八年级上数学同步练习册答案-教学文档
八年级数学上册同步练习题及答案

12.1.1平方根(第一课时)◆随堂检测1、若x 2=a ,则叫的平方根,如16的平方根是,972的平方根是 2、3±表示的平方根,12-表示12的3、196的平方根有个,它们的和为4、下列说法是否正确?说明理由(1)0没有平方根;(2)—1的平方根是1±;(3)64的平方根是8;(4)5是25的平方根;(5)636±=5、求下列各数的平方根(1)100(2))8()2(-⨯-(3)1.21(4)49151 ◆典例分析例若42-m 与13-m 是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是()A 、49B 、441C 、7或21D 、49或4412、2)2(-的平方根是()A 、4B 、2C 、-2D 、2±二、填空3、若5x+4的平方根为1±,则x=4、若m —4没有平方根,则|m —5|=5、已知12-a 的平方根是4±,3a+b-1的平方根是4±,则a+2b 的平方根是三、解答题6、a 的两个平方根是方程3x+2y=2的一组解(1)求a 的值(2)2a 的平方根7、已知1-x +∣x+y-2∣=0求x-y 的值●体验中考1、(09河南)若实数x ,y 满足2-x +2)3(y -=0,则代数式2x xy -的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有个3、(08荆门)下列说法正确的是()A 、64的平方根是8B 、-1的平方根是1±C 、-8是64的平方根D 、2)1(-没有平方根◆随堂检测1、259_____ 2、一个数的算术平方根是9,则这个数的平方根是3x 的取值范围是,若a ≥04、下列叙述错误的是()A 、-4是16的平方根B 、17是2(17)-的算术平方根C 、164的算术平方根是18D 、0.4的算术平方根是0.02 ◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b |4|0b -=,求c 的取值范围分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围◆课下作业●拓展提高一、选择12=,则2(2)m +的平方根为()A 、16B 、16±C 、4±D 、2±2A 、4B 、4±C 、2D 、2±二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是42(4)y +=0,则x y =三、解答题5、若a 是2(2)-的平方根,b 是16的算术平方根,求2a +2b 的值6、已知a 为170的整数部分,b-1是400的算术平方根,求a b +的值●体验中考.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是()A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是;若a<57<b ,(a 、b 为连续整数),则a=,b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简222()a b a b ---=4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.12.1.2立方根◆随堂检测1、若一个数的立方等于—5,则这个数叫做—5的,用符号表示为,—64的立方根是,125的立方根是;的立方根是—5.2、如果3x =216,则x =.如果3x =64,则x =.3、当x 为时,32x -有意义.4、下列语句正确的是()A 、64的立方根是2B 、3-的立方根是27C 、278的立方根是32±D 、2)1(-立方根是1- 典例分析例若338x 51x 2+-=-,求2x 的值.●拓展提高一、选择1、若22)6(-=a ,33)6(-=b ,则a+b 的所有可能值是()A 、0B 、12-C 、0或12-D 、0或12或12-2、若式子3112a a -+-有意义,则a 的取值范围为() A 、21≥aB 、1≤aC 、121≤≤a D 、以上均不对 二、填空 3、64的立方根的平方根是4、若162=x ,则(—4+x )的立方根为三、解答题5、求下列各式中的x 的值(1)1253)2(-x =343(2)64631)1(3-=-x 6、已知:43=a ,且03)12(2=-++-c c b ,求333c b a ++的值●体验中考1、(09宁波)实数8的立方根是2、(08泰州市)已知0≠a ,a ,b 互为相反数,则下列各组数中,不是互为相反数的一组是()A 、3a 与3bB 、a +2与b +2C 、2a 与2b -D 、3a 与3b3、(08益阳市)一个正方体的水晶砖,体积为100cm 3,它的棱长大约在()A 、4~5cm 之间B 、5~6cm 之间C 、6~7cm 之间D 、7~8cm 之间12.2实数与数轴◆随堂检测1、下列各数:23,722-,327-,414.1,3π-,12122.3,9-,••9641.3中,无理数有个,有理数有个,负数有个,整数有个.2、33-的相反数是,|33-|=57-的相反数是,21-的绝对值=3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为4、若实数a<b<0,则|a||b|;大于17小于35的整数是; 比较大小:6334112535、下列说法中,正确的是()A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例:设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根◆课下作业●拓展提高一、选择1、如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为()A .2-1B .1-2C .2-2D .2-22、设a 是实数,则|a|-a 的值()A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数二、填空3、写出一个3和4之间的无理数4、下列实数1907,3π-,0,49-,21,31-1…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m =三、解答题5、比较下列实数的大小(1)|8-|和3(2)52-和9.0-(3)215-和87 6、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.●体验中考.(2011年青岛二中模拟)如图,数轴上A B ,两点表示的数分别为1-,点B 关于点A 的对称点为C ,则点C 所表示的数为()A.2-B.1- C.2- D.1+.(2011年湖南长沙)已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为()C A 0B(第46题图)A .1B .1-C .12a -D .21a - 3、(2011年江苏连云港)实数a b ,在数轴上对应点的位置如图所示,则必有()A .0a b +>B .0a b -<C .0ab >D .0a b< 4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A .2-B .2C .12D .12- §13.1幂的运算1.同底数幂的乘法试一试(1)23×24=()×()=2();(2)53×54=5();(3)a 3·a 4=a ().概括:a m ·a n =()()==a n m +.可得a m ·a n =a n m +这就是说,同底数幂相乘,.例1计算:(1)103×104;(2)a ·a 3;(3)a ·a 3·a 5.练习1.判断下列计算是否正确,并简要说明理由.(1)a ·a 2=a 2;(2)a +a 2=a 3;(3)a 3·a 3=a 9;(4)a 3+a 3=a 6.2.计算:(1)102×105;(2)a 3·a 7;(3)x ·x 5·x 7.3.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________;(第8题图)(3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a ⋅=)()()(+同底数幂的乘法练习题1.计算:(1)=⋅64a a (2)=⋅5b b(3)=⋅⋅32m mm (4)=⋅⋅⋅953c c c c (5)=⋅⋅p n m a a a(6)=-⋅12m t t (7)=⋅+q q n 1(8)=-+⋅⋅112p p n n n 2.计算:(1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433(6)=--⋅67)5()5((7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32(10)=--⋅54)2()2((11)=--⋅69)(b b (12)=--⋅)()(33a a3.下面的计算对不对?如果不对,应怎样改正? (1)523632=⨯;(2)633a a a =+;(3)n n n yy y 22=⨯;(4)22m m m =⋅; (5)422)()(a a a =-⋅-;(6)1243a a a=⋅; (7)334)4(=-;(8)6327777=⨯⨯;(9)42-=-a ;(10)32n n n =+.4.选择题:(1)22+m a 可以写成( ).A .12+m a B .22a a m +C .22a a m ⋅D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯=B .443)3(=-C .4433=-D .3443=(3)下列计算正确的是( ).A .44a a a =⋅B .844a a a =+C .4442a a a =+D .1644a a a =⋅2.幂的乘方根据乘方的意义及同底数幂的乘法填空:(1)(23)2=×=2();(2)(32)3=×=3();(3)(a 3)4=×××=a ().概括(a m )n =(n 个)=(n 个)=a mn可得(a m )n =a mn (m 、n 为正整数).这就是说,幂的乘方,.例2计算:(1) (103)5;(2)(b 3)4.练习1.判断下列计算是否正确,并简要说明理由.(1)(a 3)5=a 8;(2)a 5·a 5=a 15;(3)(a 2)3·a 4=a 9.2.计算:(1)(22)2;(2)(y 2)5;(3)(x 4)3;(4)(y 3)2·(y 2)3.3、计算: (1)x·(x 2)3(2)(x m )n ·(x n )m (3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m 8(5)[(a -b )n ]2[(b -a )n -1]2(6)[(a -b )n ]2[(b -a )n -1]2(7)(m 3)4+m 10m 2+m·m 3·m 8幂的乘方一、基础练习1、幂的乘方,底数_______,指数____.(a m )n =___(其中m 、n 都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a 3)2=______;(4)(-x 2)3=_______。
苏科版八年级上册数学同步练习答案

苏科版八年级上册数学同步练习答案
合理安排时间做八年级数学同步练习,就等于节约时间。
以下是店铺为大家整理的苏科版八年级上册数学同步练习答案,希望你们喜欢。
苏科版八年级上册数学同步练习答案(一)
全等图形
1、能完全重合
2、
(1)(2)(3)
××√
3、②与⑨、③与⑩、⑥与⑧是全等图形
4、略
5、D
6、A
7、①与⑩、②与⑩、③与⑥、④与⑦、⑤与⑧、⑨与⑥是全等图形
8、略
苏科版八年级上册数学同步练习答案(二)
全等三角形
1、相等,相等
2、DE,DF,∠EFD,∠ABC
3、74°,68°
4、C
5、C
6、∠CDE=55°
7、∠F=35°,DH=6
8、70°,3
9、2,1.5,48,25
10、C
11、B
12、BD=CE,∠ADB=∠AEC,∠BAD=∠CAE
13、(1) EF⊥AB.可以先说明∠ECF=∠ACB= 90°,设EF的延长线交AB于点D,
再说明∠B与∠E互余,所以∠EDB=90°.
(2)沿AO所在直线翻折,可以使△ABC与△ADE重合
苏科版八年级上册数学同步练习答案(三)
轴对称与轴对称图形
1、答案不唯一,口、吕、品等
2、D、E、H等
3、B
4、B
5、略
6、略
8、C
9、C
10、A
11、①③④是轴对称图形,画图略
12、36,126。
八年级上册数学同步练习册答案

八年级上册数学同步练习册答案【练习一:有理数的加减法】1. 计算下列各题:- (1) 3 + (-2) = 1- (2) -4 + 5 = 1- (3) 0 + (-7) = -72. 解决实际问题:- 某同学在一次数学测试中得了92分,第二次测试得了88分,求他两次测试的平均分。
- 平均分 = (92 + 88) / 2 = 90【练习二:有理数的乘除法】1. 计算下列各题:- (1) (-3) × (-4) = 12- (2) 5 × (-2) = -10- (3) (-6) ÷ 2 = -32. 解决实际问题:- 一个工厂的产量在一年内增加了原来的25%,求现在产量是原来的多少倍。
- 现在产量 = 1 + 25% = 1.25倍【练习三:整式的加减】1. 计算下列各题:- (1) 3x + 2y - 4x = -x + 2y- (2) 5a - 3b + 2a = 7a - 3b2. 解决实际问题:- 如果一个长方形的长是宽的两倍,且周长是24厘米,求长和宽。
- 设宽为x,则长为2x,周长 = 2(x + 2x) = 24,解得x = 4,所以长为8厘米,宽为4厘米。
【练习四:一元一次方程】1. 解下列方程:- (1) 3x - 5 = 10,解得 x = 5- (2) 2x + 7 = 15,解得 x = 42. 解决实际问题:- 一个班级有40名学生,其中男生比女生多6人,求男女生各有多少人。
- 设女生人数为x,则男生人数为x + 6,x + x + 6 = 40,解得x = 17,所以女生有17人,男生有23人。
【练习五:几何初步】1. 计算下列各题:- (1) 一个正方形的边长是5厘米,求它的周长和面积。
- 周长= 4 × 5 = 20厘米,面积= 5 × 5 = 25平方厘米- (2) 一个圆的半径是3厘米,求它的周长和面积。
- 周长= 2 × π × 3 ≈ 18.85厘米,面积= π × 3² ≈ 28.27平方厘米结束语:以上是八年级上册数学同步练习册的部分答案,希望能帮助同学们更好地理解和掌握数学知识。
同步练习册八上的数学答案

同步练习册八上的数学答案本同步练习册八上的数学答案旨在帮助学生复习和巩固所学知识,以下是部分习题的答案:第一章:实数1. 判断题:- √ 所有的有理数都是实数。
- × 负数没有平方根。
2. 选择题:- A 一个数的绝对值总是非负的。
- C √2是一个无理数。
3. 计算题:- (-3)² = 9- √16 = 4第二章:代数基础1. 填空题:- 如果3x + 5 = 14,那么x = 3。
- 当a = 2时,a² - 1 = 3。
2. 应用题:- 如果一个数的3倍加上4等于23,求这个数。
设这个数为x,那么3x + 4 = 23,解得x = 5。
第三章:方程与不等式1. 解一元一次方程:- 2x - 7 = 5,解得x = 6。
2. 解一元一次不等式:- 3x + 2 > 11,解得x > 3。
第四章:函数及其图象1. 判断题:- √ y = 2x + 3 是一个线性函数。
- × y = x²不是一次函数。
2. 选择题:- B 函数y = kx + b (k≠0, k, b是常数)的图象是一条直线。
第五章:几何基础1. 填空题:- 直角三角形的两条直角边分别为3和4,斜边长为5。
- 圆的半径为r,圆的周长为2πr。
2. 应用题:- 如果一个正方形的边长为a,那么它的面积是a²。
第六章:统计与概率1. 选择题:- A 平均数是一组数据的总和除以数据的个数。
- C 中位数是将一组数据从小到大排列后位于中间的数。
结束语:通过本同步练习册的练习,希望同学们能够更好地掌握八年级上册数学的知识点,提高解题能力。
如果在学习过程中遇到任何问题,欢迎随时向老师或同学求助。
记住,数学是一门需要不断练习和思考的学科,只有通过不断的努力,才能达到更高的水平。
祝同学们学习进步!。
人教八年级数学上册同步练习题及详细答案

人教八年级数学上册同步练习题及详细答案————————————————————————————————作者:————————————————————————————————日期:23 / 104图1ABCED第十一章 全等三角形11.1全等三角形1、 已知⊿ABC ≌⊿DEF ,A 与D ,B 与E 分别是对应顶点,∠A=52°,∠B=67 °,BC =15cm ,则F = ,FE = .2、∵△ABC ≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边 )∠A= ,∠B= ,∠C= ; (全等三角形的对应边 ) 3、下列说法正确的是( )A :全等三角形是指形状相同的两个三角形B :全等三角形的周长和面积分别相等C :全等三角形是指面积相等的两个三角形D :所有的等边三角形都是全等三角形4、 如图1:ΔABE ≌ΔACD ,AB=8cm ,AD=5cm ,∠A=60°,∠B=40°,则AE=_____,∠C=____。
4 / 104课堂练习1、已知△ABC ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°; 那么DE= cm ,EC= cm ,∠C= 度.3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第1小题) (第2小题) (第3小题) (第4小题)4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);E B A D CFE DC B AED C B A D CB A5 / 10411.2.1全等三角形的判定(sss )课前练习1、如图1:AB=AC ,BD=CD ,若∠B=28°则∠C= ;2、如图2:△EDF ≌△BAC ,EC=6㎝,则BF= ;3、如图,AB ∥EF ∥DC ,∠ABC =900,AB =DC ,那么图中有全等三角形 对。
人教版初中数学八年级上册同步练习全套(含答案解析)

人教版初中数学八年级上册同步练习全套《11.1.1 三角形的边》同步练习一、选择题(共15题)1、图中三角形的个数是()A、8个B、9个C、10个D、11个2、至少有两边相等的三角形是()A、等边三角形B、等腰三角形C、等腰直角三角形D、锐角三角形3、已知三角形的三边为4、5、x ,则不可能是()A、6B、5C、4D、14、以下三条线段为边,能组成三角形的是()A、1cm、2cm、3cmB、2cm、2cm、4cmC、3cm、4cm、5 cmD、4cm、8cm、2cm5、一个三角形的两边分别为5cm、11cm,那么第三边只能是()A、3cmB、4cmC、5cmD、7cm6、下列长度的各组线段中,不能组成三角形的是()A、1.5,2.5,3.5B、2,3,5C、6,8,10D、4,3,37、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A、13cmB、6cmC、5cmD、4cm8、若三角形的三边长分别为3,4,x-1,则x的取值范围是( )A、0<x<8B、2<x<8C、0<x<6D、2<x<69、已知三角形的三边长分别为3、x、14,若x为正整数,则这样的三角形共有()A、2个B、3个C、5个D、7个10、小明与小王家相距5km,小王与小邓家相距2km,则小明与小邓家相距()A、3kmB、7kmC、3km或7kmD、不小于3km也不大于7km11、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个12、若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是()A、7B、6C、5D、413、已知不等边三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为()A、8cmB、10cmC、8cm或10cmD、8cm或9cm14、△ABC的三边分别为a , b , c且(a+b-c)(a-c)=0,那么△ABC为()A、不等边三角形B、等边三角形C、等腰三角形D、锐角三角形15、如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A、6B、7C、8D、10二、填空题16、按照三个内角的大小,可以将三角形分为锐角三角形、________、________;按照有几条边相等,可以将三角形分为等边三角形、________、________.17、△ABC的三边分别为a , b , c.则同时有________,理由:________.18、等腰三角形的一边为6,另一边为12,则其周长为________.19、一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长________cm.20、某村庄和小学分别位于两条交叉的大路边(如图).可是,每年冬天麦田弄不好就会走出一条小路来.你说小学生为什么会这样走呢?________.21、小华要从长度分别是5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是________.________ ________ 。
(完整)八年级数学上册同步练习题及答案
12.1.1平方根(第一课时)◆随堂检测1、若x 2=a ,则叫的平方根,如16的平方根是,972的平方根是 2、3±表示的平方根,12-表示12的3、196的平方根有个,它们的和为4、下列说法是否正确?说明理由(1)0没有平方根;(2)—1的平方根是1±;(3)64的平方根是8;(4)5是25的平方根;(5)636±=5、求下列各数的平方根(1)100(2))8()2(-⨯-(3)1.21(4)49151 ◆典例分析例若42-m 与13-m 是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是()A 、49B 、441C 、7或21D 、49或4412、2)2(-的平方根是()A 、4B 、2C 、-2D 、2±二、填空3、若5x+4的平方根为1±,则x=4、若m —4没有平方根,则|m —5|=5、已知12-a 的平方根是4±,3a+b-1的平方根是4±,则a+2b 的平方根是三、解答题6、a 的两个平方根是方程3x+2y=2的一组解(1)求a 的值(2)2a 的平方根7、已知1-x +∣x+y-2∣=0求x-y 的值●体验中考1、(09河南)若实数x ,y 满足2-x +2)3(y -=0,则代数式2x xy -的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有个3、(08荆门)下列说法正确的是()A 、64的平方根是8B 、-1的平方根是1±C 、-8是64的平方根D 、2)1(-没有平方根◆随堂检测1、259_____ 2、一个数的算术平方根是9,则这个数的平方根是3x 的取值范围是,若a ≥04、下列叙述错误的是()A 、-4是16的平方根B 、17是2(17)-的算术平方根C 、164的算术平方根是18D 、0.4的算术平方根是0.02 ◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b |4|0b -=,求c 的取值范围分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围◆课下作业●拓展提高一、选择12=,则2(2)m +的平方根为()A 、16B 、16±C 、4±D 、2±2A 、4B 、4±C 、2D 、2±二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是42(4)y +=0,则x y =三、解答题5、若a 是2(2)-的平方根,b 是16的算术平方根,求2a +2b 的值6、已知a 为170的整数部分,b-1是400的算术平方根,求a b +的值●体验中考.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是()A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是;若a<57<b ,(a 、b 为连续整数),则a=,b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简222()a b a b ---=4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.12.1.2立方根◆随堂检测1、若一个数的立方等于—5,则这个数叫做—5的,用符号表示为,—64的立方根是,125的立方根是;的立方根是—5.2、如果3x =216,则x =.如果3x =64,则x =.3、当x 为时,32x -有意义.4、下列语句正确的是()A 、64的立方根是2B 、3-的立方根是27C 、278的立方根是32±D 、2)1(-立方根是1- 典例分析例若338x 51x 2+-=-,求2x 的值.●拓展提高一、选择1、若22)6(-=a ,33)6(-=b ,则a+b 的所有可能值是()A 、0B 、12-C 、0或12-D 、0或12或12-2、若式子3112a a -+-有意义,则a 的取值范围为() A 、21≥aB 、1≤aC 、121≤≤a D 、以上均不对 二、填空 3、64的立方根的平方根是4、若162=x ,则(—4+x )的立方根为三、解答题5、求下列各式中的x 的值(1)1253)2(-x =343(2)64631)1(3-=-x 6、已知:43=a ,且03)12(2=-++-c c b ,求333c b a ++的值●体验中考1、(09宁波)实数8的立方根是2、(08泰州市)已知0≠a ,a ,b 互为相反数,则下列各组数中,不是互为相反数的一组是()A 、3a 与3bB 、a +2与b +2C 、2a 与2b -D 、3a 与3b3、(08益阳市)一个正方体的水晶砖,体积为100cm 3,它的棱长大约在()A 、4~5cm 之间B 、5~6cm 之间C 、6~7cm 之间D 、7~8cm 之间12.2实数与数轴◆随堂检测1、下列各数:23,722-,327-,414.1,3π-,12122.3,9-,••9641.3中,无理数有个,有理数有个,负数有个,整数有个.2、33-的相反数是,|33-|=57-的相反数是,21-的绝对值=3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为4、若实数a<b<0,则|a||b|;大于17小于35的整数是; 比较大小:6334112535、下列说法中,正确的是()A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例:设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根◆课下作业●拓展提高一、选择1、如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为()A .2-1B .1-2C .2-2D .2-22、设a 是实数,则|a|-a 的值()A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数二、填空3、写出一个3和4之间的无理数4、下列实数1907,3π-,0,49-,21,31-1…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m =三、解答题5、比较下列实数的大小(1)|8-|和3(2)52-和9.0-(3)215-和87 6、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.●体验中考.(2011年青岛二中模拟)如图,数轴上A B ,两点表示的数分别为1-,点B 关于点A 的对称点为C ,则点C 所表示的数为()A.2-B.1- C.2- D.1+.(2011年湖南长沙)已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为()C A 0B(第46题图)A .1B .1-C .12a -D .21a - 3、(2011年江苏连云港)实数a b ,在数轴上对应点的位置如图所示,则必有()A .0a b +>B .0a b -<C .0ab >D .0a b< 4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A .2-B .2C .12D .12- §13.1幂的运算1.同底数幂的乘法试一试(1)23×24=()×()=2();(2)53×54=5();(3)a 3·a 4=a ().概括:a m ·a n =()()==a n m +.可得a m ·a n =a n m +这就是说,同底数幂相乘,.例1计算:(1)103×104;(2)a ·a 3;(3)a ·a 3·a 5.练习1.判断下列计算是否正确,并简要说明理由.(1)a ·a 2=a 2;(2)a +a 2=a 3;(3)a 3·a 3=a 9;(4)a 3+a 3=a 6.2.计算:(1)102×105;(2)a 3·a 7;(3)x ·x 5·x 7.3.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________;(第8题图)(3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a ⋅=)()()(+同底数幂的乘法练习题1.计算:(1)=⋅64a a (2)=⋅5b b(3)=⋅⋅32m mm (4)=⋅⋅⋅953c c c c (5)=⋅⋅p n m a a a(6)=-⋅12m t t (7)=⋅+q q n 1(8)=-+⋅⋅112p p n n n 2.计算:(1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433(6)=--⋅67)5()5((7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32(10)=--⋅54)2()2((11)=--⋅69)(b b (12)=--⋅)()(33a a3.下面的计算对不对?如果不对,应怎样改正? (1)523632=⨯;(2)633a a a =+;(3)n n n yy y 22=⨯;(4)22m m m =⋅; (5)422)()(a a a =-⋅-;(6)1243a a a=⋅; (7)334)4(=-;(8)6327777=⨯⨯;(9)42-=-a ;(10)32n n n =+.4.选择题:(1)22+m a 可以写成( ).A .12+m a B .22a a m +C .22a a m ⋅D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯=B .443)3(=-C .4433=-D .3443=(3)下列计算正确的是( ).A .44a a a =⋅B .844a a a =+C .4442a a a =+D .1644a a a =⋅2.幂的乘方根据乘方的意义及同底数幂的乘法填空:(1)(23)2=×=2();(2)(32)3=×=3();(3)(a 3)4=×××=a ().概括(a m )n =(n 个)=(n 个)=a mn可得(a m )n =a mn (m 、n 为正整数).这就是说,幂的乘方,.例2计算:(1) (103)5;(2)(b 3)4.练习1.判断下列计算是否正确,并简要说明理由.(1)(a 3)5=a 8;(2)a 5·a 5=a 15;(3)(a 2)3·a 4=a 9.2.计算:(1)(22)2;(2)(y 2)5;(3)(x 4)3;(4)(y 3)2·(y 2)3.3、计算: (1)x·(x 2)3(2)(x m )n ·(x n )m (3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m 8(5)[(a -b )n ]2[(b -a )n -1]2(6)[(a -b )n ]2[(b -a )n -1]2(7)(m 3)4+m 10m 2+m·m 3·m 8幂的乘方一、基础练习1、幂的乘方,底数_______,指数____.(a m )n =___(其中m 、n 都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a 3)2=______;(4)(-x 2)3=_______。
同步练习册答案八上
同步练习册答案八上【语文】1. 请解释“春眠不觉晓”中的“晓”字的含义。
答案:在这句诗中,“晓”指的是清晨或黎明时分。
2. 阅读《岳阳楼记》并回答问题:作者在文中表达了怎样的情感?答案:作者在文中表达了对国家和人民的深切关怀,以及对美好未来的向往。
【数学】1. 解方程:\( x + 5 = 10 \)答案:将方程两边同时减去5,得到 \( x = 5 \)。
2. 计算下列几何体的体积:一个底面半径为3,高为4的圆柱体。
答案:圆柱体的体积公式为 \( V = πr^2h \),代入数值得到 \( V = π \times 3^2 \times 4 = 36π \) 立方单位。
【英语】1. 翻译下列句子:“The early bird catches the worm.”答案:早起的鸟儿有虫吃。
2. 填空题:I am _______ (happy) to see you again.答案:happy【历史】1. 请列举中国历史上的四大发明。
答案:造纸术、火药、印刷术、指南针。
2. 简述唐朝的开放政策对中国文化的影响。
答案:唐朝的开放政策促进了与外国的文化交流,丰富了中国文化的内涵,同时也吸收了外来文化的优秀元素。
【地理】1. 请描述地球自转和公转的特点。
答案:地球自转是指地球围绕自己的地轴旋转,方向为自西向东,周期为24小时。
地球公转是指地球围绕太阳的运动,方向同样为自西向东,周期为一年。
2. 解释“赤道”和“经线”的概念。
答案:赤道是地球表面纬度为0度的线,是地球上最长的纬线。
经线是连接地球两极的半圆,每条经线的长度相等。
【生物】1. 描述细胞的基本结构。
答案:细胞的基本结构包括细胞膜、细胞质和细胞核。
细胞膜是细胞的外层,有保护和控制物质进出的功能;细胞质是细胞膜和细胞核之间的物质,含有许多细胞器;细胞核是细胞的控制中心,含有遗传物质。
2. 解释光合作用的过程。
答案:光合作用是植物、藻类和某些细菌利用光能,将二氧化碳和水转化为葡萄糖和氧气的过程。
新版北师大版八年级上册数学全册同步练习+全册教案
新版北师大版八年级上册数学全册同步练习+全册教案新版北师大版八年级上册数学全册同步练习(呕心整理绝对全面)目录第一章勾股定理................................. A3-A9 1.1 探索勾股定理........................................ A3-A4 1.2 一定是直角三角形吗.................................. A5-A6 1.3 勾股定理的应用...................................... A7-A9 第二章实数................................... A10-A20 2.1 认识无理数........................................ A10-A11 2.2 平方根............................................ A12-A13 2.3 立方根............................................ A14-A15 2.4 估算2.5 用计算器开方.......................................... A16 2.6 实数.................................................. A17 2.7 二次根式.......................................... A18-A20 第三章位置与坐标............................ A21-A243.1 确定位置.............................................. A21 3.2 平面直角坐标系3.3 轴对称与坐标变化.................................. A22-A24 第四章一次函数............................... A25-A334.1 函数.................................................. A25 4.2 一次函数与正比例函数.............................. A26-A27 4.3 一次函数的图象.................................... A28-A29 4.4 确定一次函数的表达式.............................. A30-A314.5 一次函数的应用.................................... A32-A33第五章二元一次方程组......................... A34-A395.1 认识二元一次方程组.................................... A34 5.2 解二元一次方程组...................................... A35 5.3 应用二元一次方程组--鸡兔同笼.............................................. A36 5.4 应用二元一次方程组--增收节支.............................................. A37 5.5 应用二元一次方程组--里程碑上的数.......................................... A38 5.6 二元一次方程组与一次函数.............................. A39 第六章数据的分析............................ A40-A45 6.1 平均数................................................ A40 6.2 中位数与众数...................................... A41-A42 6.3 从统计图分析数据的集中趋势............................ A43 6.4 数据的离散程度.................................... A44-A45第七章平行线的证明.......................... A46-A51 7.1 为什么要证明.......................................... A46 7.2 定义与命题............................................ A47 7.3 平行线的判定7.4 平行线的性质...................................... A48-A49 7.5 三角形内角和定理.................................. A50-A51第一章勾股定理1.1 探索勾股定理※课时达标1.△ABC,∠C=90°,a=9,b=12,则c =_______.2.△ABC,AC=6,BC=8,当AB=________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.5.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.7.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是__________.8.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).※课后作业★基础巩固1.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.2.△ABC中∠C=90°,∠A=30°,AB=4,则中线BD=__________.3.如图,将直角△ABC沿AD对折,使点C落在AB上的E处,若AC=6,AB=10,则DB=__________.4.△ABC中,三边长分别为a=6 cm,b=33cm, c=3 cm,则△ABC中最小的角为______度.5.如图,AB⊥BC,且AB=3,BC=2,CD=5,AD=42,则∠ACD=__________,图形ABCD 的面积为__________.6.等腰三角形的两边长为 2 和5,则它的面积为__________.7.有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.8.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.9.如图,△ABC中AD⊥BC于D,AB=3,BD=2, DC=1,则AC等于( ).A.6B.6C.5D.4☆能力提升10.直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长( ).A.4 cmB.8 cmC.10 cmD.12 cm11.如图,△ABC 中,∠C=90°,AB 垂直平分 线交BC 于D 若BC=8,AD=5,则AC 等于 ( ).A.3B.4C.5D.13 12.如图,△ABC 中,AB=AC=10,BD ⊥AC 于D , CD=2,则BC 等于( ).A.210B.6C.8D.513.ABC 中,∠C=90°,∠A=30°,斜边长为2, 斜边上的高为( ). A.1 B.3 C.23 D.43 14.直角三角形的一条直角边是另一条直角边的31,斜边长为10,它的面积为( ).A.10B.15C.20D.30●中考在线15.在△ABC 中,∠C =90°,若c =10,a ∶ b =3∶4,则直角三角形的面积是= . 16.如图,所有的四边形都是正方形,所有的 三角形都是直角三角形,其中最大的正方 形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
新沪科版数学八年级上册同步练习(全册分章节)含答案
11.1第1课时平面直角坐标系知识点 1平面直角坐标系的概念1.在图11-1-1中,所画的平面直角坐标系正确的是()图11-1-1知识点 2点的坐标2.在图11-1-2中,下列关于点M的坐标书写正确的是()图11-1-2A.(1,-2) B.(1,2) C.(-2,1) D.(2,1)3.2018·柳州如图11-1-3,在平面直角坐标系中,点A的坐标是________.图11-1-34.如图11-1-4所示的平面直角坐标系中,有A,B,C,D,E,F六个点,试写出这六个点的坐标.图11-1-45.教材练习第1题变式题在图11-1-5中的平面直角坐标系中描出下列各点:A(2,3),B(-2,3),C(0,-4),D(-2,0),E(-3,-1),F(3,-2).图11-1-56.已知点A(1,2),AC⊥x轴于点C,则点C的坐标为()A.(2,0) B.(1,0) C.(0,2) D.(0,1)7.点P到x轴的距离是2,到y轴的距离是3,且点P在y轴的左侧,则点P的坐标是____________.8.在平面直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图11-1-6,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)内按要求画整点三角形.(1)在图中画一个三角形PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图中画一个三角形PAB,使点P,B横坐标的平方和等于它们纵坐标的和的4倍.图11-1-6教师详解详析1.D2.C3.(-2,3)4.解:A(3,1),B(-4,3),C(-2,-2),D(2,-3),E(4,0),F(0,2).5.解:如图所示:6.B7.(-3,2)或(-3,-2)[解析] 根据在平面直角坐标系中,某点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值,由于点P到x轴的距离是2,到y轴的距离是3,所以其横坐标是±3,纵坐标是±2.又因为点P在y轴的左侧,所以点P的坐标是(-3,2)或(-3,-2).8.解:答案不唯一.(1)三角形P AB如图①所示.(2)三角形P AB如图②所示.第2课时平面直角坐标系中的点的坐标特点知识点 1象限内点的坐标特点1.2018·大连在平面直角坐标系中,点(-3,2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.2018·贵港港南一模在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若点A(x,2)在第二象限,则x的取值范围是________.4.已知m>0,则在平面直角坐标系中,点M(m,-m2-1)的位置在第________象限.5.若点P(a,a-3)在第四象限,则a的取值范围是________.6.已知点A(3m-9,2m-10)在第四象限,且m为整数,则m2+8的值为________.知识点 2坐标轴上点的坐标特点7.在平面直角坐标系中,点(0,-10)在()A.x轴的正半轴上 B.x轴的负半轴上C.y轴的正半轴上 D.y轴的负半轴上8.已知点M(a,b)在坐标轴上,则a,b满足()A.a=0 B.b=0 C.a=0且b=0 D.ab=09.在平面直角坐标系中,已知点M(-5,2+b)在x轴上,点N(3-a,7)在y轴上,则a=________,b=________.10.已知点P(1-2m,m-1),则不论m取什么值,点P必不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.2018·攀枝花若点A(a+1,b-2)在第二象限,则点B(-a,1-b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.2018·和县期末若点A(a,3)在y轴上,则点B(a-3,a+2)在第________象限.13.已知点A(4,3),AB∥y轴,且AB=3,则点B的坐标为______________.14.已知点P(2a-12,1-a)位于第三象限.(1)若点P的纵坐标为-3,试求出a的值;(2)求a的取值范围;(3)若点P的横、纵坐标都是整数,试求出a的值以及点P的坐标.15.图11-1-7是一个在平面直角坐标系中从原点开始的回形图,其中回形通道的宽和OA的长都是1.图11-1-7(1)观察图形填写表格:(2)(3)回形图中位于第一象限的拐点的横坐标与纵坐标之间的关系是________; (4)回形图中位于第三象限的拐点的横坐标与纵坐标之间的关系是________.教师详解详析1.B 2.B3.x <0 [解析] 第二象限内的点的横坐标是负数.故x <0. 4.四5.0<a <3 [解析] 因为点P 在第四象限,所以⎩⎪⎨⎪⎧a >0,a -3<0,即0<a <3.6.24 [解析] 因为点A (3m -9,2m -10)在第四象限,所以⎩⎨⎧3m -9>0,2m -10<0,解得3<m <5.因为m 为整数,所以m =4.所以m 2+8=42+8=24. 7.D8.D [解析] 坐标轴上的点的横坐标或纵坐标等于0.9.3 -2 [解析] 在x 轴上的点的纵坐标是0,在y 轴上的点的横坐标是0. 10.A [解析] ①当1-2m >0时,m <12,m -1<0,所以点P 在第四象限;②当1-2m <0时,m >12,m -1既可以是正数,也可以是负数,所以点P 可以在第二或第三象限.综上所述,点P 必不在第一象限.故选A.11.D [解析] 因为点A (a +1,b -2)在第二象限,所以⎩⎨⎧a +1<0,b -2>0,解得⎩⎨⎧a <-1,b >2,则-a >1,1-b <-1,故点B (-a ,1-b )在第四象限.故选D.12.二 [解析] 因为点A (a ,3)在y 轴上,所以a =0.所以点B 的坐标为(-3,2). 所以点B (-3,2)在第二象限.13.(4,0)或(4,6) [解析] 因为A (4,3),AB ∥y 轴,所以点B 的横坐标为4.因为 AB =3,所以点B 的纵坐标为3+3=6或3-3=0.所以点B 的坐标为(4,0)或(4,6).14.解:(1)由题意,得1-a =-3,解得a =4. (2)因为点P (2a -12,1-a )位于第三象限,所以⎩⎨⎧2a -12<0,①1-a <0,②解不等式①,得a <6;解不等式②,得a >1.所以1<a <6. (3)因为点P 的横、纵坐标都是整数, 所以a 的值为2,3,4,5.当a=2时,2a-12=2×2-12=-8,1-a=1-2=-1,点P(-8,-1);当a=3时,2a-12=2×3-12=-6,1-a=1-3=-2,点P(-6,-2);当a=4时,2a-12=2×4-12=-4,1-a=1-4=-3,点P(-4,-3);当a=5时,2a-12=2×5-12=-2,1-a=1-5=-4,点P(-2,-4).综上,a的值为2,3,4,5,点P的坐标为(-8,-1)或(-6,-2)或(-4,-3)或(-2,-4).15.解:(1)如下表所示.(2)略(3)相等第3课时平面直角坐标系中的图形知识点 1坐标系中线段的长度或图形的面积1.已知点A(-3,0)和点B(2,0),则线段AB的长为()A.2 B.3 C.4 D.52.点P(0,5)与点Q(0,-2)之间的距离为______;点A(-2,7)与点B(3,7)之间的距离为______.3.如图11-1-8,在平面直角坐标系中,已知点A(-1,5),B(-1,0),C(-4,3).求三角形ABC的面积.图11-1-8知识点 2物体位置或图形的确定4.2017·利辛期中某中学2017届新生入学军训时,小华、小军、小刚的位置如图11-1-9所示,如果小军的位置用(0,0)表示,小刚的位置用(2,2)表示,那么小华的位置可表示为()图11-1-9A.(-2,-1) B.(-1,-2) C.(2,1) D.(1,2)5.教材习题11.1第4题变式题图11-1-10是某市市区内四个旅游景点的示意图(图中每个小正方形的边长均为1个单位),请以烈士陵园为原点,经过烈士陵园的网格线为坐标轴(竖直向上为y轴正方向,水平向右为x轴正方向),建立平面直角坐标系(保留坐标系的痕迹),并用坐标表示图中各景点的位置.图11-1-106.点A(-5,4),B在平面直角坐标系中,且AB∥y轴,若三角形ABO的面积为5,则点B的坐标为()A.(-5,2) B.(-5,6)C.(-5,-6) D.(-5,6)或(-5,2)7.在平面直角坐标系中,一个长方形的三个顶点的坐标分别为(3,2),(-1,2),(3,-1),则第四个顶点的坐标为________.8.如图11-1-11,在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积.图11-1-119.2017·庐山县期末如图11-1-12,在平面直角坐标系中,A(a,0)是x轴正半轴上的一点,C是第四象限内的一点,CB⊥y轴交y轴负半轴于点B(0,b),且(a-3)2+|b+4|=0,S四边形AOBC=16,求点C的坐标.图11-1-12教师详解详析1.D2.7 53.解:S三角形ABC=12×5×3=7.5.4.A5.解:动物园的坐标为(3,5),开心岛的坐标为(-1,4),金凤广场的坐标为(2,3),烈士陵园的坐标为(0,0),图略.6.D[解析] 如图所示,因为AB∥y轴,点A(-5,4),所以点B的横坐标为-5.因为三角形ABO的面积为5,所以AB=2,所以点B的纵坐标为6或2,则点B的坐标为(-5,6)或(-5,2).故选D.7.(-1,-1)[解析] 先在平面直角坐标系中描出点(3,2),(-1,2),(3,-1),然后根据长方形的性质画出长方形,得到第四个点的位置.如图所示.所以第四个顶点的坐标为(-1,-1).8.解:作CE⊥x轴于点E,DF⊥x轴于点F.则S三角形ADF=12×(2-1)×4=2,S梯形DCEF=12×(3+4)×(3-2)=3.5,S 三角形BCE =12×(5-3)×3=3,所以S 四边形ABCD =2+3.5+3=8.5.9.解:因为(a -3)2+|b +4|=0, 所以a -3=0,b +4=0, 解得a =3,b =-4.所以点A (3,0),B (0,-4). 所以OA =3,OB =4.因为S 四边形AOBC =16,即12(OA +CB )·OB =16,所以12×(3+CB )×4=16,解得CB =5.因为点C 在第四象限,且CB ⊥y 轴, 所以点C 的坐标为(5,-4).11.2 图形在坐标系中的平移知识点 1 点在坐标系中的平移 1.已知点A 的坐标为(2,1).(1)将点A 向左平移2个单位后得到点B ,则点B 的坐标为________;(2)将点A向右平移2个单位后得到点C,则点C的坐标为________;(3)将点A向上平移2个单位后得到点D,则点D的坐标为________;(4)将点A向下平移2个单位后得到点E,则点E的坐标为________.2.点N(-1,3)可以看作由点M(-1,-1)()A.向上平移4个单位得到的 B.向左平移4个单位得到的C.向下平移4个单位得到的 D.向右平移4个单位得到的3.2018·宿迁在平面直角坐标系中,将点(3,-2)先向右平移2个单位,再向上平移3个单位,则所得点的坐标是________.知识点 2图形在坐标系中的平移4.在平面直角坐标系中,将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位 B.向左平移了3个单位C.向上平移了3个单位 D.向下平移了3个单位5.教材习题11.2第3题变式题如图11-2-1,已知三角形ABC经过平移后得到三角形A1B1C1,点A与点A1,点B与点B1,点C与点C1分别是对应点,观察各对应点坐标之间的关系,解答下列问题:(1)分别写出点A与点A1,点B与点B1,点C与点C1的坐标;(2)若点P(x,y)通过上述的平移规律平移得到的对应点为Q(3,5),求点P的坐标.图11-2-1知识点 3平面直角坐标系中的平移作图6.如图11-2-2所示,在平面直角坐标系中画出将“小船”先向下平移3个单位,再向右平移2个单位后得到的图形.图11-2-27.已知三角形ABC三个顶点的坐标分别是(-2,1),(2,3),(-3,-1),把三角形ABC平移到一个确定位置,则平移后各顶点的坐标可能是()A.(0,3),(0,1),(―1,―1)B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3)D.(-1,3),(3,5),(-2,1)8.若将点P(1,-m)向右平移2个单位,再向上平移1个单位后得到点Q(n,3),则点K(m,n)的坐标为________.9.如图11-2-3,在平面直角坐标系中,P(a,b)是三角形ABC的边AC上的一点,三角形ABC经平移后点P的对应点为P1(a+6,b+2).(1)请画出经过上述平移后得到的三角形A1B1C1,并写出点A,C,A1,C1的坐标;(2)求线段AC扫过的面积.图11-2-3教师详解详析1.(1)(0,1) (2)(4,1) (3)(2,3) (4)(2,-1) 2.A 3.(5,1)4.B [解析] 只有横坐标变化,则图形左右平移,根据“左减右加”,可知选B . 5.解:(1)由图知A(1,2),A 1(-2,-1),B(2,1),B 1(-1,-2),C(3,3),C 1(0,0).(2)由(1)知,平移的方向和距离为向左平移3个单位,向下平移3个单位.所以⎩⎨⎧x -3=3,y -3=5,解得⎩⎪⎨⎪⎧x =6,y =8.则点P 的坐标为(6,8). 6.略7.D [解析] 平移后各顶点的坐标与原顶点坐标相比,必须有统一的变化规律,即每个顶点的横坐标要有相同的变化,纵坐标也有相同的变化.通过计算可知,只有D 项各点坐标符合这一要求,这一组坐标的变化规律是“横坐标都加1,纵坐标都加2”.8.(-2,3)9.解:(1)如图,三角形A 1B 1C 1即为所求.各点的坐标分别为A(-3,2),C(-2,0),A 1(3,4),C 1(4,2).(2)如图,连接AA 1,CC 1.S 三角形AC1A1=12×7×2=7,S 三角形AC1C =12×7×2=7,所以四边形ACC 1A 1的面积为7+7=14,即线段AC 扫过的面积为14.第2课时 函数的表示法——列表法和解析法知识点 1 函数的表示法——列表法1.某种苹果的价格为每千克6元,用列表法表示购买苹果所用金额y(元)与购买苹果数量x(千克)之间的函数关系,请将表格补充完整.2.,弹跳高度b 与下降高度d 的关系,下列说法错误的是( )A .d 与b 都是变量,B .弹跳高度b 可以看作是下降高度d 的函数C .弹跳高度b 随着下降高度d 的增大而增大D .弹跳高度、下降高度增加的量相同知识点 2 函数的表示法——解析法3.某种签字笔的单价为2元/支,购买这种签字笔x 支的总价为y 元,则y 与x 之间的函数表达式为( )A .y =-12xB .y =12x C .y =-2x D .y =2x4.小颖现已存款200元,为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y (元)与时间x (月)之间的函数表达式是( )A .y =10xB .y =120xC .y =200-10xD .y =200+10x5.一列火车以60千米/时的速度行驶,它驶过的路程s (千米)是所用时间t (时)的函数,这个函数的表达式可表示为____________.6.2018春·淮南期末某车站规定旅客可以免费携带不超过20千克的行李,超过部分每千克收取1.5元的行李费,则旅客需交的行李费y (元)与携带行李质量x (千克)(x >20)的函数表达式为____________.知识点 3 函数自变量取值范围的确定7.函数y =x 2+1的自变量x 的取值范围为( ) A .x >0 B .x <0 C .全体实数 D .x ≠0 8.2018·宿迁函数y =1x -1中,自变量x 的取值范围是( ) A .x ≠0 B .x <1 C .x >1 D .x ≠19.2018·十堰函数y =x -3的自变量x 的取值范围是________.知识点 4 求函数值10.若函数的表达式为y =x +2x -1,则当x =2时对应的函数值是( )A .4B .3C .2D .011.声音在空气中传播的速度y (m/s)与气温x (℃)之间有如下对应关系:y =35x +331.当气温为15 ℃时,声音在空气中传播的速度为__________.12.教材例3变式题拖拉机开始工作时,油箱中有油30 L ,每小时耗油5 L. (1)写出油箱中的余油量Q (L)与工作时间t (h)之间的函数表达式; (2)求出自变量t 的取值范围; (3)拖拉机工作3 h 后,剩余多少油?13.如图12-1-3,数轴上表示的是某个函数中自变量x 的取值范围,则这个函数的表达式可以为( )图12-1-3 A.y=x+2 B.y=x2+2C.y=x+2 D.y=1 x+214.2017·濉溪月考按照图12-1-4的运算程序,当输入的x=-2时,输出的y的值是()图12-1-4A.-7 B.-5 C.1 D.315.2018·巴中函数y=x-1+1x-2中自变量x的取值范围是______________.16.某商店对某种商品进行降价促销,该商品的原价为每件560元,随着不同幅度的降价,日销量(单位:件)发生相应的变化(如下表):看出每降价5元,日销量增加________件,从而可以估计降价之前的日销量为________件,如果售价为500元,那么日销量为________件.17.教材练习第3题变式题一司机驾驶汽车从甲地去乙地,以80千米/时的平均速度用6小时到达目的地.(1)当他按原路返回时,求汽车的平均速度v(千米/时)与所用时间t(时)之间的函数表达式;(2)如果司机匀速返回,用了4.8小时,求返回时的速度.18.在学习地理时,我们知道“海拔越高,气温越低”,下表是海拔高度h(km)与此高度处气温t(℃)的关系.(1)观察表格中的数据,海拔高度每增加1 km,气温将如何变化?(2)海拔高度为0 km时,气温是多少?请写出气温t与海拔高度h之间的函数表达式(不要求写出自变量的取值范围);(3)当气温是零下40 ℃时,其海拔高度是多少?19.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).(2)当提出概念所用的时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用的时间为几分钟时,学生的接受能力最强?(4)当时间x 在什么范围内时,学生的接受能力逐步增强?当时间x 在什么范围内时,学生的接受能力逐步降低?(5)根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少.教师详解详析1.6 12 18 24 302.D [解析] 由表格可知,当下降高度一定时,弹跳高度是唯一的,故弹跳高度b 可以看作是下降高度d 的函数,故选项A ,B 的说法都正确.由表格中数据易知C 正确.由表格数据,下降高度由50变化到100,弹跳高度从25变化到50,增加的量不等,故选项D 的说法错误.3.D 4.D5.s =60t 6.y =1.5x -30 7.C 8.D 9.x ≥3 10.A11.340 m/s [解析] 当气温为15 ℃,即x =15时,y =35×15+331=9+331=340.12.[解析] (1)拖拉机余油量等于现有油量减去已耗油量;(2)根据自变量的实际意义,列出不等式求得t 的取值范围;(3)把自变量的值代入函数表达式求得.解:(1)Q =30-5t .(2)由于油箱中有油30 L ,每小时耗油5 L ,拖拉机可以工作30÷5=6(h),所以自变量t 的取值范围是0≤t ≤6.(3)当t =3时,Q =30-5×3=15. 即拖拉机工作3 h 后,剩余油量为15 L.13.C [解析] 分别求出四个表达式中自变量的取值范围,再对应数轴确定答案.A 项,y =x +2,x 为任意实数,故不符合题意;B 项,y =x 2+2,x 为任意实数,故不符合题意;C 项,y =x +2,x +2≥0,即x ≥-2,故符合题意;D 项,y =1x +2,x +2≠0,即x ≠-2,故不符合题意.14.A [解析] 因为x =-2<-1,所以把x =-2代入y =2x -3,得y =2×(-2)-3=-7.故选A.15.x ≥1且x ≠2 [解析] 由题意,得⎩⎨⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2.16.日销量 30 750 1110 [解析] 因为日销量随降价的改变而改变,所以降价是自变量,日销量是因变量.从表中可知日销量与降价之间的关系为:日销量=750+(原价-售价)÷5×30,则可以估计降价之前的日销量为750件.当售价为500元时,日销量为750+(560-500)÷5×30=1110(件).17.解:(1)由题意知甲地与乙地间的路程为80×6=480(千米), 所以汽车的平均速度v 与所用时间t 之间的函数表达式为v =480t (t >0).(2)当t =4.8时,v =4804.8=100.即返回时的速度为100千米/时.18.解:(1)海拔高度每增加1 km ,气温就下降6 ℃. (2)海拔高度为0 km 时,气温是20 ℃.t =20-6h . (3)-40=20-6h ,解得h =10.答:当气温是零下40 ℃时,其海拔高度是10 km.19.解:(1)表中反映了提出概念所用的时间和对概念的接受能力两个变量之间的关系,其中提出概念所用的时间是自变量,对概念的接受能力是因变量.(2)由表格可知,当提出概念所用的时间为10分钟时,学生的接受能力是59. (3)由表可知,当提出概念所用的时间为13分钟时,学生的接受能力最强. (4)当0≤x ≤13时,学生的接受能力逐步增强;当13<x≤30时,学生的接受能力逐步降低.(5)由表可知,14分钟之后,每增加3分钟,学生对概念的接受能力降低1.5,因此估计当时间为23分钟时,学生对概念的接受能力为55.3.第3课时函数的表示法——图象法知识点 1函数图象上点的坐标与函数表达式的关系1.下列各点在函数y=3x-4的图象上的是()A.(-1,1) B.(2,2) C.(-2,2) D.(2,-2)2.已知点A(2,3)在函数y=ax+1的图象上,则a的值为()A.1 B.-1 C.2 D.-23.已知点P(3,m),Q(n,2)都在函数y=x+8的图象上,则m+n=________.知识点 2函数与图象4.教材练习第3题变式题下列四个图象分别给出了x与y的对应关系,其中y是x的函数的是()图12-1-5知识点 3画函数图象5.小明在画函数y=x-2的图象时,列出了如下表格,请填写完整.6.画出函数y =2x -2,3),(2,3)是否在该函数图象上.7.下列各点:A (-3,-5),B (-1,-3),C (-12,0),D (0,1)中,在函数y =2x +1的图象上的点有( )A .1个B .2个C .3个D .4个 8.函数y =x 2+2x|x |的图象为( )图12-1-69.教材练习第2题变式题(1)画出函数y =12x 2的图象;(2)试判断点(-3,-2)是否在上述函数图象上.10.用列表、描点的方法在同一平面直角坐标系中画出函数y =x +2和y =x 2的图象,根据图象直接写出函数y =x +2和y =x 2的图象的交点坐标.11.用描点法作出函数y =⎩⎪⎨⎪⎧2x (0≤x ≤3),3x -3(x >3)的图象,并求出当y =36时,x 的值.教师详解详析1.B2.A[解析] 把x=2,y=3代入y=ax+1中,有3=2a+1,解得a=1.3.5[解析] 根据函数图象的定义知点P(3,m)和点Q(n,2)的坐标都满足函数y=x+8的表达式,所以3+8=m,n+8=2,解得m=11,n=-6.所以m+n=11+(-6)=5.4.D5.-3-16.解:列表:描点,点(1,1),(2,3)在函数y=2x-1的图象上,点(-1,0),(-2,3)不在函数y=2x-1的图象上.7.C[解析] 将各点的横坐标作为自变量x的值代入表达式,求出相应的函数值,与相应纵坐标相等的点在图象上,A,C,D三点在该函数图象上.故选C.8.D[解析] 当x<0时,函数表达式为y=-x-2,当x>0时,函数表达式为y=x+2.故选D.9.解:(1)列表如下:描点、连线:(2)当x =-3时,y =12×(-3)2=92≠-2,所以点(-3,-2)不在函数y =12x 2的图象上.10.解:列表如下:函数y =x观察图象发现两个函数图象的交点坐标分别是(-1,1)和(2,4). 11.解:列表如下:描点、连线:因为当x=3时,y=2x=2×3=6<36,故当y=36时,即3x-3=36,解得x=13.第4课时函数图象在实际生活中的简单应用知识点 1用函数图象刻画实际问题1.杯子里的开水越放越凉,下列图象中可以大致反映这杯水的温度T(℃)与时间t(分)之间关系的是()图12-1-72.在一次足球比赛中,守门员用脚踢出去的球的高度h随时间t的变化而变化,可以近似地表示这一过程的图象是()图12-1-83.2017·和县期末用固定的速度往如图12-1-9所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是()图12-1-9图12-1-10知识点 2由函数图象获取信息4.2018·呼和浩特二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,如图12-1-11,在下列选项中白昼时长低于11小时的节气是()图12-1-11A.惊蛰 B.小满 C.立秋 D.大寒5.2017·北京小苏和小林在如图12-1-12①所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:米)与跑步时间t(单位:秒)的对应关系如图②所示.下列叙述正确的是()图12-1-12A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15秒跑过的路程大于小林前15秒跑过的路程D.小林在跑最后100 米的过程中,与小苏相遇2次6.教材练习第1题变式题一天之中,海水的水深是不同的,图12-1-13是某港口从0时到12时的水深情况,结合图象回答下列问题:(1)图中描述了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2)大约什么时刻港口的水最深?深度约是多少?(3)图中点A表示的是什么?(4)在什么时间范围内,水深在增加?在什么时间范围内,水深在减小?图12-1-137.李奶奶晚饭以后出去散步,碰见老邻居交谈了一会儿,返回途中,在读报亭前看了一会儿报,如图12-1-14所示是据此情况所画出的图象,请你根据图象解答下列问题:(1)李奶奶是在离家多远的地方碰到老邻居的?交谈了多长时间?(2)读报亭离家多远?(3)李奶奶在哪段时间走得最快?图12-1-148.2017·鸡西如图12-1-15,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙池中水面上升的高度h与注水时间t之间的函数关系图象可能是()图12-1-15图12-1-169.2018·镇江甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图12-1-17所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:5010.一游泳池长90米,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样反复数次.图12-1-18中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图象回答:(1)甲、乙两人分别游了几个来回?(2)甲游了多长时间?游泳的速度是多少?(3)在整个游泳过程中,甲、乙两人相遇了几次?图12-1-1811.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图12-1-19所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是()A.12分钟 B.15分钟C.25分钟 D.27分钟教师详解详析1.C[解析] 杯中的水越放越凉,指温度随时间的增加越来越低.故选C.2.C3.A[解析] 因杯子下面窄上面宽,且相同的时间内注入的水量相同,所以高度随时间增加得越来越慢,即图象应越来越缓,分析四个图象,只有A符合要求.故选A.4.D5.D6.解:(1)图中描述了港口的水深和时间之间的关系,其中时间是自变量,港口的水深是因变量.(2)大约在3时港口的水最深,深度约是7米.(3)图中点A表示的是6时港口的水深是5米.(4)从0时到3时及从9时到12时,水深在增加;从3时到9时,水深在减小.7.解:(1)李奶奶在离家600米处的地方碰到老邻居,交谈了10分钟.(2)300米.(3)李奶奶在离家40分钟~45分钟走得最快.8.D[解析] ①当甲池水未到达连接地方时,乙池中的水面高度没有变化;②当甲池中的水到达连接的地方,乙池中的水面快速上升;③当乙池中的水到达连接处时,乙水池中的水面持续增长较慢;④最后超过连接处时,乙池中的水面上升较快,但比第②段要慢.故选D.9.B[解析] 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h,所以速度为40÷1=40(km/h),于是行驶后一半路程的速度是40+20=60(km/h),所以行驶后一半路程所用的时间为40÷60=23(h).因为23 h =40 min ,所以该车一共行驶了1小时40分钟到达乙地,所以到达乙地的时间是当天上午10:40.10.解:(1)观察图象可知甲游了3个来回,乙游了2个来回.(2)甲一共游了180秒,游了3个来回,所以他游泳的速度为3×2×90÷180=3(米/秒). (3)根据他们的图象有5个交点,可知甲、乙两人相遇了5次.11.B [解析] 由图可知,小高骑车上坡的路程长为1千米,用时5分钟,所以上坡的速度为0.2千米/分;下坡的路程长为2千米,用时为4分钟,所以下坡的速度为0.5千米/分.当返回时,原先的上坡路段变为了下坡路段,用时为1÷0.5=2(分);原先的下坡路段变为了上坡路段,用时为2÷0.2=10(分);平路来回所用的时间不变.所以小高从单位到家门口需要的时间是2+10+3=15(分).[点评] 利用函数的图象获取信息的核心是“识图”.首先观察图象,捕捉有效的信息,然后对已获取的信息进行加工、整理,最后用于解决实际问题.12.1 第1课时 函数及其相关概念知识点 1 常量与变量1.甲以每小时20千米的速度行驶时,他所走过的路程s 和时间t 之间可用公式s =20t 来表示,则下列说法正确的是( )A .数20和s ,t 都是变量B .数20和t 都是变量C .s 和t 都是变量D.数20和s都是常量2.长方形相邻两边长分别为x,y,面积为30,则用含x的式子表示y为________,在这个问题中,________是常量,________是自变量,________是因变量.知识点 2函数的概念3.图12-1-1反映的是骆驼的体温和时间的关系.在这一问题中,____________是________的函数.图12-1-14.汽车行驶前油箱中有油60升,已知每百千米汽车耗油10升,油箱中的余油量Q(升)与它行驶的距离s(百千米)之间的关系为____________,其中________是________的函数.5.在下表中,设x表示乘公共汽车的站数,y表示应付的票价(元).A.y是x的函数 B.y不是x的函数C.x是y的函数 D.以上说法都不对6.一辆汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.(1)请根据题意填写下表:(2)用含t(3)这一变化过程中,________是常量,________是变量.7.某剧院的观众席的座位呈扇形排列,且按下列方式设置:(1)(2)y是x的函数吗?如果是,写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,第20排共有多少个座位?8.按图12-1-2的方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示可坐人数,请回答下列问题:(1)题中有几个变量?(2)y与x之间有怎样的关系?y是x的函数吗?(3)按照这种方式摆放餐桌和椅子,能摆出恰好可坐100人的桌椅吗?为什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、1.D 2.A 3.C
11二、1. ?, 2.
(1)25.53 (2)4.11 4. 0或1. 44
3.(1)±0.2 (2)±3 (3)?
11三、1.(1)80 (2)1.5 (3)1 (4)3;2.(1)-9 (2) ? (3)4 (4)-5 24
3.(1)2.83 (2)28.09(3)-5.34 (4)±0.47.
4.正方形铁皮原边长为5cm.
§12.1平方根与立方根(三)
一、1.D 2.A 3.C
二、
-3 2. 6,-343 3.-4 4. 0,1,-1.
51三、1.(1)0.4 (2)-8 (3)( 4)?1 (5)-2 (6)100; 62
2.(1)19.0.9016; 3. 63.0cm2;
死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。一、1.B 2.A 3.B
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。1.±7 2.±2,
一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。3.-1; 4.0
八年级上数学同步练习册答案2019
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?12.1平方根与立方根(一)
??1 2.有理数集合中的数是:,3.1415,2
-5,0,6.34,0.8
3
?,0.1010010001…; 3.A点对应的数是-3,B点对应的数是-1.5,C
要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。D
4.计算得:0.5151,5.151,51.51,515.1,得出规律:当被开方数的小数点向左(右)
每移动2位,它的平方根的小数点就向左(右)移动1位.
5151.
§12.2实数(一)
一、1.B 2.C
1二、1.略
2.≥?. 2
三、1.(1)√(2)×(3)√(4)×(5)×(6)×(7)√(8)×;
要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。二、
三、1.从左至右依次为:±3,±4,±5,±6,±7,±8,±9,±10,±11,±12,±13,±14,
±15.
422.(1)±25 (2)±0.01 (3)? (4)? (5)±100 (6)±2 59
17 (4) ? 79
4.(1)a-2 (2)a=-2 (3)a-2.
§12.1平方根与立方根(二)
E点对应的数是?.§12.2实数(二)
要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。