(word完整版)2017全国1卷理科数学(含答案),推荐文档
(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。
(word完整版)2017高考新课标全国1卷理综试题及答案,推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Cl35.5 K39 Ti 48 Fe 56I 127一、选择题:本题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.细胞间信息交流的方式有多种。
在哺乳动物卵巢细胞分泌的雌激素作用于乳腺细胞的过程中,以及精子进入卵细胞的过程中,细胞间信息交流的实现分别依赖于A.血液运输,突触传递B.淋巴运输,突触传递C.淋巴运输,胞间连丝传递D.血液运输,细胞间直接接触2.下列关于细胞结构与成分的叙述,错误的是A.细胞膜的完整性可用台盼蓝染色法进行检测B.检测氨基酸的含量可用双缩脲试剂进行显色C.若要观察处于细胞分裂中期的染色体可用醋酸洋红液染色D.斐林试剂是含有Cu2+的碱性溶液,可被葡萄糖还原成砖红色3.通常,叶片中叶绿素含量下降可作为其衰老的检测指标。
为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸馏水、细胞分裂素(CTK)、脱落酸(ABA)、CTK+ABA溶液中,再将各组置于光下。
一段时间内叶片中叶绿素含量变化趋势如图所示,据图判断,下列叙述错误的是A.细胞分裂素能延缓该植物离体叶片的衰老B.本实验中CTK对该植物离体叶片的作用可被ABA削弱C.可推测ABA组叶绿体中NADPH合成速率大于CTK组D.可推测施用ABA能加速秋天银杏树的叶由绿变黄的过程4.某同学将一定量的某种动物的提取液(A)注射到实验小鼠体内,注射后若干天,未见小鼠出现明显的异常表现。
2017全国1卷理科数学(含答案).docx

2017 年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={ x|x<1} ,B={ x| 3x 1 },则()A .AB { x | x 0} B .A B R C.A B { x | x 1}D.A B2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A .1B .πC.1D.π84 423.设有下面四个命题p1:若复数 z 满足1R ,则z R ;p2:若复数 z 满足z2R ,则z R ;zp3:若复数 z1, z2满足 z1z2R,则z z;p4:若复数z R,则z R.12其中的真命题为()A.p1, p3 B .p1, p4C.p2, p3D.p2, p44.记S n为等差数列{ a n} 的前 n 项和.若 a4a524 , S648 ,则 { a n } 的公差为()A . 1B . 2C.4D. 85.函数f ( x)在(,) 递减,且为奇函数.若 f (1) 1 ,则满足 1 f ( x2)1的 x 的取值范围是()A.[2,2] B .[ 1,1]C.[0,4]D.[1,3]6.(116展开式中2的系数为()x2 )(1x)xA . 15B . 20C.30D. 35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A . 10B.12C.14 D .168.右面程序框是了求出足3n- 2n>1000 的最小偶数 n,那么在和两个空白框中,可以分填入(A . A>1000 和 n=n+1B .A>1000 和 n=n+2C.A 1000 和 n=n+1 D .A 1000 和 n=n+2: y=cos x, C: y=sin (2 x+2π)9.已知曲 C2),下面正确的是(3A.把 C1上各点的横坐伸到原来的 2 倍,坐不,再把得到的曲向右平移π个位度,得到曲6C2B.把 C1上各点的横坐伸到原来的 2 倍,坐不,再把得到的曲向左平移π个位度,得到曲12C2C.把 C1上各点的横坐短到原来的1倍,坐不,再把得到的曲向右平移π个位度,得到曲26C2D.把 C1上各点的横坐短到原来的1倍,坐不,再把得到的曲向左平移π个位度,得到212曲 C210.已知 F 抛物2的焦点, F 作两条互相垂直的直l 1,l 2,直 l 1与 C 交于 A、B 两点,直C:y =4x与 C 交于 D、 E 两点, |AB |+|DE|的最小()A . 16B . 14C.12D. 10、、z 正数,且2x3y5z)11. x y,(A . 2x<3 y<5zB . 5z<2x<3y C.3y<5 z<2x D. 3y<2x<5z 12.几位大学生响国家的号召,开了一款用件.激大家学数学的趣,他推出了“解数学)l2取件激活”的活.款件的激活下面数学的答案:已知数列1, 1, 2, 1, 2, 4, 1,2, 4, 8, 1, 2,4, 8,16,⋯,其中第一是 20,接下来的两是 20, 21,再接下来的三是 20,21, 22,依此推.求足如下条件的最小整数 N:N>100 且数列的前 N 和 2 的整数.那么款件的激活是()A . 440B . 330C.220D. 110二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知向量 a , b 的夹角为 60°, |a |=2, |b |=1,则 | a +2 b |=.x 2 y 114.设 x ,y 满足约束条件2x y 1,则 z 3x 2 y 的最小值为.x y2215.已知双曲线 C :x2y 2 1( a>0,b>0)的右顶点为 A ,以 A 为圆心, b 为半径作圆 A ,圆 A 与双曲线 C 的 ab一条渐近线交于 M 、 N 两点.若∠ MAN =60°,则 C 的离心率为 ____ ____.16.如图,圆形纸片的圆心为O ,半径为 5 cm ,该纸片上的等边三角形ABC 的中心为 O .D 、E 、F 为圆 O 上的点,△ DBC ,△ ECA ,△ FAB 分别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△ DBC ,△ ECA ,△ FAB ,使得 D 、 E 、 F 重合,得到三棱锥.当△ ABC 的边长变化时,所得 三棱锥体积(单位:cm 3)的最大值为 _______.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答.第 22、 23 题为选考题,考生根据要求作答.(一)必考题:共60 分.a 2 17.(12 分)△ ABC 的内角 A , B , C 的对边分别为 a ,b ,c ,已知△ ABC 的面积为3sin A( 1)求 sinBsinC;( 2)若 6cosBcosC=1, a=3,求△ ABC 的周长.18.( 12 分)如图,在四棱锥 P-ABCD 中, AB//CD ,且BAP CDP 90 .( 1)证明:平面 PAB ⊥平面 PAD ;( 2)若 PA=PD=AB=DC ,APD 90 ,求二面角 A-PB-C 的余弦值.19.( 12 分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N ( , 2 ).( 1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在 ( 3 ,3 ) 之外的零件数,求P( X 1) 及X的数学期望;( 2)一天内抽检零件中,如果出现了尺寸在(3,3 ) 之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95116116( xi x )2116经计算得 x x i9.97 ,s(x i216x 2 ) 20.212,其中x i为抽取的第 i16 i 116 i 116i1个零件的尺寸,i1,2,,16 .用样本平均数x 作为的估计值 ?,用样本标准差s 作为的估计值? ,利用估计值判断是否需对当天的生产过程进行检查?剔除( ? 3 ?, ? 3 ?) 之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z 服从正态分布 N (,2 ) ,则 P(3Z3)0.9974 ,0.9974160.9592,0.0080.09.20.( 12 分)已知椭圆x2y23), P4( 1,3 C:22 =1 (a>b>0),四点P1(1,1),P2(0,1),P3(–1,)a b22中恰有三点在椭圆 C 上.( 1)求 C 的方程;( 2)设直线 l 不经过 P2点且与 C 相交于 A, B 两点.若直线P2A 与直线 P2B 的斜率的和为–1,证明: l 过定点.21.( 12 分)已知函数 f ( x) ae2x(a 2)e x x .( 1)讨论 f ( x) 的单调性;( 2)若f ( x)有两个零点,求 a 的取值范围.(二)选考题:共10 分.请考生在第22、 23 题中任选一题作答,如果多做,则按所做的第一题计分.22. [ 选修 4―4:坐标系与参数方程]( 10 分)x3cos x a4t 在直角坐标系 xOy 中,曲线 C 的参数方程为(θ为参数),直线 l 的参数方程为(为参数).y sin y1t( 1)若 a=-1 ,求 C 与 l 的交点坐标;( 2)若 C 上的点到 l 的距离的最大值为17 ,求 a.23. [ 选修 4—5:不等式选讲]( 10 分)已知函数f(x) = –x2+ax+4 , g(x)= │x+1│ +│x– 1│.(1)当 a=1 时,求不等式 f(x) ≥g(x)的解集;(2)若不等式 f(x) ≥g(x)的解集包含 [–1, 1],求 a 的取值范围.参考答案(理科数学)一、选择题123456789101112A B B C D C B D D A D A二、填空题13.2 314.52315.16.4 15 3三、解答题。
2017全国统一高考理综试题及答案(新课标1卷)word版

绝密★启用前2017年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.。
3.考试结束后,将本试卷和答题卡一并交回.可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Cl 35.5 K 39 Ti 48 Fe 56 I 127一、选择题:本题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.细胞间信息交流的方式有多种。
在哺乳动物卵巢细胞分泌的雌激素作用于乳腺细胞的过程中,以及精子进入卵细胞的过程中,细胞间信息交流的实现分别依赖于A.血液运输,突触传递B.淋巴运输,突触传递C.淋巴运输,胞间连丝传递D.血液运输,细胞间直接接触2.下列关于细胞结构与成分的叙述,错误的是A.细胞膜的完整性可用台盼蓝染色法进行检测B.检测氨基酸的含量可用双缩脲试剂进行显色C.若要观察处于细胞分裂中期的染色体可用醋酸洋红液染色D.斐林试剂是含有Cu2+的碱性溶液,可被葡萄糖还原成砖红色3.通常,叶片中叶绿素含量下降可作为其衰老的检测指标.为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸馏水、细胞分裂素(CTK)、脱落酸(ABA)、CTK+ABA溶液中,再将各组置于光下。
一段时间内叶片中叶绿素含量变化趋势如图所示,据图判断,下列叙述错误的是A.细胞分裂素能延缓该植物离体叶片的衰老B.本实验中CTK对该植物离体叶片的作用可被ABA削弱C.可推测ABA组叶绿体中NADPH合成速率大于CTK组D.可推测施用ABA能加速秋天银杏树的叶由绿变黄的过程4.某同学将一定量的某种动物的提取液(A)注射到实验小鼠体内,注射后若干天,未见小鼠出现明显的异常表现。
【真题】2017年高考全国1卷数学理科试题含答案(Word版)

2017年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}{}131x A x x B x =<=<,,则() A .{}0=<A B x x B .A B =R C .{}1=>A B x xD .A B =∅I【答案】A【解析】{}1A x x =<,{}{}310xB x x x =<=<∴{}0A B x x =<,{}1AB x x =<,选A2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π4【答案】B【解析】设正方形边长为2,则圆半径为1则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的概率为π2则此点取自黑色部分的概率为ππ248=故选B3. 设有下面四个命题()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p ,【答案】B【解析】1:p 设z a bi =+,则2211a bi z a bi a b -==∈++R ,得到0b =,所以z ∈R .故1P 正确; 2:p 若z =-21,满足2z ∈R ,而z i =,不满足2z ∈R ,故2p 不正确;3:p 若1z 1=,2z 2=,则12z z 2=,满足12z z ∈R ,而它们实部不相等,不是共轭复数,故3p 不正确;4:p 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p 正确;4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1 B .2C .4D .8【答案】C【解析】45113424a a a d a d +=+++=61656482S a d ⨯=+= 联立求得11272461548a d a d +=⎧⎪⎨+=⎪⎩①②3⨯-①②得()211524-=d624d =4d =∴ 选C5. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值范围是() A .[]22-, B .[]11-, C .[]04, D .[]13,【答案】D【解析】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤| 又()f x 在()-∞+∞,单调递减121x ∴--≤≤3x ∴1≤≤ 故选D6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为 A .15 B .20 C .30 D .35【答案】C.【解析】()()()66622111+1111x x x x x ⎛⎫+=⋅++⋅+ ⎪⎝⎭对()61x +的2x 项系数为2665C 152⨯== 对()6211x x⋅+的2x 项系数为46C =15, ∴2x 的系数为151530+= 故选C7. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B【解析】由三视图可画出立体图该立体图平面内只有两个相同的梯形的面 ()24226S =+⨯÷=梯6212S =⨯=全梯 故选B8. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+ 【答案】D【答案】因为要求A 大于1000时输出,且框图中在“否”时输出∴“”中不能输入A 1000> 排除A 、B又要求n 为偶数,且n 初始值为0, “”中n 依次加2可保证其为偶 故选D9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 【答案】D【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来 2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x .注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为() A .16B .14C .12D .10【答案】A 【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴 易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性)cos AF P AF θ⋅+=∴ 同理1cos P AF θ=-,1cos PBF θ=+∴22221cos sin P PAB θθ==- 又DE 与AB 垂直,即DE 的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当π4θ=取等号 即AB DE +最小值为16,故选A11. 设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<【答案】D【答案】取对数:ln 2ln3ln5x y ==.ln33ln 22x y => ∴23x y > ln2ln5x z = 则ln55ln 22x z =< ∴25x z <∴325y x z <<,故选D12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440 B .330 C .220 D .110 【答案】A【解析】设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推.设第n 组的项数为n ,则n 组的项数和为()12n n +由题,100N >,令()11002n n +>→14n ≥且*n ∈N ,即N 出现在第13组之后第n 组的和为122112nn -=--n 组总共的和为()2122212n nn n --=---若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数即()*21214k n k n -=+∈N ,≥ ()2log 3k n =+→295n k ==,则()2912954402N ⨯+=+=故选A二、 填空题:本题共4小题,每小题5分,共20分。
2017高考全国1卷理科数学试题与答案解析[精校解析版]
![2017高考全国1卷理科数学试题与答案解析[精校解析版]](https://img.taocdn.com/s3/m/eaeab6ce5122aaea998fcc22bcd126fff7055d3d.png)
WORD 格式整理2016 年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置. 用2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 写在试题卷、草稿纸和答题卡上的非答题区域内均无效.3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内. 写在试题卷、草稿纸和答题卡上的非答题区域均无效.4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.5、考试结束后,请将本试题卷和答题卡一并上交.第 Ⅰ 卷一 . 选择题:本大题共12 小题 ,每小题 5 分 ,在每小题给出的四个选项中,只有一项是符合题目要求的 .1.设集合Ax x 2 4x 3 0 ,x 2 x 3 0 ,则A B( A )3,3(B )3,3( C )1,3(D )3,322 2 22.设(1 i ) x1 yi ,其中x, y 是实数,则xyi(A )1(B )2(C )3(D )23.已知等差数列a n前 9 项的和为27,a 108,则a 100( A )100 (B )99 (C )98 (D )974.某公司的班车在 7:00,8:00,8:30 发车,小明在7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是( A ) 1( B ) 1(C ) 2( D ) 332 3 4x 2 y 21 表示双曲线,且该双曲线两焦点间的距离为4,则 n 的取值范围是5.已知方程n 3m 2m 2nWORD 格式整理(A)1,3(B)1, 3(C)0,3(D)0,36.如图 ,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 .若该几何体的体积是28,则它的表面积是3(A)17(B)18(C)20(D)28函数 y2x2e x在2,2的图像大致为7.y y( A )1( B)12O 2x2O 2xy y11(C)2O 2 x(D)2O 2x8.若a b10,c 1,则( A )a c b c( B)ab c ba c( C )a log b c b log a c(D)log a c9.执行右面的程序框图 ,如果输入的x 0,y1, n 1 ,则输出x,y的值满足( A )y 2 x( B)y3x (C) y4x (D) y 5x10.以抛物线 C 的顶点为圆心的圆交 C 于 A、B两点,交 C的准线于D 、E 两点 .已知 |AB|= 4 2 ,|DE|= 2 5 ,则 C 的焦点到准线的距离为n=n+1(A)2(B)4(C)6(D)811.平面过正方体ABCD -A1B1C1D1的顶点 A,//平面 CB1D 1,I平面 ABCD =m, I平面 AB B1A1=n,则 m、n 所成角的正弦值为3231(A)(B)(C)(D)2233log b c开始输入x,y,nn-1x=x+ 2,y=nyx2+y2≥36?否是输出x,y结束WORD 格式整理12.已知函数f (x) sin(x+)(0,), x为 f (x) 的零点, x为 y f ( x) 图像244的对称轴,且 f ( x) 在5单调,则的最大值为18,36(A)11(B)9(C)7(D)5二、填空题:本大题共 3 小题 ,每小题 5 分13.设向量 a=(m,1), b=(1,2) ,且 |a+b|2=|a|2+|b|2,则 m=.14. (2 xx )5的展开式中,x3的系数是.(用数字填写答案)15.设等比数列a n满足a1+a3=10,a2+a4=5,则a1a2⋯a n的最大值为.16.某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg,乙材料 1kg,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg,乙材料 0.3kg ,用 3 个工时.生产一件产品 A 的利润为2100 元,生产一件产品 B 的利润为 900 元.该企业现有甲材料150kg,乙材料 90kg,则在不超过600 个工时的条件下,生产产品 A、产品 B 的利润之和的最大值为元.三.解答题:解答应写出文字说明 ,证明过程或演算步骤 .17.(本小题满分为 12 分)ABC 的内角A,B,C的对边分别为a, b, c,已知2cos C (a cos B+b cos A)c.( I)求 C;( II )若c7 ,ABC 的面积为3 3,求ABC 的周长.218.(本小题满分为12 分)如图,在以A,B,C,D, E, F 为顶点的五面体中,面ABEF 为正方形, AF =2FD ,AFD 90 ,且二面角D -AF -E 与二面角 C-BE-F 都是60.( I)证明:平面ABEF平面EFDC;( II )求二面角E-BC- A 的余弦值.DC FWORD 格式整理19.(本小题满分12 分)某公司计划购买 2 台机器 ,该种机器使用三年后即被淘汰.机器有一易损零件 ,在购进机器时,可以额外购买这种零件作为备件,每个 200 元 .在机器使用期间 ,如果备件不足再购买 ,则每个 500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数40200891011更换的易损零件数以这 100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X表示 2台机器三年内共需更换的易损零件数, n表示购买 2 台机器的同时购买的易损零件数.( I)求X的分布列;( II )若要求P( Xn)0.5 ,确定 n 的最小值;( III )以购买易损零件所需费用的期望值为决策依据,在n19 与 n20 之中选其一,应选用哪个?20.(本小题满分12 分)设圆x2y22x 15 0 的圆心为A,直线 l 过点 B( 1,0)且与 x 轴不重合, l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交AD 于点 E.( I)证明EA EB 为定值,并写出点E 的轨迹方程;( II )设点 E 的轨迹为曲线C1,直线 l 交 C1于 M ,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分 12分)已知函数 f x x 2 e x2有两个零点 .a x 1(I) 求 a 的取值范围;(II) 设 x1,x2是f x 的两个零点,证明:x1x2 2 .WORD 格式整理请考生在22、 23、 24 题中任选一题作答,如果多做 ,则按所做的第一题计分.22.(本小题满分10 分)选修4-1:几何证明选讲如图,△ OAB 是等腰三角形,∠AOB=120°.以 O 为圆心,1OA为半径作圆. 2(I)证明:直线 AB 与⊙ O 相切;(II)点 C,D 在⊙ O 上,且 A, B, C, D 四点共圆,证明: AB∥ CD.D COAB23.(本小题满分10 分)选修4— 4:坐标系与参数方程在直角坐标系 x y 中,曲线 C1的参数方程为x a cost( t 为参数, a> 0).y 1 a sin t在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C2:ρ= 4cos .( I)说明 C1是哪一种曲线,并将C1的方程化为极坐标方程;( II )直线 C3的极坐标方程为0 ,其中0满足 tan0 =2 ,若曲线 C1与 C2的公共点都在 C3上,求 a.24.(本小题满分10 分)选修4— 5:不等式选讲已知函数 f xx 1 2x3 .( I)画出yf x 的图像;( II )求不等式f x1 的解集.WORD 格式整理2016 年高考全国 1 卷理科数学参考答案题号123456789101112答案D B C B A A D C C B A B1. A x x2 4 x 3 0x 1 x 3 , B x 2 x 3 0x x 3 .2故 A B x 3x3.2故选 D.2.由 1i x1yi 可知: x xi1yi ,故x1 ,解得:x 1 .x y y1所以, x yi x2y2 2 .故选 B.3. 由等差数列性质可知:S99 a1a992a59a5 27,故 a5 3 ,22而 a108,因此公差 d a10a51 105∴ a100a1090d98 .故选 C.4.如图所示,画出时间轴:7:307:407:508:008:108:208:30A C D B小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或 DB 时,才能保证他等车的时间不超过10 分钟根据几何概型,所求概率 P10 10 1 .402故选 B.WORD 格式整理5.x 2 y 21 表示双曲线,则m 2n 3m 2n 0m 2n 3m 2n∴ m 2 n 3m 2由双曲线性质知: c 2m 2 n 3m 2 n 4m 2,其中c 是半焦距∴焦距 2c 2 2 m 4 ,解得 m 1∴ 1 n 3故选 A .6. 原立体图如图所示:是一个球被切掉左上角的1后的三视图8表面积是7的球面面积和三个扇形面积之和8S=7422 +3 122 =1784 故选 A .7. f 28 e 2 8 2.82 0,排除Af2 8 e 28 2.721 ,排除 Bx 0 时,f x2x2e xf x4x e x,当x0,1时, f x1 4 e 044因此 f x 在 0,1单调递减,排除C4故选 D .8. 对A :由于 0 c1 ,∴函数 y x c 在R 上单调递增,因此 a b 1a cb c ,A 错误对 B :由于 1c 1 0 ,∴函数c 1上单调递减,y x 在 1,∴ a b 1 a c 1b c 1ba c ab c ,B 错误WORD 格式整理对 C:要比较alog b c和blog a c,只需比较a ln c和 bln c,只需比较ln c 和ln c,只需 bln b ln b ln a bln b aln a和 a ln a构造函数 f x x ln x x 1 ,则 f 'x ln x 1 1 0 , f x 在 1,上单调递增,因此 f a f b 0aln a bln b011 a ln a b ln b又由 0 c 1得 ln c0 ,∴ln caln a 对 D:要比较log a c和log b c,只需比较ln cblog a c a log b c ,C正确b ln bln c 和 ln cln a ln b而函数 y ln x 在 1,上单调递增,故a b 1ln a ln b11 0ln bln a又由 0c1得 ln c0 ,∴ln cln c log a c log b c ,D错误ln a ln b故选 C.9. 如下表:循环节运x x x n 1判断是否y y ny n n n 1行次数222输出x y36运行前01//1第一次01否否2第二次12否否3 2第三次36是是2输出 x 3, y 6 ,满足 y4x 2故选 C.10.以开口向右的抛物线为例来解答,其他开口同理设抛物线为y2 2 px p 0 ,设圆的方程为x2y2r 2,题目条件翻译如图:设 A x0 ,2 2 ,D p, 5 ,2WORD 格式整理点 A x0 ,22在抛物线 y2 2 px 上,∴8 2 px0⋯⋯①p ,p2点 D5在圆 x2y2r2上,∴ 5r 2⋯⋯②22点 A x0 ,2222228 r2在圆 x y r上,∴ x0⋯⋯③联立①②③解得: p 4 ,焦点到准线的距离为p 4 .故选 B.D CαBA11.如图所示:∵∥平面 CB1D1,∴若设平面 CB1 D1平面 ABCD m1,C1D 1则 m1∥ mA1B1又∵平面ABCD∥平面1111,结合平面B1D1C 平面 1 1 1 1 1ABCD A1BC D BD ∴B1D1∥m1,故 B1D1∥m同理可得: CD1∥n故 m 、 n 的所成角的大小与B1 D1、 CD1所成角的大小相等,即CD1B1的大小.而 B1C B1D1CD1(均为面对交线),因此CD1 B1,即 sin CD1 B1 3 .32故选 A.12. 由题意知:π +k π41π +k2π+π42则2k 1 ,其中 k Zf ( x) 在π,5π单调,518π T ,12 18 3636122接下来用排除法若11,πsin 11xππ 3π3π, 5π递减,不满,此时 f (x), f (x) 在,递增,在44184444 36足 f ( x) 在π 5π单调,3618WORD 格式整理若9,π sin 9xπ ,满足 f ( x) 在π 5π单调递减,此时 f ( x)418 ,436故选 B .13.-2 14.1015. 6416. 21600013. 由已知得: a bm 1,32 22232 m 2 12 1222,解得 m∴ abab m 2 .1 14.设展开式的第k1项为 T k1, k0,1,2,3,4,55 kk5 k∴ T k 1 C 5k xC 5k 25 k x 2.2 xk4 ,即 T5 C 54255 4当 5 3 时, k4x210x 32故答案为 10.15. 由于 a n 是等比数列,设a na 1q n 1,其中a 1是首项,q 是公比.a 1 a 3 10 a 1 a 1q 210a 1 8 ∴a 4 5a 1q a 1q3,解得: q 1 .a 25 21 n 43 2 ... n 4故 a n,∴ a 1 a 2 ...11 2a n221n n 72121n 7249 2 243或4时,121当 nn749取到最小值6 ,此时22421n 7 2 492 24取到最大值26.所以 a 1 a 2 ... a n 的最大值为64.16.设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线专业技术参考资料WORD 格式整理目标函数 z2100 x900 y作出可行域为图中的四边形,包括边界,顶点为(60,100) (0,200) (0,0) (90,0)在 (60,100) 处取得最大值,z2100 6090010021600017. 解:⑴2cos C a cos B b cos A c由正弦定理得: 2cos C sin A cos B sin B cos A sin C2cos C sin A B sin C∵ A B C π,A、B、C0 ,π∴ sin A B sin C0∴ 2cosC 1 , cosC 1 2∵ C0 ,π∴ C π3⑵ 由余弦定理得:c2 a 2b2 2 ab cosC7a2b22ab12a b23ab7S 1ab sin C333 2ab24∴ ab62∴ a b187a b 5∴△ ABC 周长为 a b c 57WORD 格式整理18.解:(1)∵ ABEF为正方形∴ A FE F∵AFD 90∴AF DF∵ DF EF=F∴AF 面 EFDCAF面 ABEF∴平面 ABEF平面EFDC⑵ 由⑴知DFECEF 60∵AB∥EFAB平面 EFDCEF平面 EFDC∴AB ∥平面 ABCDAB平面 ABCD∵面 ABCD面EFDC CD∴AB∥CD∴CD∥EF∴四边形 EFDC 为等腰梯形以 E 为原点,如图建立坐标系,设FD aE 0 ,0,0 B 0 ,2a ,0C a ,,3 A 2a,a2,022EB 0 ,2a ,0 , BC a, 2a ,3a, AB2a ,0 ,0 22设面 BEC 法向量为m x ,y ,z .m EB 0 ,即2a y10ax12ay13a z10x1 3 , y10, z11m BC 022 m3,0, 1设面 ABC 法向量为n x2,y2,z2n BC=0a3.即2x2 2 ay22az20x20 , y23, z24n AB 02ax20WORD 格式整理n0, 3,4设二面角 E BC A的大小为.cosm n4219m n 3 1 3 1619∴二面角 E BC A 的余弦值为219 1919解:⑴每台机器更换的易损零件数为8, 9, 10, 11记事件 A i为第一台机器 3 年内换掉i7个零件 i1,2,3,4记事件 B i为第二台机器 3 年内换掉i7 个零件i1,2,3,4由题知 P A1P A3P A4P B1P B3P B40.2, P A2P B20.4设 2 台机器共需更换的易损零件数的随机变量为X ,则 X 的可能的取值为16, 17, 18,19, 20, 21, 22P X16P A1P B10.20.20.04P X17P A1P B2PA2PB10.20.40.40.20.16P X18P A1P B3PA2PB2P A3P B10.20.2 0.20.20.40.40.24P X19P A1P B4PA2PB3P A3P B2PA4PB10.20.20.20.2 0.4 0.20.2 0.40.24P X20P A2 P x21P A3 P x22P A4XP B4P A3 P B3P A4 P B20.40.2 0.2 0.4 0.2 0.2 0.2 P B4P A4P B30.20.20.20.20.08P B40.20.20.0416171819202122P0.040.160.240.240.20.080.04⑵要令 P x ≤ n ≥ 0.5 ,0.04 0.16 0.240.5 , 0.040.160.24 0.24≥ 0.5则 n 的最小值为19⑶购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当 n19 时,费用的期望为192005000.2 1000 0.08 1500 0.044040当 n20时,费用的期望为202005000.08 1000 0.04 4080所以应选用 n1920. (1)圆A整理为 x2y216,A 坐标1,0,如图,1BE∥AC ,则∠C∠EBD ,由AC AD,则∠ D ∠C ,∠EBD ∠D,则 EB ED AEEBAEEDAD4CABE122专业技术参考资料WORD 格式整理x2y2my 1 ,⑵ C1: 1 ;设 l : x43P 因为 PQ⊥ l ,设 PQ : y m x 1 ,联立l与椭圆C1ANx my1B 2222得 3m4y6my9 0;x y M Q431则| MN | 1 m2 | y M y N | 1 m236m236 3m2412 m21;3m243m24圆心 A 到PQ距离d|m 1 1 || 2m |,1m21m2所以 |PQ| 2 |AQ|2 d 2 2 16 4 m2 4 3m2 4 ,1 m2 1 m2S MPNQ 11 12 m21 4 3m2 4 24 m2124112,8 3 |MN | |PQ|2221223m4431 m3m1m221. (Ⅰ)f '( x)( x1)e x2a( x1)( x 1)(e x2a).( i)设a0 ,则 f (x)(x 2)e x,f ( x)只有一个零点.( ii)设a0 ,则当x(,1) 时, f'(x)0 ;当 x(1,) 时, f '(x)0.所以 f ( x) 在 ( ,1)上单调递减,在 (1,)上单调递增.又 f (1) e , f (2) a ,取 b 满足b0且 b ln a,则a(b 2)32f (b)a(b1)2a(b2b)0 ,22( iii)设a0 ,由f '(x)0 得x 1 或x ln(2a).若 a e,则 ln(2a) 1 ,故当 x(1,) 时, f '(x) 0 ,因此 f (x) 在 (1,) 上单调递增.又2专业技术参考资料WORD 格式整理当x1f (x)0,所以f ( x)不存在两个零点.时,若 a e1 ,故当x (1,ln( 2a)) 时, f '(x)0 ;当 x (ln( 2a),) 时,,则 ln( 2a)2f '(x)0 .因此 f (x) 在 (1,ln(2a)) 单调递减,在 (ln( 2a),) 单调递增.又当x 1 时,f (x)0,所以 f ( x) 不存在两个零点.综上, a 的取值范围为(0,) .()不妨设 x1x2,由(Ⅰ)知 x1(,1) , x2(1,) , 2x2(,1) , f ( x) 在 (,1) 上单调递减,所以 x1x22等价于 f( x1 ) f (2x2 ) ,即 f (2x2 ) 0 .由于 f (2x2 )x2e2x2a( x21)2,而 f (x2 )( x22)e x2a( x21)20 ,所以f (2 x2 )x2e2 x2( x22)e x2.设 g( x)xe2 x( x2)e x,则 g (x) ( x 1)(e2 x e x ) .所以当 x 1 时,g ( x)0 ,而 g (1)0 ,故当x 1 时,g(x)0 .从而 g(x2 ) f (2 x2 )0 ,故 x1x2 2 .22.⑴设圆的半径为r,作OK AB于 K∵ OA OB , AOB120∴ OK AB , A 30 ,OK OA sin30OAr 2∴ AB与⊙O相切⑵方法一:假设 CD 与 AB 不平行CD与AB交于 F2FKFC FD①∵ A 、B 、C 、D 四点共圆∴FC FD FA FBFK AK FK BK ∵AK BKWORD 格式整理∴ FC FDFK AK FK AKFK 2AK 2② 由①②可知矛盾∴AB∥CD方法二:因为 A, B, C, D四点共圆,不妨设圆心为T ,因为OA OB,TA TB,O,T为 AB 的中垂线上,所以同理OC OD,TC 所以OT为 CD的中垂线,所以AB∥CD.TD,x a cost( t均为参数)23.⑴1 a sin ty∴ x2y2a2①1∴C1为以0 ,1 为圆心,a为半径的圆.方程为x2y2 2 y 1 a 20∵ x2y22,y sin∴2 2 sin 1 a20即为 C1的极坐标方程⑵ C2:4cos两边同乘得24cos2x2y2, cos x224 x即 x 22y24②x yC3:化为普通方程为y 2x由题意: C1和 C2的公共方程所在直线即为 C3①—②得: 4 x 2y 1a20 ,即为C3∴ 1 a 20∴ a124.⑴如图所示:x 4 ,x ≤ 1⑵ f x3x 2 , 1 x 3 24x,x ≥32f x1当 x ≤ 1 ,x4 1 ,解得x5 或 x 3∴ x ≤ 1WORD 格式整理当 1x 32 1 ,解得x 1或x1, 3 x3 2∴ 1x 1x3或 12 3当 x ≥3, 4 x 1 ,解得x 5 或 x3 2∴3≤ x3或 x5 2综上, x 1或 1x 3 或 x5 3∴ f x 1 ,解集为,1 1 ,35,每项建议案实施完毕,实施部门应根据结果写出总结报告,实事求是的说明产生的经济3效益或者其他积极效果,呈报总经办。
2017年全国统一高考新课标版Ⅰ卷全国1卷理科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅰ卷全国1卷理科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R. 其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x-2y的最小值为.15.(5分)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为. 16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可. 【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R. 其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p 2:复数z=i满足z2=-1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )A.1B.2C.4D.8【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=-2,d=4,∴{an}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]【分析】由已知中函数的单调性及奇偶性,可将不等式-1≤f(x-2)≤1化为-1≤x-2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=-1,则f(-1)=1,又∵函数f(x)在(-∞,+∞)单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x-2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x-2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,=×2×(2+4)=6,S梯形∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C 1:y =cosx,C 2:y =sin(2x +),则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y =cos2x 图象,再把得到的曲线向左平移个单位长度,得到函数y =cos2(x +)=cos(2x +)=sin(2x+)的图象,即曲线C 2, 故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10【分析】方法一:根据题意可判断当A 与D,B,E 关于x 轴对称,即直线DE 的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l 1⊥l 2,直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D,B,E 关于x 轴对称,即直线DE 的斜率为1, 又直线l 2过点(1,0),则直线l 2的方程为y =x -1,联立方程组,则y 2-4y -4=0,∴y 1+y 2=4,y 1y 2=-4, ∴|DE|=•|y 1-y 2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin 22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16, 故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题.11.(5分)设x 、y 、z 为正数,且2x =3y =5z ,则( )A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z 【分析】x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x =,y =,z =.可得3y =,2x =,5z =.根据==,>=.即可得出大小关系.另解:x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x =,y =,z =.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【分析】方法一:由数列的性质,求得数列{bn}的通项公式及前n项和,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别即可求得N的值.【解答】解:设该数列为{an },设bn=+…+=2n+1-1,(n∈N+),则=ai ,由题意可设数列{an }的前N项和为SN,数列{bn}的前n项和为Tn,则Tn=21-1+22-1+…+2n+1-1=2n+1-n-2,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230-29-2+25-1=230,故A项符合题意.B项,仿上可知=325,可知S330=T25+b5=226-25-2+25-1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221-20-2+210-1=221+210-23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215-14-2+25-1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21-1,22-1,23-1,…,2n-1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21-1+22-1+23-1+…+2n-1=(21+22+23+…+2n)-n=-n=2n+1-2-n,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,则①1+2+(-2-n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(-2-n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(-2-n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(-2-n)=0,解得:n=29,总共有+5=440,满足N>100, ∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x-2y的最小值为-5 .【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(-1,1).∴z=3x-2y的最小值为-3×1-2×1=-5.故答案为:-5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:-=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=3,V==,令=5-x,三棱锥的高h=,求出S△ABCf(x)=25x4-10x5,x∈(0,),f′(x)=100x3-50x4,f(x)≤f(2)=80,由此能求出体积最大值.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5-x,三棱锥的高h===,=3,则V===,令f(x)=25x4-10x5,x∈(0,),f′(x)=100x3-50x4,令f′(x)≥0,即x4-2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC-sinBsinC=-=-,∴cos(B+C)=-,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2-2bccosA,∴b2+c2-bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB ⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD 为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A-PB-C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A-PB-C为钝角,∴二面角A-PB-C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;经计算得==9.97,s==≈0.212,其中x为i抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【分析】(1)通过P(X=0)可求出P(X≥1)=1-P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ-3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(-3+3)=(9.334,10.606),进而需剔除(-3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ-3σ,μ+3σ)之内的概率为0.9974,则落在(μ-3σ,μ+3σ)之外的概率为1-0.9974=0.0026,因为P(X=0)=×(1-0.9974)0×0.997416≈0.9592,所以P(X≥1)=1-P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(-3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(-3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(-3+3)之外,因此需对当天的生产过程进行检查.剔除(-3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97-9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(-3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(-1,),P4(1,)三点在椭圆C上.把P 2(0,1),P3(-1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2-4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,-1).【解答】解:(1)根据椭圆的对称性,P3(-1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(-1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(-1,)代入椭圆C,得:,解得a2=4,b2=1, ∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,yA ),B(m,-yA),∵直线P2A与直线P2B的斜率的和为-1,∴===-1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2-4=0,,x1x2=,则=====-1,又t≠1,∴t=-2k-1,此时△=-64k,存在k,使得△>0成立,∴直线l的方程为y=kx-2k-1,当x=2时,y=-1,∴l过定点(2,-1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;<(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min=g(e-2)=e-2lne-2+e-2-1=--1,g(1)=0, 0,g(a)=alna+a-1,a>0,求导,由g(a)min即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a-2)e x-x,求导f′(x)=2ae2x+(a-2)e x-1,当a=0时,f′(x)=-2e x-1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x-1)=2a(e x+)(e x-),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(-∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x-)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(-∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a-2)e x-x,当x→-∞时,e2x→0,e x→0,∴当x→-∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(-∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)=f(ln)=a×()+(a-2)×-ln<0,min∴1--ln<0,即ln+-1>0,设t=,则g(t)=lnt+t-1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a-2)e x-x,求导f′(x)=2ae2x+(a-2)e x-1,当a=0时,f′(x)=-2e x-1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x-1)=2a(e x+)(e x-),令f′(x)=0,解得:x=-lna,当f′(x)>0,解得:x>-lna,当f′(x)<0,解得:x<-lna,∴x∈(-∞,-lna)时,f(x)单调递减,x∈(-lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x-)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(-∞,-lna)是减函数,在(-lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,=f(-lna)=1--ln, ②当a>0时,由(1)可知:当x=-lna时,f(x)取得最小值,f(x)min当a=1,时,f(-lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1--ln>0,即f(-lna)>0,故f(x)没有零点,当a∈(0,1)时,1--ln<0,f(-lna)<0,由f(-2)=ae-4+(a-2)e-2+2>-2e-2+2>0, 故f(x)在(-∞,-lna)有一个零点,假设存在正整数n0,满足n>ln(-1),则f(n)=(a+a-2)-n>-n>-n>0,由ln(-1)>-lna,因此在(-lna,+∞)有一个零点.∴a的取值范围(0,1).【点评】本题考查导数的综合应用,考查利用导数求函数单调性及最值,考查函数零点的判断,考查计算能力,考查分类讨论思想,属于中档题.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【分析】(1)将曲线C的参数方程化为标准方程,直线l的参数方程化为一般方程,联立两方程可以求得焦点坐标;(2)曲线C上的点可以表示成P(3cosθ,sinθ),θ∈[0,2π),运用点到直线距离公式可以表示出P到直线l的距离,再结合距离最大值为进行分析,可以求出a的值.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=-1时,直线l的参数方程化为一般方程是:x+4y-3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(-,).(2)l的参数方程(t为参数)化为一般方程是:x+4y-a-4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:。
2017年高考真题全国1卷理科数学(附答案解析)

(2)若 PA=PD=AB=DC, ∠APD = 90o,求二面角 A−PB−C 的余弦值.
19.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取
16 个零件,并测量其尺寸(单位: cm ).根据长期生产经验,可以认为这条生产线正
( ) 常状态下生产的零件的尺寸服从正态分布 N µ,σ 2 .
x − y ≤ 0
15.已知双曲线 C
:
x2 a2
−
y2 b2
= 1(a
> 0,b > 0) 的右顶点为
A ,以
A 为圆心, b
为半径作
圆 A ,圆 A 与双曲线 C 的一条渐近线于交 M 、 N 两点,若 ∠MAN = 60o,则 C 的离心
率为__________.
16.如图,圆形纸片的圆心为 O,半径为 5 cm,该纸片上的等边三角形 ABC 的中心为 O.D,E,F 为圆 O 上的点,△DBC,△ECA,△FAB 分别是以 BC,CA,AB 为底边的 等腰三角形.沿虚线剪开后,分别以 BC,CA,AB 为折痕折起△DBC,△ECA,△FAB, 使得 D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm3) 的最大值为______.
(1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在
( µ − 3σ , µ + 3σ ) 之外的零件数,求 P ( X ≥ 1) 及 X 的数学期望; (2)一天内抽检零件中,如果出现了尺寸在 ( µ − 3σ , µ + 3σ ) 之外的零件,就认为这
条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的 16 个零件的尺寸:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.(12 分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取 16 个零件,并 测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分
布 N(, 2) . (1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在 ( 3 , 3 ) 之外的零件数,
.
x 2y 1
14.设 x,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值为
.
x y 0
15.已知双曲线 C: x2 y2 1 (a>0,b>0)的右顶点为 A,以 A 为圆心,b 为半径作圆 A,圆 A 与双曲线 C a2 b2
的一条渐近线交于 M、N 两点.若∠MAN=60°,则 C 的离心率为____ ____.
)
A.A>1000 和 n=n+1
B.A>1000 和 n=n+2
C.A 1000 和 n=n+1
D.A 1000 和 n=n+2
2π
9.已知曲线 C1:y=cos x,C2:y=sin (2x+ ),则下面结论正确的是( )
3 π
A.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到
A.2x<3y<5z
B.5z<2x<3y
C.3y<5z<2x
D.3y<2x<5z
12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数
学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列
1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20,21,再接
2.如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形 的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )
1
A.
4
π
B.
8
1
C.
2
3.设有下面四个命题p1源自:若复数z满足
1 z
R
,则
z
R
;
p3 :若复数 z1, z2 满足 z1z2 R ,则 z1 z2 ;
化时,所得三棱锥体积(单位:cm3)的最大值为_______.
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必 须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
a2
17.(12 分)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知△ABC 的面积为
2
12
曲线 C2
10.已知 F 为抛物线 C:y2=4x 的焦点,过 F 作两条互相垂直的直线 l1,l2,直线 l1 与 C 交于 A、B 两点,直线
l2 与 C 交于 D、E 两点,则|AB|+|DE|的最小值为( )
A.16
B.14
C.12
D.10
11.设 x、y、z 为正数,且 2x 3y 5z ,则( )
下来的三项是 20,21,22,依此类推.求满足如下条件的最小整数N:N>100 且该数列的前 N 项和为 2 的整数
2
幂.那么该款软件的激活码是( )
A.440
B.330
C.220
D.110
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.已知向量 a,b 的夹角为 60°,|a|=2,|b|=1,则| a +2 b |=
D.35
7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,
正方形的边长为 2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,
这些梯形的面积之和为( )
1
A.10
B.12
C.14
D.16
8.右面程序框图是为了求出满足3n−2n>1000 的最小偶数 n,那么在 和 两个空白框中,可以分别填入(
A.1
B.2
C.4
D.8
5.函数 f (x) 在 (, ) 递减,且为奇函数.若 f (1) 1,则满足 1 f (x 2) 1的 x 的取值范围是(
)
A.[2, 2]
B. [1,1]
C.[0, 4]
D. [1, 3]
6. (1
1 x2
)(1
x)6
展开式中
x2
的系数为(
A.15
B.20
) C.30
其中的真命题为( )
π
D.
4
p2 :若复数 z 满足 z2 R ,则 z R ; p4 :若复数 z R ,则 z R .
A. p1, p3
B. p1, p4
C. p2 , p3
D. p2 , p4
4.记 Sn 为等差数列{an} 的前 n 项和.若 a4 a5 24 , S6 48 ,则{an} 的公差为( )
2017 年普通高等学校招生全国统一考试
理科数学
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要 求的.
1.已知集合 A={x|x<1},B={x| 3x 1 },则( )
A. A B {x | x 0} B. A B R
C. A B {x | x 1} D. A B
16.如图,圆形纸片的圆心为 O,半径为 5 cm,该纸片上的等边三角形 ABC 的中心为 O.D、E、F 为圆 O 上
的点,△DBC,△ECA,△FAB 分别是以 BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以
BC,CA,AB 为折痕折起△DBC,△ECA,△FAB,使得 D、E、F 重合,得到三棱锥.当△ABC 的边长变
6
曲线 C2
π
B.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到
12
曲线 C2
1
π
C.把 C1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到
2
6
曲线 C2
1
π
D.把 C1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到
3sin A
(1)求 sinBsinC; (2)若 6cosBcosC=1,a=3,求△ABC 的周长.
18.(12 分)如图,在四棱锥 P-ABCD 中,AB//CD,且 BAP CDP 90 .
(1)证明:平面 PAB⊥平面 PAD;
(2)若 PA=PD=AB=DC, APD 90 ,求二面角 A-PB-C 的余弦值.