第十七章-勾股定理第一节《勾股定理(3)》教学设计

合集下载

教学设计《勾股定理》

教学设计《勾股定理》

课题:17.1 探索勾股定理教学设计(第1课时)一、教材地位作用这节课内容部编版八年级下册第十七章第一节勾股定理第一课时。

勾股定理是学生在学习了直角三角形有关性质的基础上进行本课学习,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,在实际生活中用途很大。

通过课题的学习,学生可以经历从实际问题观察、发现、抽象出数学问题,猜想并验证直角三角形三条边之间满足的数量关系,到综合应用已学知识联想、证明的全过程,从而加深对相关知识的理解,提高思维能力。

本节课学习过程中渗透了数形结合、从特殊到一般和方程思想等重要数学思想,同时为勾股定理逆定理和后续解直角三角形的学习奠定了基础,也为高中学习的一般三角形中余弦定理和平面解析几何的部分公式做铺垫。

二、教学重点、难点勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。

本节课主要是对勾股定理的探索和勾股定理的证明。

勾股定理的证明方法很多,本节课介绍的是等积法。

通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。

基于以上考虑,本节课的教学重点为:探索、验证、证明勾股定理过程。

八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。

而本节课先采用的是等积法证明。

对于其他的证明方法,由于需要合理的发散思维和联想,没有教师的启发引领,学生不容易独立想到。

难点:用拼图的方式利用等积法证明勾股定理,并结合方程思想尝试从不同角度理解、证明勾股定理。

三、目标和目标解析本节活动课应当恰当发展学生的几何直观、推理能力和模型思想的数学核心观念与数学能力,还要注重发展学生的创新意识。

知识技能目标(1)经历勾股定理的探索过程,理解并掌握勾股定理;(2)能尝试从不同角度证明勾股定理。

数学思考目标:(1)让学生切实经历“观察—猜想---验证---证明”的探索过程;(2)发展合情推理能力,分析勾股定理的证明思路;(3)体会数形结合,从特殊到一般,化归和方程思想方法。

人教版八年级下册数学17.1勾股定理(教案)

人教版八年级下册数学17.1勾股定理(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示勾股定理的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
在教学过程中,教师要针对教学难点和重点进行有针对性的讲解和指导,确保学生能够透彻理解本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”(如楼梯的倾斜角度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,两条直角边的平方和等于斜边的平方。它是解决直角三角形相关问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的发现与证明、勾股定理的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
在今后的教学中,我会注意以下几点:
1.加强对勾股定理证明过程的讲解,让学生们从多个角度理解定理的本质。
2.注重实践与理论相结合,通过丰富多样的案例和练习,提高学生们运用勾股定理解决问题的能力。

(最新)数学八年级下册第十七章《勾股定理》省优质课一等奖教案

(最新)数学八年级下册第十七章《勾股定理》省优质课一等奖教案

(最新)数学⼋年级下册第⼗七章《勾股定理》省优质课⼀等奖教案《勾股定理》教学设计第⼀课时⼀、教学⽬标1.了解勾股定理的发现过程,掌握勾股定理的内容,会⽤⾯积法证明勾股定理. 2.培养在实际⽣活中发现问题总结规律的意识和能⼒.3.介绍我国古代在勾股定理研究⽅⾯所取得的成就,激发学⽣的爱国热情,促其勤奋学习.⼆、重点、难点1.重点:勾股定理的内容及证明.2.难点:勾股定理的证明.三、例题的意图分析例1(补充)通过对定理的证明,让学⽣确信定理的正确性;通过拼图,发散学⽣的思维,锻炼学⽣的动⼿实践能⼒;这个古⽼的精彩的证法,出⾃我国古代⽆名数学家之⼿.激发学⽣的民族⾃豪感,和爱国情怀.例2使学⽣明确,图形经过割补拼接后,只要没有重叠,没有空隙,⾯积不会改变.进⼀步让学⽣确信勾股定理的正确性.四、课堂引⼊⽬前世界上许多科学家正在试图寻找其他星球的“⼈”,为此向宇宙发出了许多信号,如地球上⼈类的语⾔、⾳乐、各种图形等.我国数学家华罗庚曾建议,发射⼀种反映勾股定理的图形,如果宇宙⼈是“⽂明⼈”,那么他们⼀定会识别这种语⾔的.这个事实可以说明勾股定理的重⼤意义.尤其是在两千年前,是⾮常了不起的成就.让学⽣画⼀个直⾓边为3cm和4cm的直⾓△ABC,⽤刻度尺量出AB的长.以上这个事实是我国古代3000多年前有⼀个叫商⾼的⼈发现的,他说:“把⼀根直尺折成直⾓,两段连结得⼀直⾓三⾓形,勾⼴三,股修四,弦隅五.”这句话意思是说⼀个直⾓三⾓形较短直⾓边(勾)的长是3,长的直⾓边(股)的长是4,那么斜边(弦)的长是5.再画⼀个两直⾓边为5和12的直⾓△ABC ,⽤刻度尺量AB 的长.你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直⾓三⾓形也有这个性质吗?五、例习题分析例1(补充)已知:在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边为a 、b 、c . 求证:a 2+b 2=c 2.分析:(1)让学⽣准备多个三⾓形模型,最好是有颜⾊的吹塑纸,让学⽣拼摆不同的形状,利⽤⾯积相等进⾏证明.(2)拼成如图所⽰,其等量关系为:4S △+S ⼩正=S ⼤正 4×21ab +(b -a )2=c 2,化简可证.(3)发挥学⽣的想象能⼒拼出不同的图形,进⾏证明.(4)勾股定理的证明⽅法,达300余种.这个古⽼的精彩的证法,出⾃我国古代⽆名数学家之⼿.激发学⽣的民族⾃豪感,和爱国情怀.例2已知:在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边为a 、b 、c .AB求证:a 2+b 2=c 2.分析:左右两边的正⽅形边长相等,则两个正⽅形的⾯积相等. 左边S =4×21ab +c 2 右边S =(a +b )2 左边和右边⾯积相等,即 4×21ab +c 2=(a +b )2 化简可证. 六、课堂练习 1.勾股定理的具体内容是: . 2.如图,直⾓△ABC 的主要性质是:∠C =90°.(⽤⼏何语⾔表⽰)(1)两锐⾓之间的关系:;(2)若D 为斜边中点,则斜边中线;(3)若∠B =30°,则∠B 的对边和斜边:;(4)三边之间的关系: .bbbaAB3.△ABC 的三边a 、b 、c ,若满⾜b 2= a 2+c 2,则 =90°;若满⾜b 2>c 2+a 2,则∠B 是⾓;若满⾜b 2<c 2+a 2,则∠B 是⾓. 4.根据如图所⽰,利⽤⾯积法证明勾股定理.七、课后练习1.已知在Rt △ABC 中,∠B =90°,a 、b 、c 是△ABC 的三边,则(1)c = .(已知a 、b ,求c )(2)a = .(已知b 、c ,求a )(3)b = .(已知a 、c ,求b )2.如下表,表中所给的每⾏的三个数a 、b 、c ,有a <b <c ,试根据表中已有数的规律,写出当a =19时,b ,c 的值,并把b 、c ⽤含a 的代数式表⽰出来.3.在△从B 向C 以每秒2cm 的速度移动,问当P 点移动多少秒时,PA 与腰垂直. 4.已知:如图,在△ABC 中,AB =AC ,D 在CB 的延长线上.b EB求证:(1)AD 2-AB 2=BD ·CD(2)若D 在CB 上,结论如何,试证明你的结论.第⼆课时⼀、教学⽬标1.会⽤勾股定理进⾏简单的计算. 2.树⽴数形结合的思想、分类讨论思想. ⼆、重点、难点1.重点:勾股定理的简单计算. 2.难点:勾股定理的灵活运⽤. 三、例题的意图分析例1(补充)使学⽣熟悉定理的使⽤,刚开始使⽤定理,让学⽣画好图形,并标好图形,理清边之间的关系.让学⽣明确在直⾓三⾓形中,已知任意两边都可以求出第三边.并学会利⽤不同的条件转化为已知两边求第三边.例2(补充)让学⽣注意所给条件的不确定性,知道考虑问题要全⾯,体会分类讨论思想.例3(补充)勾股定理的使⽤范围是在直⾓三⾓形中,因此注意要创造直⾓三⾓形,作⾼是常⽤的创造直⾓三⾓形的辅助线做法.让学⽣把前⾯学过的知识和新知识综合运⽤,提⾼综合能⼒. 四、课堂引⼊复习勾股定理的⽂字叙述;勾股定理的符号语⾔及变形.学习勾股定理重在应⽤. 五、例习题分析DCB例1(补充)在Rt △ABC ,∠C =90°. (1)已知a =b =5,求c . (2)已知a =1,c =2, 求b . (3)已知c =17,b =8, 求a . (4)已知a :b =1:2,c =5, 求a . (5)已知b =15,∠A =30°,求a ,c .分析:刚开始使⽤定理,让学⽣画好图形,并标好图形,理清边之间的关系.(1)已知两直⾓边,求斜边直接⽤勾股定理.(2)已知斜边和⼀直⾓边,求另⼀直⾓边,⽤勾股定理的简便形式.(3)已知⼀边和两边⽐,求未知边.通过前三题让学⽣明确在直⾓三⾓形中,已知任意两边都可以求出第三边.后两题让学⽣明确已知⼀边和两边关系,也可以求出未知边,学会见⽐设参的数学⽅法,体会由⾓转化为边的关系的转化思想.例2(补充)已知直⾓三⾓形的两边长分别为5和12,求第三边.分析:已知两边中较⼤边12可能是直⾓边,也可能是斜边,因此应分两种情况分别进⾏计算.让学⽣知道考虑问题要全⾯,体会分类讨论思想. 例3(补充)已知:如图,等边△ABC 的边长是6cm .DBA(1)求等边△ABC 的⾼. (2)求S △ABC .分析:勾股定理的使⽤范围是在直⾓三⾓形中,因此注意要创造直⾓三⾓形,作⾼是常⽤的创造直⾓三⾓形的辅助线做法.欲求⾼CD ,可将其置⾝于Rt △ADC 或Rt △BDC 中,但只有⼀边已知,根据等腰三⾓形三线合⼀性质,可求AD =CD =21AB =3cm ,则此题可解.六、课堂练习 1.填空题(1)在Rt △ABC ,∠C =90°,a =8,b =15,则c = . (2)在Rt △ABC ,∠B =90°,a =3,b =4,则c = .(3)在Rt △ABC ,∠C =90°,c =10,a :b =3:4,则a = ,b = . (4)⼀个直⾓三⾓形的三边为三个连续偶数,则它的三边长分别为 .(5)已知直⾓三⾓形的两边长分别为3cm 和5cm ,则第三边长为 . (6)已知等边三⾓形的边长为2cm ,则它的⾼为,⾯积为 . 2.已知:如图,在△ABC 中,∠C =60°,AB =34,AC =4,AD 是BC 边上的⾼,求BC 的长.3.已知等腰三⾓形腰长是10,底边长是16,求这个等腰三⾓形的⾯积. 七、课后练习 1.填空题.在Rt △ABC ,∠C =90°,(1)如果a =7,c =25,则b = . (2)如果∠A =30°,a =4,则b = . (3)如果∠A =45°,a =3,则c = . (4)如果c =10,a -b =2,则b = .(5)如果a 、b 、c 是连续整数,则a +b +c = .AB(6)如果b =8,a :c =3:5,则c = .2.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B =60°,CD =1cm ,求BC 的长.第三课时⼀、教学⽬标1.会⽤勾股定理解决较综合的问题. 2.树⽴数形结合的思想. ⼆、重点、难点1.重点:勾股定理的综合应⽤. 2.难点:勾股定理的综合应⽤. 三、例题的意图分析例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学⽣能够灵活应⽤.⽬前“双垂图”需要掌握的知识点有:3个直⾓三⾓形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐⾓,四对互余⾓,及30°或45°特殊⾓的特殊性质等.例2(补充)让学⽣注意所求结论的开放性,根据已知条件,作适当辅助线求出三⾓形中的边和⾓.让学⽣掌握解⼀般三⾓形的问题常常通过作⾼转化为直⾓三⾓形的问题.使学⽣清楚作辅助线不能破坏已知⾓.例3(补充)让学⽣掌握不规则图形的⾯积,可转化为特殊图形求解,本题通过将图形转化为直⾓三⾓形的⽅法,把四边形⾯积转化为三⾓形⾯积之差.在转化的过程中注意条件的合理运⽤.让学⽣把前⾯学过的知识和新知识综合运⽤,提⾼解题的综合能⼒.B例4(教材P 76页探究3)让学⽣利⽤尺规作图和勾股定理画出数轴上的⽆理数点,进⼀步体会数轴上的点与实数⼀⼀对应的理论. 四、课堂引⼊复习勾股定理的内容.本节课探究勾股定理的综合应⽤. 五、例习题分析例1(补充)1.已知:在Rt △ABC 中,∠C =90°,CD ⊥BC 于D ,∠A =60°,CD =3,求线段AB 的长.分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学⽣对图形及性质掌握⾮常熟练,能够灵活应⽤.⽬前“双垂图”需要掌握的知识点有:3个直⾓三⾓形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐⾓,四对互余⾓,及30°或45°特殊⾓的特殊性质等.要求学⽣能够⾃⼰画图,并正确标图.引导学⽣分析:欲求AB ,可由AB =BD +CD ,分别在两个三⾓形中利⽤勾股定理和特殊⾓,求出BD =3和AD =1.或欲求AB ,可由22BC AC AB +=,分别在两个三⾓形中利⽤勾股定理和特殊⾓,求出AC =2和BC =6.例2(补充)已知:如图,△ABC 中,AC =4,∠B =45°,∠A =60°,根据题设可知什么?分析:由于本题中的△ABC 不是直⾓三⾓形,所以根据题设只能直接求得∠CDDACB =75°.在学⽣充分思考和讨论后,发现添置AB 边上的⾼这条辅助线,就可以求得AD ,CD ,BD ,AB ,BC 及S △ABC .让学⽣充分讨论还可以作其它辅助线吗?为什么?⼩结:可见解⼀般三⾓形的问题常常通过作⾼转化为直⾓三⾓形的问题.并指出如何作辅助线?解略.例3(补充)已知:如图,∠B =∠D =90°,∠A =60°,AB =4,CD =2.求:四边形ABCD 的⾯积.分析:如何构造直⾓三⾓形是解本题的关键,可以连结AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给定的⾓应选后两种,进⼀步根据本题给定的边选第三种较为简单.教学中要逐层展⽰给学⽣,让学⽣深⼊体会. 解:延长AD 、BC 交于E .∵∠A =∠60°,∠B =90°,∴∠E =30°. ∴AE =2AB =8,CE =2CD =4,∴BE 2=AE 2-AB 2=82-42=48,BE =48=34. ∵DE 2= CE 2-CD 2=42-22=12,∴DE =12=32. ∴S 四边形ABCD =S △ABE -S△CDE =21AB ·BE -21CD ·DE =36.⼩结:不规则图形的⾯积,可转化为特殊图形求解,本题通过将图形转化为直⾓三⾓形的⽅法,把四边形⾯积转化为三⾓形⾯积之差. 例4(教材P 76页探究3).分析:利⽤尺规作图和勾股定理画出数轴上的⽆理数点,进⼀步体会数轴上的点BC与实数⼀⼀对应的理论. 六、课堂练习1.△ABC 中,AB =AC =25cm ,⾼AD =20cm ,则BC = ,S △ABC = . 2.△ABC 中,若∠A =2∠B =3∠C ,AC =32cm ,则∠A = 度,∠B = 度,∠C = 度,BC = ,S △ABC = .3.△ABC 中,∠C =90°,AB =4,BC =32,CD ⊥AB 于D ,则AC = ,CD = ,BD = ,AD = ,S △ABC = .4.已知:如图,△ABC 中,AB =26,BC =25,AC =17,求S △ABC .七、课后练习.1.在Rt △ABC 中,∠C =90°,CD ⊥BC 于D ,∠A =60°,CD =3,AB = . 2.在Rt △ABC 中,∠C =90°,S △ABC =30,c =13,且a <b ,则a = ,b = . 3.已知:如图,在△ABC 中,∠B =30°,∠C =45°,AC =22,求(1)AB 的长;(2)S△ABC .C C。

第十七章勾股定理教案

第十七章勾股定理教案

第十七章勾股定理17. 1勾股定理第 1课时勾股定理(1)认识勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.要点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创建情境,引入新课让学生画一个直角边分别为 3 cm和 4 cm的直角△ ABC,用刻度尺量出斜边的长.再画一个两直角边分别为 5 和 12 的直角△ ABC,用刻度尺量出斜边的长.你能否发现了32+42与 52的关系, 52+ 122与 132的关系,即32+ 42= 52,52+ 122= 132,那么就有勾2+股2=弦2.关于随意的直角三角形也有这个性质吗?由一学生朗诵“毕达哥拉斯察看地面图案发现勾股定理”的传说,指引学生察看身旁的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,研究新知1.多媒体课件演示教材第22~ 23 页图 17.1 - 2 和图 17.1 - 3,指引学生察看思虑.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.指引学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这不过猜想,一个数学命题的成立,还要经过我们的证明.概括考证,得出定理(1) 猜想:命题1:假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2+ b2= c2.(2)能否是全部的直角三角形都有这样的特色呢?这就需要对一个一般的直角三角形进行证明.到当前为止,对这个命题的证明已有几百种之多,下边我们就看一看我国数学家赵爽是如何证明这个定理的.①用多媒体课件演示.②小组合作研究:a.以直角三角形ABC的两条直角边a, b 为边作两个正方形,你能经过剪、拼把它拼成弦图的样子吗?b.它们的面积分别如何表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验先人赵爽的证法.想想还有什么方法?师:经过拼摆,我们证明了命题 1 的正确性,命题 1 与直角三角形的边相关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题解说【例 1】填空题.(1)在 Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在 Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在 Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4) 一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5) 已知等边三角形的边长为 2 cm,则它的高为________cm,面积为2________cm.【答案】 (1)17(2) 7 (3)68 (4)6 , 8, 10 (5) 33【例 2】已知直角三角形的两边长分别为 5 和 12,求第三边.剖析:已知两边中,较大边 12 可能是直角边,也可能是斜边,所以应分两种状况分别进行计算.让学生知道考虑问题要全面,领会分类议论思想.【答案】119或 13三、稳固练习填空题.在 Rt△ABC中,∠C=90°.(1)假如 a= 7,c= 25,则 b= ________;(2)假如∠ A= 30°, a= 4,则 b= ________;(3)假如∠ A= 45°, a= 3,则 c= ________;(4)假如 c= 10, a- b= 2,则 b= ________;(5)假如 a, b,c 是连续整数,则 a+ b+ c= ________;(6)假如 b= 8,a∶ c= 3∶ 5,则 c= ________.【答案】 (1)24(2)4 3 (3)3 2 (4)6(5)12(6)10四、讲堂小结1.本节课学到了什么数学知识?2.你认识了勾股定理的发现和考证方法了吗?3.你还有什么疑惑?本节课的设计关注学生能否踊跃参加研究勾股定理的活动,关注学生可否在活动中踊跃思虑、能够研究出解决问题的方法,可否进行踊跃的联想( 数形联合 ) 以及学生可否有条理地表达活动过程和所获取的结论等.关注学生的拼图过程,鼓舞学生联合自己所拼得的正方形考证勾股定理.第 2 课时勾股定理(2)能将实质问题转变为直角三角形的数学模型,并能用勾股定理解决简单的实质问题.要点将实质问题转变为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实质问题.一、复习导入问题 1:欲登 12 米高的建筑物,为安全需要,需使梯子底端离建筑物 5 米,起码需要多长的梯子?师生行为:学生疏小组议论,成立直角三角形的数学模型.教师深入到小组活动中,聆听学生的想法.生:依据题意,( 如图 )AC 是建筑物,则AC= 12 m, BC= 5 m, AB 是梯子的长度,所以在Rt△ ABC222222m.中, AB= AC+BC= 12 + 5 = 13,则 AB= 13所以起码需 13长的梯子.m师:很好!由勾股定理可知,已知两直角边的长分别为a, b,就能够求出斜边 c 的长.由勾股定理可得2=ac2-b2或 b2=c2- a2,由此可知,已知斜边与一条直角边的长,就能够求出另一条直角边的长,也就是说,在直角三角形中,已知两边便可求出第三边的长.问题 2:一个门框的尺寸以下图,一块长 3 m、宽 2.2 m的长方形薄木板可否从门框内经过?为何?学生疏组议论、沟通,教师深入到学生的数学活动中,指引他们发现问题,找寻解决问题的门路.生 1:从题意能够看出,木板横着进,竖着进,都不可以从门框内经过,只好试一试斜着可否经过.生 2:在长方形 ABCD中,对角线 AC是斜着能经过的最大长度,求出 AC,再与木板的宽比较,就能知道木板能否能经过.师生共析:解:在 Rt△ABC中,依据勾股定理22222= 5. AC= AB+ BC=1+ 2所以 AC=5≈ 2.236.因为 AC>木板的宽,所以木板能够从门框内经过.二、例题解说【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是米,水平距离是________米.剖析:由∠ CAB= 30°易知垂直距离为 2 3米,水平距离是 6 米.【答案】2 36【例 2】教材第25 页例 2三、稳固练习________1.如图,欲丈量松花江的宽度,沿江岸取B, C 两点,在江对岸取一点BC= 50 米,∠ B= 60°,则江面的宽度为________.A,使AC垂直江岸,测得【答案】 50 3米2.某人欲横渡一条河,因为水流的影响,登岸地址 C 偏离欲抵达地址 B 200 米,果他在水中游了520 米,求河流的度.【答案】480 m四、堂小1.自己在的收有哪些?会用勾股定理解决的用;会结构直角三角形.2.本是从出,化直角三角形,并用勾股定理达成解答.是一用,程中要充足学生的主性,鼓舞学生手、,将化直角三角形的数学模型的程,激了学生的学趣,了学生独立思虑的能力.第 3勾股定理(3)1.利用勾股定理明:斜和一条直角相等的两个直角三角形全等.2.利用勾股定理,能在数上找到表示无理数的点.3.一步学将化直角三角形的数学模型,并能用勾股定理解决的.要点在数上找表示2,3,5,⋯的表示无理数的点.点利用勾股定理找直角三角形中度无理数的段.一、复入复勾股定理的内容.本研究勾股定理的合用.:在八年上册,我曾通画获取:斜和一条直角相等的两个直角三角形全等.你能用勾股定理明一?学生思虑并独立达成,教巡指,并.先画出形,再写出已知、求以下:已知:如,在Rt△ABC和 Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求:△ ABC≌△ A′ B′ C′ .22明:在 Rt△ABC和 Rt△A′B′C′中,∠C=∠C′=90°,依据勾股定理,得BC=AB-AC,B′C′=A′ B′2- A′C′2. 又 AB= A′ B′, AC= A′ C′,∴ BC= B′ C′,∴△ ABC≌△ A′ B′C′ ( SSS) .:我知道数上的点有的表示有理数,有的表示无理数,你能在数上表示出13所的点?教可指学生找像度2,3,5,⋯的包括在直角三角形中的段.:因为要在数上表示点到原点的距离2, 3 ,5,⋯,所以只要画出2,3,5,⋯的段即可,我不如先来画出2,3,5,⋯的段.生:2的段是直角都 1 的直角三角形的斜,而5的段是直角 1 和 2 的直角三角形的斜.:13的段可否是直角正整数的直角三角形的斜呢?生: c=13,两直角分a, b,依据勾股定理a2+ b2= c2,即 a2+ b2=13. 若 a, b 正整数,13 必分解两个平方数的和,即13=4+9,a2=4,b2=9,a=2,b=3,所以13的段是直角分2, 3 的直角三角形的斜.:下边就同学在数上画出表示13的点.生:步以下:1.在数上找到点A,使 OA= 3.2.作直l 垂直于 OA,在 l 上取一点B,使 AB= 2.3.以原点O心、以OB半径作弧,弧与数交于点C,点 C 即表示13的点.二、例解【例 1】机在空中水平行,某一刻好到一个男孩正上方 4800 米,了 10 秒后,机距离个男孩 5000 米,机每小行多少千米?剖析:依据意,能够画出如所示的形, A 点表示男孩的地点,C, B 点是两个刻机的地点,∠ C 是直角,能够用勾股定理来解决这个问题.解:依据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得2=AB22222AC+ BC,即 5000= BC+ 4800 ,所以 BC= 1400 米.飞机飞翔 1400 米用了 10 秒,那么它 1 小时飞翔的距离为 1400× 6×60= 504000( 米 ) =504( 千米 ) ,即飞机飞翔的速度为504千米/时.【例 2】在沉静的湖面上,有一棵水草,它超出水面 3 分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草挪动的水平距离为 6 分米,问这里的水深是多少?解:依据题意,获取上图,此中D是无风时水草的最高点, BC为湖面, AB 是一阵风吹过水草的位22222置, CD= 3 分米, CB= 6 分米, AD= AB, BC⊥ AD,所以在Rt△ACB中, AB =AC+ BC,即 (AC+ 3)=AC 222分米.+ 6 , AC+ 6AC+ 9= AC+36,∴ 6AC= 27, AC= 4.5 ,所以这里的水深为【例 3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为 4 和 1 的直角三角形的斜边,所以,在数轴上画出表示17的点,以以下图:师生行为:由学生独立思虑达成,教师巡视指导.此活动中,教师应要点关注以下两个方面:①学生可否踊跃主动地思虑问题;②可否找到斜边为17,此外两条直角边为整数的直角三角形.三、讲堂小结1.进一步稳固、掌握并娴熟运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理获取一些无理数,并理解数轴上的点与实数一一对应.本节课的教课中,在培育逻辑推理的能力方面,做了仔细的考虑和精心的设计,把推理证明作为学生察看、实验、研究得出结论的自然持续,着重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到讲堂教课中间,很好地激发了学生学习数学的兴趣,培育了学生擅长提出问题、敢于提出问题、解决问题的能力.勾股定理的逆定理第 1 课时勾股定理的逆定理( 1)1.掌握直角三角形的鉴别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的研究方法.要点研究勾股定理的逆定理,理解并掌握互抗命题、原命题、抗命题的相关观点及关系.难点概括猜想出命题 2 的结论.一、复习导入活动研究(1)总结直角三角形有哪些性质;(2)一个三角形知足什么条件时才能是直角三角形?生:直角三角形有以下性质: (1) 有一个角是直角; (2) 两个锐角互余; (3) 两直角边的平方和等于斜边的平方; (4) 在含 30°角的直角三角形中, 30°的角所对的直角边是斜边的一半.师:那么一个三角形知足什么条件时,才能是直角三角形呢?生 1:假如三角形有一个内角是90°,那么这个三角形就为直角三角形.生 2:假如一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b 与斜边 c 拥有必定的数目关系即 a2+ b2=c2,我们能否能够不用角,而用三角形三边的关系来判断它能否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:听说古埃及人用以下图的方法画直角:把一根长绳打上等距离的 13 个结,而后以 3 个结、 4 个结、 5 个结的长度为边长,用木桩钉成一个三角形,此中一个角即是直角.这个问题意味着,假如围成的三角形的三边长分别为3, 4, 5,有下边的关系:2223+ 4=5 ,那么围成的三角形是直角三角形.画画看,假如三角形的三边长分别为, 6,,有下边的关系: 2.5 2+ 62= 6.5 2,画cm cm cm出的三角形是直角三角形吗?换成三边分别为4cm,cm, cm,再试一试.生 1:我们不难发现上图中,第 1 个结到第 4 个结是 3 个单位长度即 AC=3;同理 BC=4, AB=5.因为 32+ 42= 52,所以我们围成的三角形是直角三角形.生 2:假如三角形的三边长分别是 2.5 cm, 6 cm, 6.5 cm. 我们用尺规作图的方法作此三角形,经过丈量后,发现 6.5 cm的边所对的角是直角,而且222 2.5 +6 = 6.5 .再换成三边长分别为 4 cm, 7.5 cm, 8.5 cm的三角形,能够发现 8.5 cm的边所对的角是直角,且有 42+ 7.5 2=8.5 2.师:很好!我们经过实质操作,猜想结论.命题 2假如三角形的三边长a, b, c 知足 a2+ b2= c2,那么这个三角形是直角三角形.再看下边的命题:命题 1假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2+ b2= c2.它们的题设和结论各有何关系?师:我们能够看到命题 2 与命题 1 的题设、结论正好相反,我们把像这样的两个命题叫做互抗命题.假如把此中的一个叫做原命题,那么另一个叫做它的抗命题.比如把命题 1 当作原命题,那么命题 2 是命题 1 的抗命题.二、例题解说【例 1】说出以下命题的抗命题,这些命题的抗命题成立吗?(1)同旁内角互补,两条直线平行;(2)假如两个实数的平方相等,那么这两个实数相等;(3)线段垂直均分线上的点到线段两头点的距离相等;(4)直角三角形中 30°角所对的直角边等于斜边的一半.剖析: (1) 每个命题都有抗命题,说抗命题时注意将题设和结论调动即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,抗命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、稳固练习教材第 33 页练习第 2题.四、讲堂小结师:经过这节课的学习,你对本节内容有哪些认识?学生讲话,教师评论.本节课的教课方案中,将教课内容精简化,推行分层教课.依据学生原有的认知结构,让学生更好地领会切割的思想.设计的题型前后响应,使知识有序推动,有助于学生理解和掌握;让学生经过合作、沟通、反省、感悟的过程,激发学生研究新知的兴趣,感觉研究、合作的乐趣,并从中获取成功的体验,真实表现学生是学习的主人.将目标分层后,知足不一样层次学生的做题要求,达到稳固讲堂知识的目的.第 2 课时勾股定理的逆定理( 2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的观点.要点勾股定理的逆定理的证明及互逆定理的观点.难点理解互逆定理的观点.一、复习导入师:我们学过的勾股定理的内容是什么?生:假如直角三角形的两条直角边长分别为a, b,斜边长为c,那么 a2+b2= c2.师:依据上节课学过的内容,我们获取了勾股定理抗命题的内容:假如三角形的三边长 a ,b, c 知足 a2+ b2= c2,那么这个三角形是直角三角形.师:命题 2 是命题 1 的抗命题,命题 1 我们已证明过它的正确性,命题 2 正确吗?如何证明呢?师生行为:让学生试着找寻解题思路,教师可指引学生理清证明的思路.师:△ ABC的三边长a, b, c 知足 a2+ b2=c2. 假如△ ABC是直角三角形,它应与直角边是a, b 的直角三角形全等,实质状况是这样吗?我们画一个直角三角形A′ B′ C′,使 B′ C′= a, A′ C′= b,∠ C′= 90° ( 如图 ) ,把画好的△A′ B′ C′剪下,放在△ABC上,它们重合吗?22222222生:我们所画的 Rt△A′B′C′,(A′B′)=a+ b,又因为 c = a + b ,所以 (A′ B′ ) =c,即 A′B′= c.△ABC 和△ A′ B′C′三边对应相等,所以两个三角形全等,∠ C=∠ C′= 90°,所以△ ABC 为直角三角形.即命题 2 是正确的.师:很好!我们证了然命题2 是正确的,那么命题 2 就成为一个定理.因为命题 1 证明正确此后称为勾股定理,命题2 又是命题 1 的抗命题,在此,我们就称定理 2 是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:可能否是原命题成立,抗命题必定成立呢?生:不必定,如命题“对顶角相等”成立,它的抗命题“假如两个角相等,那么它们是对顶角”不行立.师:你还可以举出近似的例子吗?生:比如原命题:假如两个实数相等,那么它们的绝对值也相等.抗命题:假如两个数的绝对值相等,那么这两个实数相等.明显原命题成立,而抗命题不必定成立.二、新课教授【例 1】教材第 32 页例 1【例 2】教材第 33 页例 2【例 3】一个部件的形状以下图,按规定这个部件中∠A 和∠ DBC 都应为直角.工人师傅量出了这个部件各边的尺寸,那么这个部件切合要求吗?剖析:这是一个利用直角三角形的判断条件解决实质问题的例子.2 2 =9+16 2A 是直角.解:在△ ABD 中, AB + AD = 25= BD ,所以△ ABD 是直角三角形,∠2 2 2 2DBC 是直角.在△ BCD 中,BD +BC = 25+ 144= 169=13 = CD ,所以△ BCD 是直角三角形,∠ 所以这个部件切合要求.三、稳固练习1.小强在操场上向东走80 m 后,又走了 60 m ,再走 100 m 回到原地.小强在操场上向东走了80 m 后,又走 60 m 的方向是 ________.【答案】向正南或正北2.如图,在我国沿海有一艘不明国籍的轮船进入我国海疆,我海军甲、乙两艘巡逻艇立刻从相距 13 海里的 A , B 两个基地前往拦截, 6 分钟后同时抵达 C 地将其拦截.已知甲巡逻艇每小时航行 120 海 里,乙巡逻艇每小时航行 50 海里,航向为北偏西 40°,求甲巡逻艇的航向.11222【答案】解:由题意可知:AC= 120× 6×60= 12, BC= 50× 6×60= 5, 12+ 5=13 . 又 AB=13,222ACB=90°,∴∠ CAB= 40°,航向为北偏东 50° .∴ AC+ BC= AB,∴△ ABC是直角三角形,且∠四、讲堂小结1.同学们对本节的内容有哪些认识?2.勾股定理的逆定理及其应用,熟记几组勾股数.本节课我采纳以学生为主体,指引发现、操作研究的教课方案,切合学生的认知规律和认知水平,最大限度地调动了学生学习的踊跃性,有益于培育学生着手、察看、剖析、猜想、考证、推理的能力,确实使学生在获取知识的过程中获取能力的培育.1、一知半解的人,多不谦逊;见多识广有本事的人,必定谦逊。

人教版数学八年级下册第十七章勾股定理集体备课教学设计

人教版数学八年级下册第十七章勾股定理集体备课教学设计
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的表达式及其证明方法。
2.学会运用勾股定理解决实际问题,尤其是斜边或直角边长度的计算。
3.培养学生的空间想象能力和逻辑推理能力。
(二)教学设想
1.创设情境,引入新课
-通过生活中的实例,如建筑物的斜边测量、篮球运动员的投篮角度等,引导学生感知勾股定理的实际应用,激发学生的学习兴趣。
二、学情分析
八年级下册的学生在数学学习上已经具备了一定的基础,掌握了基本的几何知识和勾股定理的初步概念。在此基础上,他们对勾股定理的深入学习将更加关注定理的证明和应用。学生在这个阶段好奇心强,思维活跃,但逻辑推理能力和空间想象能力仍有待提高。此外,学生在团队合作和表达沟通方面存在一定差异,部分学生较为内向,需要教师引导和鼓励。因此,在教学过程中,应注重以下几点:
2.组织课堂实践活动,让学生动手操作,提高空间想象能力。
-制作勾股定理的教具,如直角三角形模型,观察并验证勾股定理。
-绘制直角三角形,测量并计算斜边与直角边的长度,检验勾股定理的正确性。
(五)总结归纳
1.学生自主总结:鼓励学生回顾本节课的学习内容,总结勾股定理的关键点和学习心得。
2.教师引导总结:梳理本节课的知识点,强调勾股定理的应用价值,提醒学生注意勾股定理在解决实际问题时的灵活运用。
2.培养学生的探究精神,鼓励学生敢于质疑、勇于挑战,形成积极向上的学习态度。
3.培养学生尊重事实、严谨求实的科学态度,使学生认识到数学在科学技术和社会发展中的重要作用。
在教学过程中,要充分关注学生的个体差异,注重启发式教学,引导学生主动探究、积极思考,提高学生的数学素养。同时,教师应结合生活实际,创设有趣、富有挑战性的问题情境,激发学生的学习兴趣,使学生在轻松愉快、从具体到抽象的认识过程。

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。

2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。

3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。

教学重点:知道勾股定理的结果,并能运用于解题。

教学难点:进一步发展学生的说理和简单推理的意识及能力。

教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。

教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

今天我们就来一同探索勾股定理。

二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

这个事实是我国古代3000多年前有一个叫XXX的人发现的。

他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。

下面这个古老的精彩的证法出自我国古代无名数学家之手。

已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

冀三角任丽桃《勾股定理》教学设计

冀三角任丽桃《勾股定理》教学设计
2、提问:是否任意直角三角形三边都符合等腰直角三角形三边的这个关系?引导学生由特殊到一般。
3、由多媒体打出网格,在网格中给出任意三角形,引导学生到格点图中去验证自己的猜测。由于网格的不规则,引出用割补的方法进行计算。
5
5
独立、仔细观察1分钟,然后6人一小组讨论并派代表发表观点
结论:a2+b2=c2
猜测并回答结果
③求高CD。
2.一根旗杆离地面6米处折断,旗杆顶部落在离旗杆底部8米处,旗杆折断之前有多高?
8
6
小组合作,进行拼图。上黑板将拼图粘贴在黑板上进行演示。
对于第1、2两个题目请你根据提供的条件画出直角三角形、写出它的三边关系,完成相关计算。
通过使用直角三角形模具完成拼图过程,让学生体会应用图形“割补拼接”面
学生回答:因为是割下来再补上去,所以前后面积相等。由此得到:a2+b2=c2
让学生模仿数学家的思维过程,亲身体验勾股定理的探索与验证,使学生对定理的理解更加深刻,体会数形结合思想,发展创造性思维能力.
三、练兵之际
用多媒体打出“总统证法”的图形
问题:你能用此图形证明勾股定理吗?
8
独立思考
举手回答:用“等积法”可证。
积不变的特点来验证直角三角形三边数量关系的猜想,培养学生由数到形再由形到数的数学思想。
加强对直角三角形的三边的图形结构与数字结构的认识,熟练应用勾股定理解决实际问题。
板书设计
18.1勾股定理(一)
一、图形奥秘四、勾股定理
二、毕达哥拉斯故事如果直角三角形两直角边长分别是
图形探究→猜想→命题,斜边是,那么
师生互动
探索新知
二、实验探究,证明结论
为了让学生感受数形结合这一数学思想,利用多媒体,要求学生由两块面积为a2与b2组成的图形经割补变为c2。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
6.注重课后反思,让学生在反思中巩固所学知识,发现自己的不足,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1 勾股定理(3)一、教学目标知识与技能1.利用勾股定理,能在数轴上找到表示无理数的点.2.进一步学习将实际问题转化为直角三角形的数学模型,•并能用勾股定理解决简单的实际问题.过程与方法1.经历在数轴上寻找表示地理数的总的过程,•发展学生灵活勾股定理解决问题的能力.2.在用勾股定理解决实际问题的过程中,体验解决问题的策略,•发展学生的动手操作能力和创新精神.3.在解决实际问题的过程中,学会与人合作,•并能与他人交流思维过程和结果,形成反思的意识.情感、态度与价值观1.在用勾股定理寻找数轴上表示无理数点的过程中,•体验勾股定理的重要作用,并从中获得成功的体验,锻炼克服困难的意志,建立自信心.2.在解决实际问题的过程中,•形成实事求是的态度以及进行质疑和独立思考的习惯.二、教学重、难点重点:……这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.三、教学准备多媒体课件四、教学方法分组讨论,讲练结合五、教学过程(一)复习回顾,引入新课复习勾股定理的内容。

本节课探究勾股定理的综合应用。

思考:在八年级上册中我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?先画出图形,再写出已知、求证.探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在设计意图:上一节,我们利用勾股定理可以解决生活中的不少问题.在初一时我们……这样的无理……可以当直角三用.师生行为:学生小组交流讨论……这样的包含在直角三角形中的线段.此活动,教师应重点关注:②学生是否有克服困难的勇气和坚强的意志;③学生能否积极主动地交流合作.师:所以只需画出长1的直角三角形的斜边.生:设两直角边为a,b,根据勾股定理a2+b2=c2即a2+b2=13.若a,b 为正整数,•则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3.•所以长为13的线段是直角边为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线L垂直于OA,在L上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.(二)新课教授例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4 800米处,过了10秒后,飞机距离这个男孩头顶5 000米,飞机每小时飞行多少千米?分析:根据题意,可以画出图,A点表示男孩头顶的位置,C、B•点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得Rt△ABC中,∠C=90°,AB=5 000米,AC=4 800米.由勾股定理,得AB2=AC2+BC2.即5 0002=BC2+4 8002,所以BC=1 400米.飞机飞行1 400米用了10秒,那么它1小时飞行的距离为1 400×6×60=50 400米=504千米,即飞机飞行的速度为504千米/时.评注:这是一个实际应用问题,经过分析,问题转化为已知两边求直角三角形等三边的问题,这虽是一个一元二次方程的问题,学生可尝试用学过的知识来解决.同时注意,在此题中小孩是静止不动的.例2、如右图所示,某人在B处通过平面镜看见在B正上方5米处的A物体,•已知物体A到平面镜的距离为6米,向B点到物体A的像A′的距离是多少?分析:此题要用到勾股定理,轴对称及物理上的光的反射知识.解:如例2图,由题意知△ABA′是直角三角形,由轴对称及平面镜成像可知:AA′=2×6=12米,AB=5米;在Rt△A′AB中,A′B2=AA′2+AB2=122+52=169=132米.所以A′B=13米,即B点到物体A的像A′的距离为13米.评注:本题是以光的反射为背景,涉及到勾股定理、轴对称等知识.由此可见,数学是物理的基础.例3、在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,•问这里的水深是多少?解:根据题意,得到右图,其中D是无风时水草的最高点,BC为湖面,AB•是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD.所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36.6AC=27,AC=4.5,所以这里的水深为4.5分米.评注:在几何计算题中,方程的思想十分重要.设计意图:让学生进一步体会勾股定理在生活中的应用的广泛性,同时经历勾股定理在物理中的应用,由此可知数学是物理的基础,方程的思想是解决数学问题的重要思想.师生行为:先由学生独立思考,完成,后在小组内讨论解决,教师可深入到学生的讨论中去,对不同层次的学生给予辅导.在此活动中,教师应重点关注:②学生是否自主完成上面三个例题;②学生是否有综合应用数学知识的意识,特别是学生是否有在解决数学问题过程中应用方程的思想.例4、练习:在数轴上作出表示17的点.解:17是两直角边为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点如下图:设计意图:进一步巩固在数轴上找表示无理数的点的方法,熟悉勾股定理的应用.师生行为:由学生独立思考完成,教师巡视.此活动中,教师应重点关注:(1)生能否积极主动地思考问题;(2)能否找到斜边为17,另外两个角直边为整数的直角三角形.例5 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD 的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

教学中要逐层展示给学生,让学生深入体会。

解:延长AD 、BC 交于E 。

∵∠A=∠60°,∠B=90°,∴∠E=30°。

∴AE=2AB=8,CE=2CD=4,∴BE 2=AE 2-AB 2=82-42=48,BE=48=34。

∵DE 2= CE 2-CD 2=42-22=12,∴DE=12=32。

∴S 四边形ABCD =S △ABE -S △CDE =21AB·BE-21CD·DE=36 小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差.(三)例题讲解例1.△ABC 中,AB=AC=25cm ,高AD=20cm,则BC= ,S △ABC = 。

解:30cm,300cm2例2.△ABC中,若∠A=2∠B=3∠C,,则∠A= 度,∠B= 度,∠C= 度,BC= ,S△ABC= 。

解:90,60,30,4例3.△ABC中,∠C=90°,AB=4,CD⊥AB于D,则AC= ,CD= ,BD= ,AD= ,S△ABC= 。

解:23,1例4.已知:如图,△ABC中,AB=26,BC=25,AC=17,求S△ABC。

解:作BD⊥AC于D,设AD=x,则CD=17-x,252-x2=262-(17-x)2,x=7,BD=24,S△ABCBD=254(四)巩固练习1.在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,AB= 。

2.在Rt△ABC中,∠C=90°,S△ABC=30,c=13,且a<b,则a= ,b= 。

3.已知:如图,在△ABC中,∠B=30°,∠C=45°,求(1)AB的长;(2)S△ABC。

4答案1.4;2.5,12;3.提示:作AD⊥BC于D,AD=CD=2,AB=4,S△ABC= CC4.略。

(五)课堂小结1、进一步掌握利用勾股定理解决直角三角形问题;2、你对本节内容有哪些认识?会利用勾股定理得到一些无理数并理解数轴上的点与实数一一对应.六、板书设计七、课后作业1.在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,AB= 。

2.在Rt △ABC 中,∠C=90°,S △ABC =30,c=13,且a <b,则a= ,b= 。

3.已知:如图,在△ABC 中,∠B=30°,∠C=45°,求(1)AB 的长;(2)S △ABC 。

4.已知:如图,△ABC 中,AB=26,BC=25,AC=17,求S △ABC 。

答案:C1.4;2.5,12;3.提示:作AD⊥BC于D,AD=CD=2,AB=4,S△ABC=4.作BD⊥AC于D,设AD=x,则CD=17-x,252-x2=262-(17-x)2,x=7,BD=24,S△ABC BD=254;八、教学反思注重数学与生活的联系,从学生认知规律和接受水平出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。

学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。

通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。

但是,这些并不是几何学的全部教育功能。

从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水平。

这正是自古希腊开始几何教学一直倍受重视的主要原因。

按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。

根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。

从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。

显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。

因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。

相关文档
最新文档