2018中考数学专题复习几何旋转综合题练习

合集下载

2018年中考数学-----几何综合题汇总3

2018年中考数学-----几何综合题汇总3

2018年中考数学-----几何综合题汇总31.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:①当α=0°时,= ;②当α=180°时,= .(2)拓展探究:试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决:当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.2.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF 与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC 的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE﹣CF).3.如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.4.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.5.【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF;试证明:AB=DB+AF。

天津市2018届中考数学复习《旋转问题》专项训练有答案

天津市2018届中考数学复习《旋转问题》专项训练有答案

天津市2018年中考数学题型专项训练:旋转问题1.如图,在平面直角坐标系中,已知点A 的坐标为(0,2),△A B O 为等边三角形,P是x 轴上的一个动点(不与O 点重合),将线段A P 绕A 点按逆时针方向旋转60°,P 点的对应点为点Q . (Ⅰ)求点B 的坐标;(Ⅱ)当点P 在x 轴负半轴运动时,求证:∠A B Q =90°;(Ⅲ)连接O Q ,在点P 运动的过程中,当O Q 平行A B 时,求点P 的坐标.图① 图② 第1题解图2.在直角坐标系中,O A =C D ,O B =O D ,C D ⊥x 轴于D ,E 、F 分别是O B 、O D 中点,连接E F 交A C 于点G .(Ⅰ)如图①,若点A 的坐标为(-2,0),S △O C D =5,求点B 的坐标; (Ⅱ)如图②,当O B =2O A 时,求证:点G 为A C 的中点;(Ⅲ)如图③,当O B >2O A ,△A B O 绕原点O 顺时针旋转α(0°<α<45°),(Ⅱ)中的结论是否还成立,若成立,请证明,若不成立,请说明理由.∵O B=O D,O E=E B,O F=D F,∴O E=D F,∵∠A O E=∠F D C,O A=C D,∴△A O E≌△C D F,∴A E=C F=C H,∠A E O=∠C F D,∵O E=O F,∴∠O E F=∠O F E,∵∠A E G=∠A E O+∠O E F,∠C H G=180°-∠C H F=180°-∠C F H=180°-(180°-∠O F E-∠C F D)=∠O F E+∠C F D,∴∠A E G=∠C H G,∵∠A G E=∠C G H,∴△A E G≌△C H G,∴A G=C G,即点G为A C的中点.图①图②第2题解图3.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线B C经过点B(-8,6),C(0,6),将四边形O A B C绕点O按顺时针方向旋转角度α得到四边形O A′B′C′,此时边O A′与边B C交于点P,边B′C′与B C的延长线交于点Q,连接A P.(Ⅰ)求证:四边形O A B C是矩形;(Ⅱ)在旋转过程中,当∠P A O=∠P O A,求P点坐标.(Ⅲ)在旋转过程中,当P为线段B Q中点时,连接O Q,求△O P Q的面积.第3题图(Ⅰ)证明:∵点A的坐标为(-8,0),点B(-8,6),C(0,6),∴∠C O A=∠O A B=∠B=90°,∴四边形O A B C是矩形.(Ⅱ)解:如解图①,过点P作P E⊥A O于点E,∵∠P A O=∠P O A,∴P A=P O,∵P E⊥A O,∴A E=E O=4,∴P(-4,6);(Ⅲ)解:如解图②,在R t △O C Q 和R t △O C 'Q 中,CO COOQ OQ⎧⎨==,2244图① 图② 第3题解图4.如图,在平面直角坐标系中A (3,0),B (0,1)P O 、P A 、P B ,将△A B 绕着点A 顺时针旋转(Ⅰ)求点B ′的坐标;(Ⅱ)当△O P A 与△A P 满足什么条件时,P O +小值;(Ⅲ)试直接写出(Ⅱ)中的点P 坐标.解:(Ⅰ)∵A (3,0),B (01), ∴A B =2,∠B A O =30°,∵将△A B P 绕着点A 顺时针旋转60°得到△∴A B ′=2,∠B ′A O =90°,∴B ′(3,2);(Ⅱ)由旋转可得,△A P ′是等边三角形, ∴P P ′=P A ,又∵P ′B ′=P B ,∴P O +A +P B =P O +P P ′+P ′B ∴如解图①,当O 、P 、P ′、B ′四点共线时,P O ∴当∠O P A =∠A P B =∠A P ′B ′=120°时,P O +P A此时,P O +P A +P B =O B ′=22 2(3) =7;(Ⅲ)如解图②,将(Ⅱ)中的△O P B 绕着点O 逆时针旋转60°得到△O B ″P ″,则∠B O B ″=60°,O B ″=O B =1∴点B ″的坐标为(-32,12),由(Ⅱ)可知A 、P 、P ″、B ″四点共线, ∴点P 为O B ′与A B ″的交点,根据A 、B ″两点的坐标可得直线A B ″的解析式为y =-39x +13,根据B ′的坐标可得直线O B ′的解析式为y =233x ,联立方程组,解得P (37,27).图① 图② 第4题解图5.如图,将两块直角三角板摆放在平面直角坐标系中,有∠C O D =∠A B O =90°,∠O C D =45°,∠A O B =60°,且A O =C D =8.现将R t △A O B 绕点O 逆时针旋转,旋转角为β(0°≤β≤180°).在旋转过程中,直线C D 分别与直线A B ,O A 交于点F ,G . (Ⅰ)当旋转角β=45°时,求点B 的坐标; (Ⅱ)在旋转过程中,当G F =A F ,求β的值; (Ⅲ)在旋转过程中,当∠B O D =60°时,求直线A B 的解析式.解:(Ⅰ)如解图①,过点B 作B H ⊥x 轴于点H , 在R t △A O B 中,∠A O B =60°,O A =8,∴O B =12O A =4,当β=45°时,即∠B O C =45°,图①图②图③图④当点D落在△A O′B′内部(包括边界第6题图解:(Ⅰ)∵点A的坐标是(3,0),B的坐标是(0,-4),∴O A=3,O B=4.∵C D∥A B,∴△A O B∽△C O D,4 Array第6题解图7.如图,O A B C是一张放在平面直角坐标系中的矩形纸片,O为坐标原点,点A在x轴上,点C在y轴上,O A=9,O C=15,将矩形纸片O A B C绕O点顺时针旋转90°得到矩形O A1B1C1.将矩形O A1B1C1折叠,使得点B1落在x轴上,并与x 轴上的点B2重合,折痕为A1D.(Ⅰ)求点B2的坐标;(Ⅱ)求折痕A1D所在直线的解析式;(Ⅲ)在x轴上是否存在点P,使得∠B P B1为直角?若存在,求出点P的坐标;若不存在,请说明理由.的坐标(直接写出结果即可3图①图②图③第8题解图9.在平面直角坐标系中,点A(-2,0),B(2,0),C(0,2),点D,点E分别是A C,B C的中点,将△C D E绕点C逆时针旋转得到△C D′E′,旋转角为α,连接A D′,B E′. (Ⅰ)如图①,若 0°<α<90°,当A D′∥C E′时,求α的大小;(Ⅱ)如图②,若 90°<α<180°,当点D′落在线段B E′上时,求s i n∠C B E′的值; (Ⅲ)若直线A D′与直线B E′相交于点P,求点P的横坐标m的取值范围.第9题图解:(Ⅰ)如解图①,∵A(-2,0),B(2,0),C(0,2),∴OA=OB=OC,∴∠ACB=90°,∵△C D′E′是△C D E旋转得到的,图① 图②图③ 图④ 第9题解图10.如图,在平面直角坐标系中,正方形A B C D 的顶点A 、B 、C 、D 的坐标分别为(3,0)、(0,3)、(-3,0)、(0,-3),点M 为A B 上一点,A M :B M =2:1,∠E M F 在A B 的下方以M 为中心旋转且∠E M F =45°,M E 交y 轴于点P ,M F 交x 轴于点Q .(Ⅰ)求点M 的坐标;(Ⅱ)设A Q 的长为y ,B P 的长为x .求y 与x 的函数关系式;(Ⅲ)当P 为O B 的中点时,求四边形O Q M P 的面积.图①图②图③第10题解图。

2018中考数学真题分类汇编解析版-23.旋转

2018中考数学真题分类汇编解析版-23.旋转

一、选择题1.(2018·济宁,5,3分)6. (2018·济宁,6,3分)如图,在平面直角坐标系中,点A 、C 在x 轴上,点C 的坐标为(-1,0),AC =2,将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(2,2)B .(1,2)C .(-1,2)D .(2,-1)答案:A .解析:如答图所示,先根据题意画出△ABC 绕点C 顺时针旋转90°后的图形△A 1B 1C .因为C 的坐标为(-1,0),A 1C =AC =2,所以点A 1的坐标为(-1,2);再画出将△A 1B 1C 向右平移3个单位长度后的图形△A 2B 2C 2,所以点A 2的坐标为(2,2).2.(2018·绵阳,5,3分) 下列图形是中心对称图形的是A30B C D答案:D ,解析:根据中心对称图形的定义:整个图形绕着某个点旋转180°后能够与原来的图形重合,这个图形就是中心对称图形。

进行逐项识别. 3.(2018·绵阳,7,3分) 在平面直角坐标系中,以原点为对称中心,把点A (3,4)逆时针旋转90°,得到点B ,则点B 的坐标为 A .(4,-3) B .(-4,3) C .(-3,4) D .(-3,-4)答案:B ,解析:如下图,过点A 作AD ⊥x 轴,垂足为D ,过点B 作BE ⊥x 轴,垂足为E ,根据旋转的特征可证△AOD ≌△OBE ,所以BE =OD =3,OE =AD =4, 再根据B 点在第二象限,所以B (-4,3).xyBA1234–1–2–3–4–512344.(2018·攀枝花,5,3分)下列平面图形中,既是中心对称图形,又是轴对称图形的是( ) A .菱形 B .等边三角形 C .平行四边形 D .等腰梯形4.A ,解析:这里等边三角形和等腰梯形只是轴对称图形,平行四边形只是中心对称图形,只有菱形既是中心对称图形又是轴对称图形,故选A .O yx(第6题图)CAB(第6题答图)OyxCA B1B 1A 2A 2B 2C5.(2018·金华市,9,3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是(▲)A.55°B.60°C.65°D.70°答案.C,解析:根据旋转的性质:旋转前后两个图形全等;对应点与旋转中心所连线段的夹角等于旋转角.直角三角形的性质和三角形外角性质:三角形的外角等于不相邻的两个内角的和.由于旋转得出AC=CE,∠ACE=90°,即∠E=45°,所以∠ADC=∠ACB+∠E=65°.6.(2018·南充,2,3分)下列图形中,即是轴对称图形又是中心对称图形的是A.扇形B.正五边形C.菱形D.平行四边形答案:C,解析:菱形即是轴对称图形,又是中心对称图形,扇形、正五边形是轴对称图形,平行四边形是中心对称图形.7.(2018·德州,12,4)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB,BC于D,E两点,连接DE,给出下列四个结论:①OD=OE;②ODE BDES S=V V;③四边形ODBE的面积始终等于433;④△BDE的周长的最小值为6.上述结论正确的个数是()A.1 B.2 C.3 D.4答案.C,解析:连接OB,OC.∵O是△ABC的中心,∴OB=OC,∠OBA=∠OCB=30°,∠BOC=120°.∵∠FOG=120°,∴∠DOB=∠EOC,∴△DOB≌△EOC,∴OD=OE,故①正解;四边ODBE的面积=△OBC的面积=111434233323ABCS=⨯⨯⨯=,故③正确;当D,E分别是AB,BC边中点时,ODE BDES S≠V V,DE不能平分四边ODBE的面积,故②不正确;∵△DOB≌△EOC,∴BD=CE,∴△BDE 的周长=BD+DE+EB=CE+DE+EB=BC+DE,∴当DE最小时,△BDE的周长取得最小值,当CE越小时,DE越接近于BC长,当D,E分别是AB,BC边中点时,DE取得最小,此时△BDE的周长是6,故④正确.8.(2018·山东泰安,11,3分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6) B.(-2.8,-3.6)ABDCEC .(3.8,2.6)D .(-3.8,-2.6)答案.A ,解析:根据图形中点A 与其平移后的对应点A 1的坐标位置,可知△ABC 向左平移4个单位,再向下平移5个单位,所以P (1.2,1.4)平移后对应点P 1的坐标为(-2.8,-3.6),则其关于原点成中心对称的点P 2的坐标为(2.8,3.6).9.(2018·达州市,3,3分)下列图形中是中心对称图形的是( ).DC.B.A.答案:B ,解析:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心 .根据中心对称图形的定义,得图形B 是中心对称图形.故选B. 10.(2018·成都,4,3分)在平面直角坐标系中,点P (-3,-5)关于原点对称的点的坐标是( ) A .(3,-5) B .(-3,5) C. (3,5) D .(-3,-5) C 解析:点P (x ,y )关于原点的对称点坐标是P ′(-x ,-y ),所以点P (-3,-5)关于原点对称点坐标是(3,5). 11.(2018·台州市,2,4分)在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )答案:D ,解析:根据中心对称图形的定义,即在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.12.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90到ABF ∆的位置,若四边形AECF 的面积为25,2DE =,则AE 的长为( )A .5B .23C .7D .29 【答案】DCAPB A 1B 1C 1 xyO【解析】∵把△ADE 顺时针旋转△ABF 的位置,∴四边形AECF 的面积等于正方形ABCD 的面积等于25,∴AD=DC=5,∵DE=2,∴Rt △ADE 中,AE=2229AD DE +=.故选D. 13.(2018·衡阳市,3题,3分)下列生态环保标志中,是中心对称图形的是()答案.B ,解析:本题考查的是中心对称图形的定义,把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.A 、C 、D 旋转后不能重合,不是中心对称图形,所以A 、C 、D 错误;B 旋转后能重合,是中心对称图形,故B 正确,故选B . 14.(2018·聊城市,11,3分) 如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .912(,)55- B .129(,)55- C .1612(,)55- D .1216(,)55- 答案.A ,解析:过点C 1作C 1D ⊥x 轴,垂足为D.由题意得OA 1=OA=5,A 1C= 221OA OC -=4,∠A 1OC=∠C 1OD ,所以△A 1OC ∽△C 1OD ,所以1111A O A C OC C O OD C D ==,即15343OD C D ==,解得OD= 95,C 1D= 125,因为点C 1在第二象限,所以C 1912(,)55-,故选A. 15.(2018·长沙市,5,3分)下列四个图形中,既是轴对称图形又是中心对称图形的是A 、B 、C 、D 、答案.A ,解析:A 既是轴对称图形又是中心对称图形,B 是轴对称图形不是中心对称图形,C 既不是轴对称图形也不是中心对称图形,D 是中心对称图形不是轴对称图形. 16.(2018·盐城,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .答案:D ,解析:A 是中心对称图形,但不是轴对称图形;B 是轴对称图形,但不是中心对称图形;C 是轴对称图形,但不是中心对称图形;D 既是轴对称图形,又是中心对称图形. 17.(2018·天津市,4,3分) 下列图形中,可以看作是中心对称图形的是( )A .B .C .D .答案.A ,解析:如图一个图形绕某个点旋转180°后能与自身重合,那么这个图形叫做中心对称图形.根据中心对称图形的定义可知选项A 中的图形是中心对称图形. 18.(2018·广东,5,3分)下列所述图形中,是轴对称图形但不是..中心对称图形的是( ) A .圆B .菱形C .平行四边形D .等腰三角形答案:D ,解析:圆和菱形都是轴对称图形,也是中心对称图形,所以A 、B 都不对;平行四边形是中心对称图形但不是轴对称图形,所以C 不对。

中考数学——初中数学 旋转的综合压轴题专题复习含详细答案

中考数学——初中数学 旋转的综合压轴题专题复习含详细答案

中考数学——初中数学旋转的综合压轴题专题复习含详细答案一、旋转1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题2.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3125;(4)BD=102114. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB =22AC BC -=6.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE =22AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD =125.故答案为125. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =22AM ME +=57,由(2)可知DB AE =223,∴BD =2114. 故答案为210或2114.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.3.如图,矩形OABC 的顶点A 在x 轴正半轴上,顶点C 在y 轴正半轴上,点B 的坐标为(4,m )(5≤m≤7),反比例函数y =16x(x >0)的图象交边AB 于点D . (1)用m 的代数式表示BD 的长;(2)设点P 在该函数图象上,且它的横坐标为m ,连结PB ,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16,x∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.4.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.5.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)(1)当OC∥AB时,旋转角α=度;发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.应用:(3)当A、C、D三点共线时,求BD的长.拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC的最大值与最小值.【答案】(1)60或240;(2) AC=BD,理由见解析;(3)13+1 2或1312-;(4)PC的最大值=3,PC的最小值=3﹣1.【解析】分析:(1)如图1中,易知当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.(2)结论:AC=BD.只要证明△AOC≌△BOD即可.(3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.详解:(1)如图1中,∵△ABC是等边三角形,∴∠AOB=∠COD=60°,∴当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.故答案为60或240;(2)结论:AC=BD,理由如下:如图2中,∵∠COD=∠AOB=60°,∴∠COA=∠DOB.在△AOC和△BOD中,OA OBCOA DOBCO OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△BOD,∴AC=BD;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=12,OH3Rt△AOH中,AH22OA OH-13,∴BD=AC=CH+AH113+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为131+或131-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.6.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.7.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =AD +AF =DF =DE ,即AD +BE =DE ;(2)解:如图②,在AD 上截取DF =DE .∵CD ⊥AE ,∴CE =CF ,∴∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =∠DCE +∠DCF =90°,∴∠BCE +∠BCF =∠ECF =90°.又∵∠ACB =90°,∴∠ACF +∠BCF =90°,∴∠ACF =∠BCE .在△ACF 和△BCE 中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD =AF +DF =BE +DE ,即AD =BE +DE ;故答案为:AD =BE +DE .(3)∵∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =45°+45°=90°,∴△ECF 是等腰直角三角形,∴CD =DF =DE =6.∵S △BCE =2S △ACD ,∴AF =2AD ,∴AD=112+×6=2,∴AE =AD +DE =2+6=8.点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.8.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3② 【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O , ∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=V.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.9.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△C P′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.10.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.11.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB 的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.12.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD 的关系式为∵图象过点B (0,4),D (4,)∴,解得∴直线BD 的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.13.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。

2018年中考数学专题训练 几何题中用旋转构造“手拉手”模型

2018年中考数学专题训练 几何题中用旋转构造“手拉手”模型

中考专题复习——几何题用旋转构造“手拉手”模型一、教学目标:1.了解并熟悉“手拉手模型”,归纳掌握其基本特征.2.借助“手拉手模型”,利用旋转构造全等解决相关问题.3.举一反三,解决求定值,定角,最值等一类问题. 二、教学重难点:1.挖掘和构造“手拉手模型”,学会用旋转构造全等.2.用旋转构造全等的解题方法最优化选择. 三、教学过程: 1.复习旧知师:如图,△ABD ,△BCE 为等边三角形,从中你能得出哪些结论?生:(1)△ABE ≌△DBC (2)△ABG ≌△DBF (3)△CFB ≌△EGB (4)△BFG 为等边三角形(5)△AGB ∽△DGH (6)∠DHA =60°(7)H ,G ,F ,B 四点共圆 (8)BH 平分∠AHC …… 师:我们再来重点研究△ABE 与△DBC ,这两个全等的三角形除了对应边相等,对应角相等外,还有什么共同特征呢?生:它们有同一个字母B ,即同一个顶点B .师:我们也可以把△DBC 看作由△ABE 经过怎样的图形运动得到? 生:绕点B 逆时针旋转60°得到.2.引入新课师:其实我们可以给这两个全等的三角形赋予一个模型,叫“手拉手模型”,谁可以将这个模型的特征再做进一步的简化归纳呢? 生:对应边相等.师:我们可以称之为“等线段”. 生:有同一个顶点.师:我们可以称之为“共顶点”.师:等线段,共顶点的两个全等三角形,我们一般可以考虑哪一种图形运动? 生:旋转.师: “手拉手模型”可以归纳为:等线段,共顶点,一般用旋转.H GFEDC B A3.小题热身图1 图2 图31.如图1,△BAD中,∠BAD=45°,AB=AD,AE⊥BD于E,BC⊥AD于C,则AF=____BE.2.如图2,△ABC和△BED均为等边三角形,ADE三点共线,若BE=2,CE=4,则AE=______.3.如图3,正方形ABCD中,∠EAF=45°,BE=3,DF=5,则EF=_______.师:我们来看第1,第2题,这里面有“手拉手模型”吗?请你找出其中的“等线段,共顶点”.生:题1中,等线段是AC,BC,共顶点是C,△ACF绕点C逆时针旋转90°得△BCD.题2中,等线段是AB,BC,共顶点是B,△ABD绕点D顺时针旋转60°得△CBE.师:我们再来看第3题,这里有“手拉手模型”吗?生:没有.师:那其中有没有“等线段,共顶点”呢?生:等线段是AD,AB,共顶点是A.师:我们可否利用旋转来构造“手拉手模型”呢?生:将AE旋转,绕点A逆时针旋转90°.师:为什么是逆时针旋转90°,你是如何思考的?生:我准备构造一个和△ABE全等的三角形,AB绕点A逆时针旋转90°即为AD,那么将AE逆时针旋转90°可得AG,连接GD,证明全等.师:说的不错,谁能再来归纳一下,借助“手拉手模型”,用旋转构造全等的方法吗?生:先找有没有“等线段,共顶点”,再找其中一条“共顶点”的线段,将其旋转.师:旋转角度如何确定,方向怎么选择?生:选择其中一个三角形,将“共顶点”的线段旋转.旋转角为两条“等线段”间的夹角.方向应与所选择的起始“等线段”旋转到另一条“等线段”时的方向一致.师:非常棒,可以说,你已经掌握了这节课的精髓.但是,很多题目中只是隐含了“手拉手模型”的一些条件,剩余的需要我们自己去构造,可以如何构造呢?步骤1:先找有没有“等线段,共顶点”.步骤2:选择其中一个三角形,将其中经过“共顶点”的线段旋转.步骤3:旋转方向与这个三角形的“等线段”旋转到另一条“等线段”的方向一致,旋转角为“等线段”间的夹角.师:这道题还有一个要注意的地方,你发现了吗?生:连接GD后,要证明G,D,F三点共线.4.例题精讲例1:等边△ABC中,AD=4,DC=3,BD=5,求∠ADC度数.师:这里有没有隐含的“手拉手模型”?要构造全等,该怎样旋转?生:将△ADC绕点A顺时针旋转60°.师:你是怎么想的,还有其他做法吗?生:我发现AB=AC,A为“共顶点”,我选择的旋转线段是AD,因为AC绕点A顺时针旋转60°到AB,所以△ADC也要绕点A顺时针旋转60°.也可将△ADB绕点A逆时针旋转60°.【解答】将AD绕点A顺时针旋转60°到AE,连接BE,DE.则△ADE也为等边三角形.易证△AEB≌△ADC,∴BE=DC=4,根据勾股定理逆定理,可证∠BED=90°,则∠AEB=∠ADC=150°例2:如图,△ABO和△CDO均为等腰直角三角形,AOB =COD =.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.师:由于线段分散,如何通过图形变换,使这些线段能构成一个三角形?生:将OD绕点O逆时针旋转90°至OE,即可使OC,OD共线,再通过证明确定△BCE即是以AD、BC、OC+OD的长度为三边长的三角形.【解答】如图,将OD绕点O逆时针旋转90°至OE,连接BE.易证△OAD≌△OBE,AD=BE,∴△BCE即是以AD、BC、OC+OD长度为三边长的三角形.又∵OC=OE,∴S△BCE=2S△BOC=2.EAOBCDDC BOABBDCBA5.自主练习1.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则BD 的长为 _________.师:请找出隐含的“手拉手模型”,并写出解决方法.生:“等线段”是CA 和BA ,“共顶点”是A .方法是将AD 绕点A 顺时针旋转90°.2.如图,在△ABC 中,BC =2,AB =2,以AC 为边,向外做正方形ACDE ,连接BE ,则BE 最大值为_________.师:请找出隐含的“手拉手模型”,并写出解决方法. 生:“等线段”是CA 和EA ,“共顶点”是A . 方法是将AB 绕点A 逆时针旋转90°.师:你为何要逆时针旋转,你准备旋转哪个三角形?生:△ABC ,因为AC 是逆时针旋转90°到AE ,所以AB 也绕点A 逆时针旋转90°. 3.如图,点A 在⊙B 上,AB =1,BC =2,△ACD 是等边三角形,求△BCD 面积的最大值.师:请找出隐含的“手拉手模型”,并写出解决方法. 生:“等线段”是CA 和CD ,“共顶点”是C . 方法是将CA 绕点C 逆时针旋转60°.附:自主练习解答1. 如图,将AD 绕点A 顺时针旋转90°至AE ,易证△EAC ≌△DAB ,可得CE =BD ,又∵∠EDA =45°,∴∠CDE =90°,CD =3,DE =42,则Rt △CDE 中,CE 2=CD 2+DE 2=32+ (42)2=41 ∴CE =41,∴DB =412.如图,将AB 绕点A 逆时针旋转90°至AF ,易证△EAF ≌△CAB ,可得EF =BC =2.Rt △BAF 中,AF =AB =2,∴BF =2.由三角形三边关系易知,BE ≤EF +BF ,∴BE 最小值为4.3.如图,将CB 绕点C 逆时针旋转60°至CE ,连接DE ,过点E 作EF ⊥CBEDCBAADC BDG EFABCDFEBCDA于F ,过点D 作DG ⊥CB 于G .易证△CBA ≌CED , 则DE =1,EF =3,过E 作DG 边上的高,可证DG <DE +EF .当D ,E ,F 三点共线时,DG =DE +EF .即高的最大值为1+3, S △BCDmax =12×2×(1+3)=1+3FED CBA。

中考数学—旋转的综合压轴题专题复习含答案

中考数学—旋转的综合压轴题专题复习含答案

一、旋转真题与模拟题分类汇编(难题易错题)1.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF.(1)求证:四边形ABEF是菱形;(2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.2.(探索发现)如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形.小明是这样想的:(1)请参考小明的思路写出证明过程;(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________;(理解运用)如图,在ABC ∆中,AD BC ⊥于点D .将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC ,交于点G .(3)判断四边形ADGF 的形状,并说明理由;(拓展迁移)(4)在(3)的前提下,如图,将AFE ∆沿AE 折叠得到AME ∆,连接MB ,若6AD =,2BD =,求MB 的长.【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)13【解析】【分析】(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论.【详解】(1)证明:∵ABC ∆是等边三角形,∴AB BC AC ==.∵ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,∴60CAE =︒,AC AE =.∴ACE ∆是等边三角形.∴AC AE CE ==.∴AB BC CE AE ===.∴四边形ABCE 是菱形.(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=.(3)四边形ADGF 是正方形.理由如下:∵Rt ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴AF AD =,90DAF ∠=︒.∵AD BC ⊥,∴90ADC DAF F ∠=∠=∠=︒.∴四边形ADGF 是矩形.∵AF AD =,∴四边形ADGF 是正方形.(4)如图,连接DE .∵四边形ADGF 是正方形,∴6DG FG AD AF ====.∵ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=.∵将AFE ∆沿AE 折叠得到AME ∆,∴MAE FAE ∠=∠,AF AM =.∴BAD EAM ∠=∠.∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠.∵AF AD =,∴AM AD =.在BAM ∆和EAD ∆中,AM AD BAM DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAM EAD SAS ∆≅∆. ∴222246213BM DE EG DG ==+=+=.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.3.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB 与DC 重合,得到折痕EF ,把纸片展平;②沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处,再折出PB 、PC ,最后用笔画出△PBC(图1).(1)求证:图1中的PBC 是正三角形: (2)如图2,小明在矩形纸片HIJK 上又画了一个正三角形IMN ,其中IJ=6cm ,且HM=JN .①求证:IH=IJ②请求出NJ 的长; (3)小明发现:在矩形纸片中,若一边长为6cm ,当另一边的长度a 变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a 的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3<a <3,a >3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC ,PB=CB ,得出PB=PC=CB 即可;(2)①利用“HL”证Rt △IHM ≌Rt △IJN 即可得;②IJ 上取一点Q ,使QI=QN ,由Rt △IHM ≌Rt △IJN 知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x ,则IQ=QN=2x 、3,根据IJ=IQ+QJ 求出x 即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可. (1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB 与DC 重合,得到折痕EF∴PB=PC∵沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处∴PB=BC∴PB=PC=BC∴△PBC 是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ=⎧⎨=⎩ ∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,22=3QN NJ -x ,∵IJ=6cm ,∴3,∴33cm ).(3)分三种情况:①如图:设等边三角形的边长为b,则0<b≤6,则tan60°=3=2ab,∴a=32b,∴0<b≤632=33;②如图当DF与DC重合时,DF=DE=6,∴a=sin60°×DE=63=33,当DE与DA重合时,a=643sin603==︒,∴33<a<43;③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=643cos303==︒∴a>43点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.4.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB 交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE,见解析;③PC2=10332+.【解析】【分析】(1)由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB =CD,即可解题.(2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.②作BF∥DE,交EP延长线于点F,连接CE、CF,易证△FBP≌△EDP(SAS),结合已知得BF=DE=AE,再证明△FBC≌△EAC(SAS),可得△EFC是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2=10+求出2212PC EC == 【详解】(1)解:∵CD ∥AB ,∴∠C =∠B ,在△ABP 和△DCP 中, BP CP APB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ABP ≌△DCP (SAS ),∴DC =AB .∵AB =200米.∴CD =200米,故答案为:200.(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图1,延长EP 交BC 于F ,同(1)理,可知∴△FBP ≌△EDP (SAS ),∴PF =PE ,BF =DE ,又∵AC =BC ,AE =DE ,∴FC =EC ,又∵∠ACB =90°,∴△EFC 是等腰直角三角形,∵EP =FP ,∴PC =PE ,PC ⊥PE .②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,同①理,可知△FBP ≌△EDP (SAS ),∴BF =DE ,PE =PF =12EF , ∵DE =AE ,∴BF =AE ,∵当α=90°时,∠EAC =90°,∴ED ∥AC ,EA ∥BC∵FB ∥AC ,∠FBC =90,∴∠CBF =∠CAE ,在△FBC 和△EAC 中,BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△FBC ≌△EAC (SAS ),∴CF =CE ,∠FCB =∠ECA ,∵∠ACB =90°,∴∠FCE =90°,∴△FCE 是等腰直角三角形,∵EP =FP ,∴CP ⊥EP ,CP =EP =12EF . ③如解图3,作BF∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150°同②可得△FBP ≌△EDP (SAS ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP =22CE , 在Rt △AHE 中,∠EAH =30°,AE =DE =1,∴HE =12,AH =3, 又∵AC =AB =3, ∴CH =3+32, ∴EC 2=CH 2+HE 2=1033+∴PC 2=2110332EC +=【点睛】本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.5.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.6.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5.(Ⅲ3033430334S -+≤≤. 【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(Ⅲ)303343033444S -+≤≤. 详解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC 中,有222AD AC DC =+,∴22DC AD AC =- 22534=-=.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒. 又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒,∴Rt ADB Rt AOB ≌.②由ADB AOB ≌,得BAD BAO ∠=∠.又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC 中,有222AH AC HC =+,∴()22235t t =+-.解得175t =.∴175BH =. ∴点H 的坐标为17,35⎛⎫ ⎪⎝⎭.(Ⅲ)3033430334S -+≤≤. 点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.7.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)【解析】【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.【详解】解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ;(2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形,∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即∠CAD=∠EAB ,在△CAD 与△EAB 中,AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩=== , ∴△CAD ≌△EAB ,∴CD=BE ;②∵线段BE 长的最大值=线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,∴最大值为BD+BC=AB+BC=4;(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,则△APN 是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴2,∴22,∴P(22).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.∆绕点C顺时针旋转一定8.如图,四边形ABCD中,45∠=∠=,将BCDABC ADC∆.角度后,点B的对应点恰好与点A重合,得到ACE(1)判断ABC ∆的形状,并说明理由;(2)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.【答案】(1)ABC ∆是等腰直角三角形,理由详见解析;(222【解析】【分析】(1)利用旋转不变性证明A4BC 是等腰直角三角形.(2)证明ACDE 是等腰直角三角形,再在Rt △ADE 中,求出AE 即可解决问题.【详解】解:(1)ABC ∆是等腰直角三角形.理由:∵BC CA =,∴45CBA CAB ∠=∠=,∴90ACB ∠=,∴ACB ∆是等腰直角三角形.(2)如图:由旋转的性质可知:90DCE ACB ∠=∠=,3CD CE ==,BD AE =, ∴32DE =45CDE CED ∠=∠=,∵45ADC ∠=,∴454590ADE ∠=+=, ∴()222223222AE AD DE =+=+=∴22BD AE ==【点睛】本题考查旋转变换,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型。

2018年中考数学总复习经典(几何)试题(含答案)

2018年中考数学总复习经典(几何)试题(含答案)

中考数学总复习经典题(几何)(二)几何试题1、 如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S=2B .S=2.4C .S=4D .S 与BE 长度有关2、正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图4所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为: (A)10 (B)12 (C)14 (D)163、如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,2EF BE =,则AFC S =△ 2cm .4、 如图,在△ABC 中, ο70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ( )A. ο30 B. ο35 C. ο40 D. ο50 5、如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆1的半径)得图形34,,,,n P P P L L ,记纸板n P 的面积为n S , 试计算求出2S = ;3S = ;并猜想得到1n n S S --= ()2n ≥。

6、如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点,18AD BC PEF =∠=o ,,则PFE ∠的度数是 .(第16题)CFD BE A P (第6题)ADCEF GB 3题图 D ABRP F CGK图4E8题10题 12题7、如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180o得到BDE △,则DE = cm ,ABC △的面积= cm 2.8、如图,已知梯形ABCD ,AD BC ∥,4AD DC ==,8BC =,点N 在BC 上,2CN =,E 是AB 中点,在AC 上找一点M 使EM MN +的值最小,此时其最小值一定等于( ) A .6B .8C .4D .439、将一副直角三角板按图示方法放置(直角顶点重合),则AOB DOC ∠+∠= o.10、已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP =1,PB = 5 .下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 ;⑤S 正方形ABCD =4+ 6 .其中正确结论的序号是()A .①③④B .①②⑤C .③④⑤D .①③⑤11、如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:412、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,将腰CD 以D 为中心逆时针旋转90°至ED ,AE 、DE ,△ADE 的面积为3,则BC 的长为 . 13、如图,四边形OABC 为菱形,点B 、C 在以点O 为为圆心的上,若OA = 3,∠1 = ∠2,则扇形OEF 的面积为_________.14、 如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C.若∠AOB = 60o,OC = 4,则点P 到OA 的距离PD 等于__________. 15、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B .76 C .256D .2B AC D O P (第14题) AD B EC (第15题) ABE G CD(第7题)C D AO B30°45°A D EM(第11题(第13题)O A B C F 1 2 E E D(第20题)16、如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( )A .3B .4C .6D .917、如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( )A .a k 2B .a k 3C .2k aD .3ka18、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是19、如图,把矩形纸条ABCD 沿EF 、GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD 的边BC 长为 . 20、.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( )A. 2.5ABB. 3ABC. 3.5ABD. 4AB21、如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .22、如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= __________。

2018初三数学中考复习图形的旋转专题综合练习题含答案

2018初三数学中考复习图形的旋转专题综合练习题含答案

2018 初三数学中考复习图形的旋转专题综合练习题1. 图 1 和图 2 中全部的小正方形都全等,将图 1 的正方形放在图 2 中①②③④的某一地点,使它与本来 7 个小正方形构成的图形是中心对称图形,这个地点是( C )A.①B.②C.③D.④2.以下图案中,中心对称图形是( D )A.①②B.②③C.②④D.③④3.如图,将 Rt△ABC绕直角极点 C顺时针旋转 90°,获得△ A′B′C,连接AA′,若∠ 1=25°,则∠ BAA′的度数是 ( D )A.55°B.60°C.65°D.70°4.如图,用一个半径为 5 cm的定滑轮带动重物上涨,滑轮上一点 P 旋转了 108°,假定绳子 ( 粗细不计 ) 与滑轮之间没有滑动,则重物上涨了( C )A.π cm B.2π cm C.3π cm D.5π cm5.如图,将△ ABC绕点 B 顺时针旋转 60°得△ DBE,点 C的对应点 E 恰巧落在AB延伸线上,连接 AD.以下结论必定正确的选项是 ( C )A.∠ ABD=∠ E B.∠ CBE=∠CC.AD∥BC D.AD=BC6.若点 M(3,a-2) ,N(b,a) 对于原点对称,则a+b=__-2__.7.如图,直线 a,b 垂直订交于点 O,曲线 c 对于点 O成中心对称,点 A 的对称点是点 A′, AB⊥a于点 B,A′D⊥b 于点 D,若 OB= 3,OD=2,则暗影部分的面积之和为 __6__.8.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm,将△AOB绕极点 O,按顺时针方向旋转到△A1OB1处,此时线段 OB1与 AB的交点 D 恰巧为 AB 的中点,则线段 B1 D=__1.5__cm.9.如图,半径为 5 的半圆的初始状态是直径平行于桌面上的直线b,而后把半圆沿直线 b 进行无滑动转动,使半圆的直径与直线 b 重合为止,则圆心O 运动路径的长度等于 __5π__.10.如图,把正方形铁片 OABC置于平面直角坐标系中,极点 A 的坐标为 (3 ,0) ,点P(1,2) 在正方形片上,将正方形片其右下角的点按方向挨次旋 90°,第一次旋至①地点,第二次旋至②地点⋯,正方形片旋 2 017 次后,点 P 的坐__(6_053,2)__ .11.如,在平面直角坐系中,△ABC各点的坐分A(-2,-2) ,B(-4,- 1) ,C(-4,-4) .(1)作出△ ABC对于原点 O成中心称的△A1B1C1;(2)作出点 A 对于 x 的称点 A′,若把点 A′向右平移 a 个位度后落在△A1B1C1 的内部(不包含点和界),求a的取范.解: (1) 如所示,△ A1B1C1即所求.(2)∵点 A′坐 ( -2,2) ,∴若要使向右平移后的 A′落在△A1B1C1的内部, a 的取范 4<a<6.12.如,已知 AC⊥BC,垂足 C,AC=4,BC=3 3,将段 AC点 A 按逆方向旋60°,获得段 AD, DC,DB.(1)线段 DC=__4__;(2)求线段 DB的长度.解:作 DE⊥BC于点 E. ∵△ ACD是等边三角形,∴∠ ACD=60°. 又∵ AC⊥BC,∴∠D CE=∠ ACB-∠ ACD= 90°- 60°= 30°,13∴Rt△CDE中, DE=2DC=2,CE=DC· cos30°= 4×2=23,∴ BE=BC-CE=3 3-2 3= 3. ∴Rt△BDE中, BD=2222DE+BE= 2 +(3)= 7.13.已知△ ABC是等腰三角形, AB=AC.(1)特别情况:如图①,当 DE∥BC时,有 DB___=__EC.( 填“>”“<”或“=”)(2)发现研究:若将图①中的△ ADE绕点 A 顺时针旋转α(0 °<α<180°) 到图②地点,则 (1) 中的结论还建立吗?若建立,请赐予证明;若不建立,请说明原因.(3)拓展运用:如图③, P 是等腰直角三角形 ABC内一点,∠ ACB=90°,且 PB =1,PC=2,PA=3,求∠ BPC的度数.解:(2) 建立.证明:由(1) 易知 AD=AE,∴由旋转性质可知∠ DAB=∠ EAC.在△ DAB4 / 62018 初三数学中考复习图形的旋转专题综合练习题含答案AD=AE,和△ EAC中,∠DAB=∠ EAC,∴△ DAB≌△ EAC(SAS),∴ DB=EC.AB= AC,(3)如图,将△ CPB绕点 C顺时针旋转 90°得△ CEA,连接 PE,∴△CPB≌△ CEA,∴CE=CP =2,AE=BP=1,∠PCE=90°,∴∠ CEP=∠ CPE=45°. 在 Rt △PCE中,由勾股定理可得, PE= 222)22222=2,在△ PEA 中, PE=(2=8,AE=1=1,PA=32229. ∵PE+AE=AP,∴△ PEA是直角三角形,∴∠ PEA=90°,∴∠ CEA=135°.又∵△ CPB≌△ CEA,∴∠ BPC=∠ CEA=135°.14.如图,将等腰△ ABC绕极点 B逆时针方向旋转α到△ A1 BC1的地点,AB与 A1C1订交于点 D,AC与 A1C1,BC1分别交于点 E,F.①求证:△ BCF≌△ BA1D;②当∠ C=α时,判断四边形A1BCE的形状并说明原因.解:①证明:∵△ ABC是等腰三角形,∴ AB=BC,∠ A=∠ C.由旋转性质得A1B =A B=BC,∠A=∠ A1=∠ C,∠ A1BD=∠ CBC1,∴△ BCF≌△BA1D(ASA).②四边形 A1BCE是菱形.原因:∵∠ A1=∠ A,∠ADE=∠ A1DB,∴∠ AED=∠ A1 BD =α,∴∠ DEC=180°-α. ∵∠ C=α,∴∠ A1=α,∴∠ A1BC=360°-∠ A12018 初三数学中考复习图形的旋转专题综合练习题含答案-∠ C-∠ A1EC=180°-α,∴∠ A1=∠ C,∠A1 BC=∠ A1EC.∴四边形 A1BCE是平行四边形.∵ A1B=BC,∴四边形 A1BCE是菱形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何旋转综合题练习1、如图,已知ABC是等边三角形.(1)如图(1),点E在线段A B上,点D在射线C B上,且ED=EC.将BCE绕点C顺时针旋转60°至ACF , 连接E F.猜想线段A B,DB,AF之间的数量关系;(2)点E 在线段BA 的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF之间的数量关系;(3)请选择(1)或(2)中的一个猜想进行证明.第1 题图(1)第1 题图(2)2、如图1△,△ACB△、△AED 都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE 的中点(1)求证:MN⊥CE(2)如图2将△AED 绕A点逆时针旋转30°,求证:CE=2MN3、在等腰R t△ABC和等腰R△t△A1B1C1中,斜边B1C1中点O也是BC的中点。

(1)如图1,则AA1与C C1的数量关系是;位置关系是。

(2)如图2,△将△A1B1C1绕点O顺时针旋转一定角度,上述结论是否仍然成立,请证明你的结论。

(3)如图3,在(2)的基础上,直线AA1、CC1交于点P,设AB=4,则PB长的最小值是。

A A APB BAO图11C CBB1O图2CA1CBA图31C1O C1 B4、已知,正方形A BCD的边长为4,点E是对角线B D延长线上一点,AE=BD.△将△ABE绕点A顺时针旋转α度(0°<α<360°)得△到△AB′E′,点B、E的对应点分别为B′、E′(1)(1)(2)如图1,当α=30°时,求证:B′C=DE连接B′E、DE′,当B′E=DE′时,请用图2求α的值如图3,点P为AB的中点,点Q为线段B′E′上任意一点,试探究,在此旋转过程中,线段PQ长度的111取值范围为5、如图 P 为等 △边△ ABC 外一点,AH 垂直平分 PC 于点 H ,∠ BAP 的平分线交 PC 于点 D(1)(2)(3) 求证:DP =DB求证:DA +DB =DC若等边△ ABC 边长为14 ,连接BH ,当△ BDH 为等边三角形时,请直接写出C P 的长度为6、如图,四边形A BCD 为正方形 △,△ BEF 为等腰直角三角形(∠ BFE=90 ,点B 、E 、F ,按逆时针排列) ,点P 为DE 的中点,连P C ,PF(1)如图①,点 E 在 BC 上,则线段 PC 、PF 有何数量关系和位置关系?请写出你的结论,并证明.(2)如图②, △将△ BEF 绕点B 顺时针旋转a (O<a<45 ),则线段 PC ,PF 有何数量关系和位置关系?请写 出你的结论,并证明.(3)如图③,若 A B=1,△ AEF 为等腰直角三角形,且∠ A EF=90° ,△ AEF 绕点A 逆时针旋转过程中, 能使点 F 落在B C 上,且A B 平分E F ,直接写出A E 的值是 .0 0A DA D ADP PF FEB FB CB EC CE图①图②图③7、已知等腰R t△ABC和等腰R t△EDF,其中D、G分别为斜边AB、EF的中点,连C E,又M为BC中点,N 为CE 的中点,连MN、MG(1)(2)如图1,当DE恰好过M点时,求证:∠NMG=45°,且M G2=MN如图2,当等腰Rt△EDF绕D点旋转一定的度数时,第(1)问中的结论是否仍成立,并证明(3)如图3,连B F,已知P为BF的中点,连C F与PN,直接写出PN=CF8、已知:如图,在△R t△ABC 中,AC=BC,CD⊥AB 于D,AB=10,将C D绕着D点顺时针旋转a(0°<a<90°)到DP的位置,作PQ⊥CD 于Q,点I是△PQD角平分线的交点,连IP,IC,(1)如图1,在PD旋转的过程中,线段IC与IP 之间是否存在某种确定不变的关系?请证明你的猜想。

(2)如图2:连IA,当AI⊥DP 时,求DQ 的长。

(3)如图3,若取BC的中点M,连I M,当P D旋转过程中,线段IM的长度变不变?若不变请求出其值;若变化,求出其变化范围。

1.答案:(1)AB=AF+BD;…………2分(1)如图(2)中的实线图AB=AF-BD…………4分第1题图第1 题图参考答案∴∠ B′AC=15°∴△ADE≌△AB′C(SAS)∴ B′C=DE(2)由旋转可知,AB′=AD=AB,AE=AE′ ∴△AB′E≌△ADE′(SSS)∴∠ B′AE=∠DAE′∴∠ EAE′=∠DAB′由旋转可知:∠BAB′=∠EAE′∴∠ ADB′=∠BAB′=45°即α=45°(3)过点A作AM⊥B′E′由(1)可知:∠B′=45°,∠E=30°(3)如图(1),过点E作E G∥BC交A C于点G,得△AEG为等边三角形易得Rt△ECF∴ MN⊥CE∵DE=CE,∴∠CDE=∠ECD,又∵∠CDE+∠BED=∠ABC=∠ACD=∠ECD+∠GCE,∴∠ BED=∠GCE…………6分又∵BE=CG,DE=CE∴△BDE≌△GEC∴BD=EG=AE 又∵ AF=BE∴AB=BE+AE=AF+BD…………8分如图(2),过点E作E G∥BC交A C于点G, △得△AEG为等边三角形∵DE=CE,∴∠CDE=∠ECD,又∵∠CDE-∠BED=∠ABC=∠ACD=∠ECD-∠GCE,∴∠BED=∠GCE…………6分又∵BE=CG,DE=CE∴△BDE≌△GEC∴BD=EG=AE又∵AF=BE所以AB=BE-AE=AF-BD (8)分2.答案:(1)连E M并延长,使M F=EM,连BF,易△证△EDM≌△FBM从而易证等腰Rt△EAC≌Rt△FBC(2)同样,△证△EDM≌△FBM,∴AM=2 2 ,AE′=42∴2 -2≤PQ≤ 4+25、答案:证明:(1)∵AH是PC的垂直平分线∴PA=PC=AB∵AD 平分∠PAB∴∠PAD=∠BAD∴△PAD≌△BAD(SAS)∴DP=DB ∵AP=AC∴∠ APD=∠ACQ∴△A2PD≌△ACQ(2SAS)∴AD=AQ,∠CAQ=∠PAD∴∠ BAC=∠CAQ+∠BAQ=∠PAD+∠BAQ=∠BAD +∠ BAQ=∠DAQ=60°∴△ADQ为等边三角形∴AD=DQ∴CD=DQ+CQ=AD+DB(2)在CP上截取CQ=PD,连接AQ∴∠ EAC+∠EDB+∠DBC=360°,∠MBF+∠FBC+∠DBC=360°,而∠EDB=∠MBF,∴∠EAC=∠FBC,易证△EAC≌△FBC,易得等腰Rt△ECF,CE=2MN3、答案:(2)中点连顶点,易△证△AOA≌△COC1 1(3)易得PC⊥AA1,∴ 以AC为斜边的△R t△,斜边不变,(3) 2 (提示:设DP=DB=DH=x,则CH=2x,CD 4=3x,AD=CD-DB=2x)6、答案:(1)FP=PC,FP⊥PC(用R△t△的中线及换角得出)(2)方法一:(中点+中点构造中位线)如图,构造以B点为直角的等腰Rt△BEG 和Rt△BHD取AC中点,BP最小=PM- AC=25-2易证△BDG≌△BEH,FP1GD,PC1EH,24、答案:证明:(1)连接EC由正方形的对称性可知,EA=EC连接AC、B′C ∴EA=AC∴△ACE为等边三角形∴∠DAE=60°-45°=15°由旋转可知,∠BAB′=30°2∵GD⊥EH ,∴FP=PC,FP⊥PC 方法二:(中线倍长,构造全等)延长CP 至H,使PH=PC,连21HE,HF,FC 易△证△HEP≌△CDP,∴HE CD,由“X” 型易得∠FBC=∠FEH,∴ △FBC≌△FBH,∴FH=FC,∠ BFC=∠EFH,∠BFC-∠EFC=∠EFH-∠EFC=90°,∴Rt△HFC 中FP⊥PC5x=3x2x∴x=5 6(3)面积法7、答案:(1)连DG,由对称性可知(中垂线上的点)D、C、G三点共线,△R t△CME中,MN=EC,NG=EC,∠MNG=22 2∠MEG=90°,∴△MNG为等腰Rt△,即证.(2)连DC、CF、BE、NG,易证△DBE≌△DCF,BE=CF,CF⊥BE(垂直交叉“X”型得),∴MN1BE,NG CF,MN=NG,MN⊥NG,∴△MNG 为等2腰Rt△(3)取BC的中点M,连PM、MN、DC,同样证△DBE≌△DCF,易△得△PMN 为等腰Rt△,PM=CF,2PN CFPN2PM221 118、答案:(1)垂直且相等连DI,易证△DIC≌△DIP,∴IP=IC.过I 作IE⊥QP 于E,IF⊥CD于F,∵IE=IF,∴△R t△CIF≌△R t△PIE,易证CI⊥PI(2)由等腰得A D=AI=5,设I H=x,则A H=5-x,DH=AD+2x-AH=3x,∴3x2+ 5-x2=52,∴x=0(舍去),x=1,∴AH=4,∴DQ=4(3)5 22互补,三点一线(4)(5)(6)(7)(8)★★★(9)(10)。

相关文档
最新文档