹣b=±7,故答案为:±7;②∵,B=x﹣2y﹣3,∴(A+B)2﹣(A﹣B)2=4×A×B=4××(x﹣2y﹣3)=(x+2y﹣3)(x﹣2y ﹣3)=[(x﹣3)+2y][(x﹣3)﹣2y]=x2﹣6x+9﹣4y2.25.(9分)如图,在长方形ABCD中,AB=8cm,BC=12cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒.(1)如图1,S△DCP=48﹣8t.(用t的代数式表示)(2)如图1,当t=3时,试说明:△ABP≌△DCP.(3)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/秒的速度沿CD 向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【分析】(1)利用三角形的面积公式计算即可.(2)根据全等三角形的判定即可解答;(3)此题主要分两种情况①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP 得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:(1)S△DCP=•PC•CD=•(12﹣2t)•8=48﹣8t.故答案为48﹣8t.(2)当t=3时,BP=2×3=6,∴PC=12﹣6=6,∴BP=PC,在△ABP与△DCP中,∴△ABP≌△DCP(SAS).(3)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8,∴PC=8,∴BP=12﹣8=4,∴2t=4,解得:t=2,∴CQ=BP=4,v×2=4,解得:v=2;②当BA=CQ,PB=PC 时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6,∴2t=6,解得:t=3,CQ=AB=8,v×3=8,解得:,综上所述,当v=2或时,△ABP与△PQC全等.。

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年第二学期七年级(下)期末数学试卷姓名:得分:日期:一、选择题(本大题共 12 小题,共 48 分)1、(4分) 下列各式计算正确的是()A.(x+y)2=x2+y2B.x6÷x2=x3C.(3x2)2=6x4D.x3x3=x62、(4分) 如图,直线a∥b,∠1=60°,则∠2=()A.30°B.60°C.135°D.120°3、(4分) 某种细胞的直径是0.0067毫米,数字0.0067用科学记数法表示为()A.6.7×103B.6.7×10-3C.-6.7×103D.-6.7×10-34、(4分) 下列图形中不是轴对称图形的是()C. D.A.B.5、(4分) 一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.xD.y6、(4分) 在△ABC中,∠A是钝角,下列图中画AC边上的高线正确的是()C. D.A.B.7、(4分) 下列事件中,是必然事件的是()B.抛掷一枚普通正方体骰子所得的点数小于7 A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球C.抛掷一枚普通硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张牌,恰好是方块8、(4分) 等腰三角形的两边长为4和7,则这个三角形的周长是()A.15B.18C.15或18D.无法计算9、(4分) 如图,已知∠ABD=∠BAC,添加下列条件不能判断△ABD≌△BAC的条件是()A.∠D=∠CB.AD=BCC.∠BAD=∠ABCD.BD=AC10、(4分) 如图在△ABC中,BC=8,AB、AC的垂直平分线与BC分别交于E、F两点,则△AEF 的周长为()A.2B.4C.8D.不能确定11、(4分) 在长方形ABCD内,将两张边长分别为a和b(a≥b)的正方形纸片图1、图2两种放置(图1,图2中两张正方形纸片均有部分重叠),长方形未被这两张正形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为S1图2中阴影部分的面积和为S2,则关S1,S2的大小关系表述正确的是()A.S1<S2B.S1>S2C.S1=S2D.无法确定12、(4分) 如图,△ABC中,AB=AC,高BD、CE相交于点O,连接AO并延长交BC于点F,则图中全等的直角三角形共有()A.4对B.5对C.6对D.7对二、填空题(本大题共 6 小题,共 24 分)13、(4分) 在一个袋子中装有大小相同的5个小球,其中2个蓝色,3个红色,从袋中随机摸出1个,则摸到的是蓝色小球的概率是______.14、(4分) 如图,要在湖两岸A,B两点之间修建一座观赏桥,由于条件限制,无法直接测量A、B两点间的距离,于是小明想出来这样一种做法:在AB的垂线BF上取两点C、D,使BC=CD,再定出BF的垂线DE,使A,C,E三点在一条直线上,这时测得DE=50米,则AB=______米.15、(4分) 某工程队承建30千米的管道铺设工程,预计工期为60天,设施工x天时未铺设的管道长度是y千米,则y关于x的函数关系式是______.16、(4分) 若a+b=6,ab=7,则a2+b2=______.17、(4分) 如图,Rt△ABC中,∠A=90°,AB=AC,BC=8cm,BD平分∠ABC,DE⊥BC于E,则△CDE的周长为______cm.18、(4分) 甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒______米.三、解答题(本大题共 9 小题,共 78 分)19、(10分) 计算下列各题:(1)3x2y×5xy-14x4y5÷2xy3(2)(2π-6)0+(-1)2019+2-3.20、(8分) 先化简,再求值:(x+3)(x-3)-(x-4)2,其中x=15421、(8分) 如图,正方形网格中每个小正方形的边长为1,网格中有一个△ABC.(1)请直接写出△ABC的面积为______.(2)利用方格找出点A、B、C关于直线MN的对称点D、E、F,并顺次连接D、E、F三点.(3)若点P是直线MN上的一个动点,则PC+PA的最小值为______.22、(6分) 如图,∠1+∠2=180°,∠3=∠B,请判断EF与BC是否平行,并说明理由.23、(8分) 如图,点B、C在线段AD上,且AB=CD,点E、F在AD一侧,有AE=BF且AE∥BF.试说明CE∥DF.24、(8分) 在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计当n很大时,摸到白球的频率将会接近______(精确到0.1);=______;(2)假如摸一次,摸到黑球的概率P(黑球)(3)试估算盒子里黑颜色的球有多少只?25、(10分) 某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,______是自变量,______是因变量;(2)观察表中数据可知,每月乘客量达到______人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?26、(8分) 阅读下题及其证明过程:已知:如图,D是△ABC中BC的中点,EB=EC,∠ABE=∠ACE,试说明:∠BAE=∠CAE.证明:在△AEB和△AEC中,{EB=EC∠ABE=∠ACE AE=AE∴△AEB≌△AEC(第一步)∴∠BAE=∠CAE(第二步)问:(1)上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?(2)写出你认为正确的推理过程.27、(12分) 问题情景:如图1,△ABC中,有一块直角三角板PMN放置在△ABC上(P点在△ABC内),使三角板PMN的两条直角边PM、PN恰好分别经过点B和点C,试问∠ABP与∠ACP是否存在某种确定的数量关系?(1)特殊探究:若∠A=40°,则∠ABC+∠ACB=______度,∠PBC+∠PCB=______度,∠ABP+∠ACP=______度.(2)类比探索:请探究∠ABP+∠ACP与∠A的关系;(3)类比延伸:如图2,改变直角三角板PMN的位置:使P点在△ABC外,三角板PMN的两条直角边PM、PN仍然分别经过点B和点C,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.2018-2019学年山东省济南市商河县七年级(下)期末数学试卷【第 1 题】【答案】D【解析】解:A.(x+y)2=x2+2xy+y2,故错误;B.x6÷x2=x4,故错误;C.(3x2)2=9x4,故错误;D.x3x3=x6,故正确.故选:D.分别利用完全平方公式、同底数幂除法法则、幂的乘方法则计算即可.本题考查了幂的运算,熟练运用幂的乘方、同底数幂的除法法则是解题的关键.【第 2 题】【答案】D解:∵a∥b,∠1=60°,∴∠3=60°,∴∠2=120°,故选:D.根据平行线的性质得出∠1=∠3,进而利用邻补角解答即可.本题考查了平行线的性质,关键是根据平行线的性质得出∠1=∠3.【第 3 题】【答案】B【解析】解:0.0067=6.7×10-3.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【第 4 题】【答案】A【解析】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:A.根据轴对称图形的定义判断即可.本题考查轴对称图形的定义,解题的关键是理解轴对称图形的性质,属于中考常考题型.【答案】C【解析】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.根据函数的定义进行解答即可.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.【第 6 题】【答案】A【解析】解:由题意可得,在△ABC中,∠A是钝角,画AC边上的高线是故选:A.根据三角形的高的定义可知,AC边上的高线是经过B点向AC边所作的垂线段,依此求解即可.本题考查了三角形的高:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.掌握定义是解题的关键.【第 7 题】【答案】B【解析】解:A、从装有10个黑球的不透明袋子中摸出一个球,恰好是红球是不可能事件;B、抛掷一枚普通正方体骰子所得的点数小于7是必然事件;C、抛掷一枚普通硬币,正面朝上是随机事件;D、从一副没有大小王的扑克牌中抽出一张牌,恰好是方块是随机事件;故选:B.根据事件发生的可能性大小判断相应事件的类型即可.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【第 8 题】【答案】C【解析】解:(1)若4为腰长,7为底边长,由于7-4<4<7+4,即符合三角形的两边之和大于第三边.所以这个三角形的周长为7+4+4=15.(2)若7为腰长,4为底边长,由于7-7<4<7+7,即符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+4=18.故等腰三角形的周长为:15或18.故选:C.求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.【第 9 题】【答案】B【解析】解:由题意得,∠ABD=∠BAC,A、在△ABC与△BAD中,{∠C=∠D∠BAC=∠BADAB=BA,∴△ABC≌△BAD(AAS),故A选项能判定全等;B、在△ABC与△BAD中,由BC=AD,AB=BA,∠BAC=∠ABD,可知△ABC与△BAD不全等,故B选项不能判定全等;C、在△ABC与△BAD中,{∠ABD=∠BACAB=BA∠DAB=∠CBA,∴△ABC≌△BAD(ASA),故C选项能判定全等;D 、在△ABC 与△BAD 中, {AC =BD ∠BAC =∠ABD AB =BA ,∴△ABC ≌△BAD (SAS ),故D 选项能判定全等;故选:B .根据全等三角形的判定:SAS ,AAS ,ASA ,可得答案.本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【 第 10 题 】【 答 案 】C【 解析 】解:∵AB 的中垂线交BC 于E ,AC 的中垂线交BC 于F ,∴EA =EB ,FA =FC ,则△AEF 的周长=AE +EF +AF =BE +EF +FC =BC =8,故选:C .根据线段的垂直平分线的性质得到EA =EB ,FA =FC ,根据三角形的周长公式计算即可此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.【 第 11 题 】【 答 案 】B【 解析 】解:S 1=(AB -a )⋅a +(CD -b )(AD -a )=(AB -a )⋅a +(AB -b )(AD -a ),S 2=(AB -a )(AD -b )+(AD -a )(AB -b ),∴S 2-S 1=(AB -a )(AD -b )-(AB -a )a =(AB -a )(AD -b -a )<0,即S 1>S 2,故选:B .利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算,熟练运用整式混合运算法则是解题的关键.【 第 12 题 】【答案】C【解析】解:有7对全等三角形:①△BDC≌△CEB,理由是:∵AB=AC,∴∠ABC=∠ACB,∵BD和CE是两腰上的高,∴∠BDC=∠CEB=90°,在△BDC和△CEB中,{∠BDC=∠CEB nbsp;∠ACB=∠ABCBC=CB,∴△BDC≌△CEB(AAS),∴BE=DC,②△BEO≌△CDO,理由是:在△BEO和△CDO中,{∠BEO=∠CDO ∠BOE=∠CODBE=CD,∴△BEO≌△CDO(AAS),③△AEO≌△ADO,理由是:由△BEO≌△CDO得:EO=DO,在Rt△AEO和Rt△ADO中,{AO=AOEO=OD,∴Rt△AEO≌Rt△ADO(HL),∴∠EAO=∠DAO,④△ABF≌△ACF,理由是:在△ABF和△ACF中,{AB=AC∠EAO=∠DAOAF=AF,∴△ABF≌△ACF(SAS),⑤△BOF≌△COF,理由是:∵AB=AC,∠BAF=∠CAF,∴BF=FC,∠AFB=∠AFC,在△BOF和△COF中,{OF=OF∠AFB=∠ADCBF=FC,∴△BOF≌△COF(SAS),⑥△AOB≌△AOC,理由是:在△AOB和△AOC中,{AB =AC ∠BAO =∠CAO AO =AO ,∴△AOB ≌△AOC (SAS ),⑦△ABD ≌△ACE ,理由是:在△ABD 和△ACE 中,∵{AB =AC∠BAD =∠CAE ∠ADB =∠AEC =90∘,∴△ABD ≌△ACE (AAS ).故选:C .①△BDC ≌△CEB ,根据等边对等角得:∠ABC =∠ACB ,由高得:∠BDC =∠CEB =90°,所以利用AAS 可证明全等;②△BEO ≌△CDO ,加上对顶角相等,利用AAS 可证明全等;③△AEO ≌△ADO ,根据HL 可证明全等;④△ABF ≌△ACF ,根据SAS 可证明全等;⑤△BOF ≌△COF ,根据等腰三角形三线合一的性质得:BF =FC ,∠AFB =∠AFC ,利用SAS 可证明全等;⑥△AOB ≌△AOC ,根据SAS 可证明全等;⑦△ABD ≌△ACE ,利用AAS 可证明全等.本题主要考查了三角形全等的性质和判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是关键,要书写三角形全等时要按顺序书写,才能做到不重不漏.【 第 13 题 】【 答 案 】25【 解析 】解:∵5个小球中,有2个蓝色小球,∴P (蓝色小球)=25.故答案为:25. 根据概率公式列出算式计算即可求解.本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.【 第 14 题 】【 答 案 】50解:根据题意可知∠B =∠D =90°,BC =CD ,∠ACB =∠ECD∴△ABC ≌△EDC (ASA )∴AB =DE =50米.故答案为:50由对顶角相等,两个直角相等及BD =CD ,可以判断两个三角形全等;所以AB =DE =50米.此题考查全等三角形的应用,解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系,做题时要认真观察图形,根据已知选择方法.【 第 15 题 】【 答 案 】y =30-12x【 解析 】解:由某工程队承建30千米的管道铺设工程,预计工期为60天,可知工程队每天铺设30÷60=0.5米,所以y =30-0.5x ,故填y =30-12x 工作量=工作效率×工作时间,由30千米的管道铺设工程,工期为60天,可知一天工作了12千米,问题得解.本题考查了,工作量,式作时间,工作效率三者的关系,明确工作量=工作效率×工作时间是解题的关键.【 第 16 题 】【 答 案 】22【 解析 】解:∵a +b =6,ab =7,∴a 2+b 2=(a +b )2-2ab =62-2×7=22,故答案为:22.先根据完全平方公式进行变形,再代入求出即可.本题考查了完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键.【 第 17 题 】8【解析】解:∵BD平分∠ABC,DE⊥BC,∠A=90°,∴DA=DE,BA=BE,∵AB=AC,∴BE=AC,∴△CDE的周长=EC+DE+CD=EC+AD+CD=EC+AC=EC+BE=8,故答案为:8.根据角平分线的性质得到DA=DE,根据三角形的周长公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.【第 18 题】【答案】6【解析】解:由图可知:①50秒时,甲追上乙,②300秒时,乙到达目的地,=4,∴乙的速度为:1300−100300设甲的速度为x米/秒,则50x-50×4=100,x=6,故答案为:6设甲的速度为x米/秒,根据50秒时,甲追上乙列方程求出甲的速度.本题是函数图象的信息题,又是行程问题,首先要明确三个量:路程、时间和速度,题中有三人:甲、乙、丙,正确读出图形中甲、乙相遇及到达目的地的时间是本题的关键;重点理解图象中x与y所表示的含义,也是本题的难点.【第 19 题】【答案】解:(1)原式=15x3y2-7x3y2=8x3y2;(2)原式=1-1+18=1.8【解析】(1)直接利用整式的乘除运算法则计算得出答案;(2)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.此题主要考查了整式的除法运算以及单项式乘以单项式,正确掌握相关运算法则是解题关键.【 第 20 题 】【 答 案 】解:(x +3)(x -3)-(x -4)2=x 2-9-x 2+8x -16=8x -25,当x =154时,原式=8×154-25=5.【 解析 】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.【 第 21 题 】【 答 案 】解:(1)△ABC 的面积为:12×2×4=4; 故答案为:4;(2)如图所示:△EDF 即为所求;(3)PC +PA 的最小值为:PA +PC =DC =6.故答案为:6.【 解析 】(1)直接利用直角三角形面积求法进而得出答案;(2)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(3)利用轴对称求最短路线的方法得出答案.此题主要考查了应用设计与作图,正确得出对应点位置是解题关键.【第 22 题】【答案】解:EF∥BC理由:∵∠1+∠2=180°,∠2=∠4∴∠1+∠4=180°∴BE∥DF∴∠B=∠5又∵∠3=∠B∴∠3=∠5∴EF∥BC【解析】依据已知条件得到∠1+∠4=180°,即可判定BE∥DF,进而得出∠B=∠5,根据∠3=∠B,即可得到∠3=∠5,进而得到EF∥BC.此题考查了平行线的判定及性质,熟练掌握平行线的性质和判定是解决问题的关键.【第 23 题】【答案】证明:∵AE∥BF∴∠A=∠DBF∵AB=CD∴AB+BC=CD+BC即AC=BD在△ACE和△BDF中{AE=BF ∠A=∠DBF AC=BD∴△ACE≌△BDF(SAS)∴∠ACE=∠D∴CE∥DF【解析】由“SAS”可证△ACE≌△BDF,可得∠ACE=∠D,可证CE∥DF.本题考查了全等三角形的判定和性质,平行线的判定和性质,熟练运用全等三角形的判定是本题的关键.【第 24 题】【答案】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6,故答案为:0.6.(2)∵摸到白球的频率为0.6,=1-0.6=0.4,∴假如你摸一次,你摸到白球的概率P(黑球)故答案为:0.4.【解析】(3)盒子里黑颜色的球有50×0.6=30.(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)黑球个数=球的总数×得到的黑球的概率,即为黑球的个数.本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.【第 25 题】【答案】每月的乘车人数x每月的利润y观察表中数据可知,每月乘客量达到2000【解析】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为:每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为:观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案.此题主要考查了常量与变量以及函数的表示方法,正确把握函数的定义是解题关键.【第 26 题】【答案】解:(1)不正确,错在第一步.(2)理由:∵D是BC的中点,EB=EC,∴∠BED=∠CED(三线合一),∴∠AEB=∠AEC.在△AEB和△AEC中,{∠ABE=∠ACE ∠AEB=∠AECAE=AE,∴△AEB≌△AEC(AAS),∴∠BAE=∠CAE.【解析】(1)第一步SSA不能证出△AEB≌△AEC,所以此处错误;(2)由D是BC的中点,EB=EC即可得出∠BED=∠CED,进而得出∠AEB=∠AEC,结合∠ABE=∠ACE以及公共线AE=AE即可证出△AEB≌△AEC(AAS),由此即可得出∠BAE=∠CAE.本题考查了全等三角形的判定与性质,解题的关键是:(1)熟记各全等三角形的判定定理;(2)利用AAS证出△AEB≌△AEC.本题属于基础题,难度不大,解决该题型题目时,熟练掌握全等三角形的判定定理是关键.【第 27 题】【答案】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP+∠ACP=140°-90°=50°,故答案为140,90,50.(2)结论:∠ABP+∠ACP=90°-∠A.证明:∵90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°-∠A.(3)不成立;存在结论:∠ACP-∠ABP=90°-∠A.理由:设AB交PC于O.∵∠AOC=∠POB,∴∠ACO+∠A=∠P+∠PBO,∴∠ACP-∠ABP=90°-∠A.【解析】(1)利用三角形内角和定理即可解决问题.(2)结论:∠ABP+∠ACP=90°-∠A.利用三角形内角和定理即可证明.(3)不成立;存在结论:∠ACP-∠ABP=90°-∠A.利用三角形内角和定理即可解决问题.本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。

佛山市名校2019-2020学年七年级第二学期期末检测数学试题含解析

佛山市名校2019-2020学年七年级第二学期期末检测数学试题含解析

佛山市名校2019-2020学年七年级第二学期期末检测数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每题只有一个答案正确)1.七年级某班部分学生植树,若每人平均植树8棵,还剩7棵;若每人植树9棵,则有一名学生植树的棵树多于3棵而小于6棵.若设学生人数为x人,则植树棵树为(8x+7)人,则下面给出的不等式(组)中,能准确求出学生人数与种植树木数量的是()A.8x+7<6+9(x-1)B.8x+7>3+9(x-1)C.8769(1)8739(1)x xx x+<+-⎧⎨+>+-⎩D.8769(1)8739(1)x xx x+≤+-⎧⎨+≥+-⎩【答案】C【解析】【分析】由于设学生人数为x人,则植树棵树为(8x+7)人,若每人植树9棵,则有一名学生植树的棵树多于3棵而<6棵,那么可以得到8x+7<6+9(x-1)和8x+7>3+9(x-1),由它们组成不等式组即可求出学生人数与种植树木数量.【详解】∵设学生人数为x人,则植树棵树为(8x+7)人,而若每人植树9棵,则有一名学生植树的棵树多于3棵而<6棵,∴依题意得8769(1) 8739(1) x xx x+<+-⎧⎨+>+-⎩.故选C.【点睛】考查了不等式组的应用,解题关键是弄清题意,找到合适的等量关系,列出不等式组.弄清如何用x分别表示学生人数与种植树木数量,并且根据题意列出不等式组解决问题.2.用加减法解方程组解题步骤如下:(1)①-②,得,(2),得,,下列说法正确的是()A.步骤(1),(2)都不对B.步骤(1),(2)都对C.此题不适宜用加减法D.此题不适宜用加减法【答案】B【解析】【分析】根据加减法进行分析即可.【详解】根据加减法解二元一次方程组的一般方法可得,方法一先消去未知数x ;方法二先消去未知数y.两种方法都正确.故选:B【点睛】考核知识点:用加减法解二元一次方程组.掌握加减法的原理是关键.3.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE【答案】B【解析】【分析】 根据平行线的判定方法:内错角相等两直线平行,即可判断AB ∥CE .【详解】解:∵∠A =∠ACE ,∴AB ∥CE (内错角相等,两直线平行).故选:B .【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.4.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b,∴a−2>b−2,故此选项错误;B. ∵a>b,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b,∴−2a<−2b,故此选项正确;D. ∵a>b,∴a2与b2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.5.下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:B.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.6.下列计算正确的是()A.3a·4a=12a B.a3·a2=a12C.(-a3)4=a12D.a6÷a2=a3【答案】C【解析】【分析】直接利用单项式乘以单项式;同底数幂的乘法运算法则;以及幂的乘法运算法则和同底数幂除法运算法则分别计算得出答案.【详解】A项3a·4a=12a2故A项错误.B项a3·a2= a5故B项错误.C项(-a3)4=a12正确.D项a6÷a2=a4故D项错误.【点睛】此题考查了单项式乘以单项式、同底数幂的乘法运算法则以及幂的乘法运算法则和同底数幂除法运算法则运算法则,熟练掌握运算法则是解题的关键.7.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12, ,则第2018次输出的结果为()A.0 B.3 C.5 D.6【答案】B【解析】【分析】根据题意找出规律即可求出答案.【详解】第一次输出为24,第二次输出为12,第三次输出为6,第四次输出为1,第五次输出为6,第六次输出为1,……从第三次起开始循环,∴(2018﹣2)÷2=1008故第2018次输出的结果为:1.故选B.【点睛】本题考查了数字规律,解题的关键是正确理解程序图找出规律,本题属于基础题型.8.实数a、b、c在数轴上的对应点如图所示,化简|a﹣b|+|c﹣b|=()A.a+c﹣2b B.a﹣c C.2b D.2b﹣a﹣c【答案】B【解析】【分析】先根据各点在数轴上的位置判断出a-b及c-b的符号,再去括号,合并同类项即可【详解】由题意可得:c<b<a,∴a﹣b>0,c﹣b<0,∴|a﹣b|=a﹣b,|c﹣b|=﹣(c﹣b),∴原式=a﹣b﹣(c﹣b)=a﹣b﹣c+b=a﹣c.故选B.【点睛】本题考查的是实数的运算,熟知绝对值的性质是解答此题的关键.9.如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是()A.①②B.①③④C.①②④D.①②③④【答案】D【解析】【分析】根据条件∠BAC=∠ACD=90°,∠ABC=∠ADC可以判断四边形ABCD是平行四边形,于是可判断答案①②④正确,由④再进一步判断答案③也正确,即可做出选择.【详解】解:∵∠BAC=∠ACD=90°,且∠ABC=∠ADC∴AB∥CD且∠ACB=∠CAD∴BC∥AD∴四边形ABCD是平行四边形.∴答案①正确;∵∠ACE+∠ECD=∠D+∠ECD=90°∴∠ACE=∠D而∠D=∠ABC∴∠ACE=∠D=∠ABC∴答案②正确;又∵∠CEF+∠CBF=90°,∠AFB+∠ABF=90°且∠ABF=∠CBF,∠AFB=∠CFE∴∠CEF=∠AFB=∠CFE∴答案④正确;∵∠ECD=∠CAD,∠EBC=∠EBA∴∠ECD+∠EBC=∠CFE=∠BEC∴答案③正确.故选:D.【点睛】本题考查的是直角三角形中角的相互转化,会运用三角形的全等及角的互余关系进行角的转化是解决本题的关键.10.三角形的周长为15cm,其三边的长均为整数,当其中一条边长为3cm时,则不同形状的三角形共有()A.2种B.3种C.4种D.5种【答案】A【解析】【分析】根据三角形的两边之和大于第三边,根据周长是15厘米,可知最长的边要小于7.5厘米,进而得出三条边的情况.【详解】解:∵三角形中一边的长为3cm,且另外两边长的值均为整数,∴有两种情况:当三角形的最长边为7时,三条边分别是3cm、5cm、7cm,当三角形的最长边为6时,三条边分别是3cm、6cm、6cm.故选A.【点睛】本题考查学生对三角形三边关系的理解及运用能力,注意不能构成三角形的情况一定要排除.二、填空题11.商店某天销售了12件村衫其领口尺寸统计如下表:则这12件衬衫顿口尺寸的众数是_____cm.【答案】1【解析】【分析】根据众数的定义结合图表信息解答.【详解】同一尺寸最多的是1cm,共有4件,所以,众数是1cm,故答案为:1.【点睛】本题考查了众数,众数是出现次数最多的数据,众数有时不止一个.12.若x m=3,x n=-2,则x m+2n=_____.【答案】1【解析】分析:先把x m+2n变形为x m(x n)2,再把x m=3,x n=-2代入计算即可.详解:∵x m=3,x n=-2,∴x m+2n=x m x2n=x m(x n)2=3×(-2)2=3×4=1.故答案为:1.点睛:本题考查了同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.13.如图,a//b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=______.【答案】55°【解析】【分析】先根据∠1=35°,由垂直的定义,得到∠3的度数,再由a∥b即可求出∠2的度数.【详解】∵AB⊥BC,∴∠3=90°﹣∠1=55°.∵a∥b,∴∠2=∠3=55°.故答案为55°.【点睛】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键. 14.如果2(29)60x y x y -+++-=,则x-y=_______.【答案】-2【解析】分析:由于(x-2y+9)2和|x+y-6|都是非负数,而它们的和为3,由此可以得到它们每一个都等于3,然后即可求出x 、y 的值.详解:∵()22960x y x y -+++-=,而(x-2y+9)2≥3,|x+y-6|≥3,∴(x-2y+9)2=3,|x+y-6|=3, ∴29060x y x y -+⎧⎨+-⎩==, 解得x=1,y=1.∴x-y=1-1=-2.故答案为:-2.点睛:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为3时,必须满足其中的每一项都等于3.根据这个结论可以求解这类题目.15.命题“对顶角相等”的条件是 .【答案】两个角是对顶角【解析】【分析】根据命题由题设与结论组成可得到对顶角相等”的“条件”是若两个角是对顶角,结论是这两个角相等.【详解】“对顶角相等”的“条件”是两个角是对顶角.故答案为两个角是对顶角.【点睛】本题考查了写命题的题设和结论,熟练掌握条件和结论是解题的关键.16.把40个数据分成6组,第一到第四组的频数分别为9,5,8,6,第五组的频率是0.1,则第六组的频数是________.【答案】8.【解析】【分析】先求出第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【详解】∵有40个数据,共分成6组,第5组的频率是0.1,∴第5组的频数为40×0.1=4;又∵第1∼4组的频数分别为9,5,8,6,∴第6组的频数为40−(9+5+8+6+4)=8.故答案为8.【点睛】此题考查频数与频率,解题关键在于先求出第5组的频数17.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB 的度数为_____.【答案】10°【解析】【分析】根据直角三角形两锐角互余求出∠B,根据翻折变换的性质可得∠CA′D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵折叠后点A落在边CB上A′处,∴∠CA′D=∠A=50°,由三角形的外角性质得,∠A′DB=∠CA′D﹣∠B=50°﹣40°=10°.故答案为:10°.【点睛】本题考查了翻折变换,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,翻折前后对应边相等,对应角相等.三、解答题18.新知学习,若一条线段把一个平面图形分成面积相等的两部分,我们把这条段线做该平面图形的二分线解决问题:(1)①三角形的中线、高线、角平分线中,一定是三角形的二分线的是_______②如图1,已知△ABC 中,AD 是BC 边上的中线,点E ,F 分别在AB ,DC 上,连接EF ,与AD 交于点G ,若AEG DGF S S =三角形三角形则EF _____(填“是”或“不是”)△ABC 的一条二分线。

北师大版2019-2020学年度第二学期七年级期中考试数学试卷

北师大版2019-2020学年度第二学期七年级期中考试数学试卷

试卷第1页,总5页 …………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○………… 绝密★启用前 北师大版2019-2020学年度第二学期七年级期中考试 数学试卷 题号 一 二 三 总分 得分 评卷人 得分一、单选题 1.(3分)下列计算结果正确的是( ) A .326a a =-(-) B .222a b a b -=-() C .633a a a ÷= D .235325a a a += 2.(3分)下列说法:①内错角相等;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④平行于同一条直线的两条直线互相平行. 其中错误的有( ).A .1个;B .2个;C .3个;D .4个. 3.(3分)在圆的面积公式2S R π=中,常量与变量分别是( ) A .π是常量,,S R 是变量 B .2是常量,,,S R π是变量 C .2是常量,R 是变量 D .2是常量,,S R 是变量 4.(3分)若28x x m -+是完全平方式,则m 的值为( ) A .4 B .4± C .16± D .16 5.(3分)如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A .∠3=∠A B .∠D=∠DCE C .∠1=∠2 D .∠D+∠ACD=180° 6.(3分)如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为( ). A .32y x = B .23y x = C .12y x = D .18=y x 7.(3分)已知2m a =,3n a =,则2m n a +的值为( )试卷第2页,总5页 …………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ …………○…………内…………○…………装…………○…………订…………○…………线…………○………… A .11 B .18 C .38 D .12 8.(3分)如图,在平行线l 1、l 2之间放置一块直角三角板,三角板的锐角顶点A ,B 分别在直线l 1、l 2上,若∠l=65°,则∠2的度数是( ) A .25° B .35° C .45° D .65° 9.(3分)某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是( )A .小王去时的速度大于回家的速度B .小王在朋友家停留了10分钟C .小王去时所花时间少于回家所花时间D .小王去时走上坡路施,回家时走下坡路 10.(3分)如图①是一个边长为+a b 的正方形,李明将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )A .22()()4a b a b ab +--=B .222()2a b ab a b -+=+C .()222()2a b a b ab +-+=D .22()()a b a b a b +-=-评卷人 得分二、填空题11.(4分)()200220172 1.53⎛⎫-⨯= ⎪⎝⎭________.12.(4分)如图所示,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是________________________________。

广东省南海区石门实验中学2019-2020学年中考数学模拟检测试题

广东省南海区石门实验中学2019-2020学年中考数学模拟检测试题

广东省南海区石门实验中学2019-2020学年中考数学模拟检测试题一、选择题1.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B (﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1B.2C.3D.42.如图,已知直线y=334x ,与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB,则△PAB面积的最小值是()A.6B.5.5C.5D.4.53.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.29B.13C.49D.594.如图,是小明作线段AB的垂直平分线的作法及作图痕迹,则四边形ADBC一定是()A.矩形B.菱形C.正方形D.无法确定5.如图,在等腰直角三角形ABC 中,AB =AC =2,∠BAC =90°,点D 是AC 的中点,点P 是BC 边上的动点,连接PA 、PD .则PA+PD 的最小值为( )1 D.36.如图,,,AB AC BD 是O 的切线,切点分别是,,P C D .若5,3AC BD ==,则AB 的长是( )A .2B .4C .6D .8 7.已知|a|=3,b 2=16,且|a+b|≠a+b,则代数式a ﹣b 的值为( ) A .1或7B .1或﹣7C .﹣1或﹣7D .±1或±7 8.如图,点I 和O 分别是△ABC 的内心和外心,则∠AIB 和∠AOB 的关系为( )A.∠AIB =∠AOBB.∠AIB≠∠AOBC.2∠AIB ﹣12∠AOB =180°D.2∠AOB ﹣12∠AIB =180° 9.如图,平行四边形ABCD 中,对角线AC 、BD 相交于O ,BD=2AD ,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:①BE ⊥AC ;②EG=GF ;③△EFG ≌△GBE ;④EA 平分∠GEF ;⑤四边形BEFG 是菱形.其中正确的是( )A .①②③B .①③④C .①②⑤D .②③⑤10.二次函数y =ax 2﹣4ax+2(a≠0)的图象与y 轴交于点A ,且过点B (3,6)若点B 关于二次函数对称轴的对称点为点C ,那么tan ∠CBA 的值是( )A .23B .43C .2D .3411.已知边长为4的等边△ABC ,D 、E 、F 分别为边AB 、BC 、AC 的中点,P 为线段DE 上一动点,则PF+PC 的最小值为( )A .4B .C .D .212.某机构调查了某小区部分居民当天行走的步数(单位:千步),并将数据整理绘制成如下不完整的频数直方图和扇形统计图.根据统计图,得出下面四个结论:①此次一共调查了200位小区居民;②行走步数为8~12千步的人数超过调查总人数的一半;③行走步数为4~8千步的人数为50人;④扇形图中,表示行走步数为12~16千步的扇形圆心角是72°.其中正确的结论有( )A .①②③B .①②④C .②③④D .①③④ 二、填空题13.已知反比例函数的图像经过点,A B ,点A 的坐标为(1,3),点B 的纵坐标为1,则点B 的横坐标为__________.14.为了了解一批圆珠笔芯的使用寿命,宜采用________方式进行调查;为了了解某班同学的身高,宜采用________方式进行调查.(填“抽样调查”或“普查”)15.正比例函数的图像与反比例函数的图象相交于A 、B 两点,其中点A(2,n),且n>0,当时,的取值范围是___________________.16.(2017云南省)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AD AB =13,则AD DE AE AB BC AC++++=______.17x 的取值范围为_____. 18.已知梯形的上底长为5厘米,下底长为9厘米,那么这个梯形的中位线长等于_____厘米.三、解答题19.如图,△ABC 中,AB =AC ,AD 是△ABC 的角平分线,点F 为AC 的中点,连接FD 并延长到点E ,使FD =DE ,连接BF ,CE 和BE .(1)求证:BE =FC ;(2)判断并证明四边形BECF 的形状;(3)为△ABC 添加一个条件,则四边形BECF 是矩形(填空即可,不必说明理由)20.如图所示,△ABC 中,AB =AC ,AD 平分∠BAC ,点G 是BA 延长线上一点,点F 是AC 上一点,AG =AF ,连接GF 并延长交BC 于E .(1)若AB =8,BC =6,求AD 的长;(2)求证:GE ⊥BC .21.如图,在一条不完整的数轴上从左到右有点A ,B .将线段AB 沿数轴向右移动,移动后的线段记为A′B′,按要求完成下列各小题(1)若点A 为数轴原点,点B 表示的数是4,当点A′恰好是AB 的中点时,数轴上点B′表示的数为 .(2)设点A 表示的数为m ,点A′表示的数为n ,当原点在线段A′B 之间时,化简|m|+|n|+|m ﹣n|.22.如图,某校准备给长12米,宽8米的矩形ABCD 室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形PQFG ),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点O 为矩形和菱形的对称中心,OP AB ,2OQ OP =,12AE PM =,为了美观,要求区域Ⅱ的面积不超过矩形ABCD 面积的18,若设OP x =米.x=时,求区域Ⅱ的面积.(1)当3(2)计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当x为多少时,室内光线亮度最好,并求此时白色区域的面积.x=米时,购买三款瓷砖的总费用最少,且最少②三种瓷砖的单价列表如下,,m n均为正整数,若当2费用为7200元,此时m=__________,n=__________.23.某厂为新型号电视机上市举办促销活动,顾客每买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖。

2020春石门实验学校7年级语文第一次月测

2020春石门实验学校7年级语文第一次月测

石门实验学校2019—2020学年度第二学期七年级语文第一阶段质量检测试卷出题人:苏贞冲审核人:黄英明说明:【本次考试与以往不同,请务必认真阅读考试说明】1.卷面分值总分130分,含附加题10分,该题作为补偿分计入总分,但全卷最后得分不得超过120分,考试时间为120分钟。

2. 答题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目的指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液。

不按以上要求作答的答案无效。

用笔不当、卷面不整洁、涂改不规范的,在总得分基础上酌情扣1-2分。

3.答题卡不设置客观题答题区,客观题(选择题)部分答案直接在线填入智学网学生端。

4.主观题请在主观题答题卡作答,务必在规定的区域内用作答,完成后在按照扫描框区域扫描,一框则为一张图,并上传至智学网对应答题区。

5.考后半小时内,完成答卷上传。

延时提交或提交不成功均作0分处理,图片模糊不可辨认,责任自负。

一、基础(24分)1.根据课文默写古诗文。

(10分)(1)□□□□□,弹琴复长啸。

(王维《竹里馆》)(2)谁家玉笛暗飞声,□□□□□□□(李白《春夜洛城闻笛》)(3)□□□□□□□,□□□□□□□。

马上相逢无纸笔,凭君传语报平安。

(岑参《逢入京使》)(4)《木兰诗》描写战争旷日持久,战斗激烈悲壮的句子是:□□□□□,□□□□□。

(5)默写韩愈的《晚春》□□□□□□□,□□□□□□□。

□□□□□□□,□□□□□□□。

2.根据拼音写出相应的词语。

(4分)(1)我看见奔流似的马群,听见蒙古狗深夜的háo míng( )。

(2)我渐渐明白:那是一个幸运的人对一个不幸者的kuì zuò()。

(3)因为实在太疲倦,一会儿就hān rán rù mèng()了。

(4)我认识奥本海默时他已经四十多岁了,已经是fù rú jiē zhī()的人物了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

佛山石门实验中学 2019—2020 学年度第二学期
初一数学第一次数学质量检测试卷
满分:100 分考试时间:70 分钟
一、选择题(本题 10 小题,每题 3 分,共 30 分)
1、下列运算正确的是()
A.a2·a3 =a5
B.(y3)4=y12
C.(-2x)3=-8x3
D.x3+x3=x6
2、已知 a m=2,a n=4,则 a3m-2n=()
3、要使多项式(x+p)(x-q)不含x 的一次项,则p 与q 的关系是()
A. 相等
B.互为相反数
C. 互为倒数
D. 乘积为-1
4、已知a2+b2=5,a-b=1,则ab 的值为()
A. 1
B.2
C. 3
D. 4
5、下列多项式相乘,不能用平方差公式计算是()
A. (2x-3y)(3y-2x)
B. (-2x+3y)(-2x-3y)
C. (x-2y)(2y+x)
D.(x+3y)(x-3y)
6、长方形的面积是9a2-3ab+6a3,一边长是3a,则它的另一边长是()
A. 3a2-b+2a2
B.b+3a+2a2
C.2a2+3a-b
D.3a2-b+2a
7、已知y2+my+1 是完全平方式,则m 的值是()
A .2 B.±2 C. 1 D.±1
8、如图表示的是用 4 个完全相同的小长方形与 1 个长方形密铺而成的正方形图案,已知
大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是()
A.x+y=7 B.x﹣y=2 C.x2﹣y2=25 D.4xy+4=49
A .4 B.2 C. 0 D.6
10、已知ab2=-1,则-ab(a2b5-ab3-b)的值等于(
A .-1 B.0 C. 1)
D.无法确定
二、填空题(本大题 7 小题,每题 4 分,共 28 分)
12、计算:(b-a)2(a-b)3=(结果用幂的形式表示).
13、计算:x2y2·(-xy3)2 的结果是。

14、多项式(mx+8)(2-3x)展开后不含x 一次项,则m=.
15、如图,两个正方形长分别为a、b,如果a+b=7,ab=13,则阴影部分的面积为。

a
b
16、如图,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建两条宽为 b 米的通道,修改后剩余草坪的面积是平方米。

17、我们知道下面的结论:若 a m=a n(a>0,且a≠1),则 m=n,利用这个结论解决下列问题:设 2m=3,2n=6,2p=12;现给出 m,n,p 三者之间的三个关系:
①m+p=2n;②m+n=2p-3,③n2-mp=1.其中正确的是。

(填编号)
三、解答题(一)(本大题3 小题,每题6 分,共18 分)
18、利用完全平方公式或平方差公式计算
(1)20192-2028×2020 (2)(3+2a+b)(3-2a+b)
20、先化简,再求值:[(xy+2)(xy-2)-2x2y2+4]÷xy,其中 x=4,y=0.5
四、解答题(二)(本大题 3 题,每题 8 分,共 24 分)
21、(1)已知 4m=a,8n=b,用含 a,b 的式子表示下列代数式:
①求:22m+3n 的值
②求:24m-6n 的值
(2)已知 2×8x×16=226,求 x 的值。

22.探索题:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+ x3+x2+x+1)=x5-1
(1)观察以上各式并猜想:
①(x-1)(x6+x5+x4+ x3+x2+x+1)=;
②(x-1)(x n+x n-1+x n-2+… x3+x2+x+1)=;
(2)请利用上面的结论计算:
①(-2)50+(-2)49+(-2)48+…+(-2)+1
②若 x1007+x1006+…+x3+x2+x+1=0,求 x3024 的值。

23、请认真观察图形,解答下列问题:
(1)根据图1 中条件,试用两种不同的方法表示两个阴影图形的面积;
方法1:
方法2:
(2)从中你能发现什么结论?请用等式表示出来:
(3)利用(2)中结论解决下面的问题,如图 2,两个正方形边长分别为 a,b,如果 a+b =10,ab=21,求阴影部分的面积;。

相关文档
最新文档