17.1勾股定理第一课时教学设计

合集下载

17.1勾股定理(第一课时)教案

17.1勾股定理(第一课时)教案

商丘市乡村中小学、幼儿园教师优质课评选17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超2016年6月21日17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。

勾股定理是在学习了三角形有关性质的基础上提出来的,勾股定理揭示了直角三角形的三边之间的数量关系,对前面的知识起到完善,延伸的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

本节课试图通过数学活动,对学生所学知识进行内化与迁移,以发展思维。

同时对勾股定理的学习,对比我国数学家和西方数学家对勾股定理的研究,对学生进行爱国主义的教育,以落实素质教育的目标。

一、教学目标:知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容,会用面积法证明勾股定理。

了解利用拼图验证勾股定理的方法。

数学思考:在勾股定理的探索过程中,让学生经历“观察—猜想—归纳—验证”,培养合情推理能力,体会数形结合和从特殊到一般的思想。

解决问题:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,感受数学文化,激发学生的爱国热情,激励学生奋发学习。

2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

二、重点、难点1.重点:探索和证明勾股定理。

经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值。

2.难点:勾股定理的证明。

经历用不同的拼图方法证明勾股定理。

3.突破方法:发挥学生主体作用,通过学生动手实验,让学生在实验中探索,在探索中领悟,在领悟中理解。

17.1.勾股定理(第一课时)教学设计

17.1.勾股定理(第一课时)教学设计

17.1.1勾股定理教学设计一、教材分析:勾股定理是直角三角形的一条非常重要的性质,它将数与形密切地联系起来,揭示了一个直角三角形三边之间的数量关系,是后续学习解直角三角形的基础,是三角形知识的深化。

二、学情分析:八年级学生已对直角三角形有了初步的认识,具备了一定的分析和归纳能力,积累了一定的数学活动经验;但在数学说理和一些重要数学思想方法上尚不能熟练,缺乏严谨的逻辑推理能力,需要进一步的培养。

三、教学目标:(1)知识与技能:体验勾股定理的探索过程,理解勾股定理反映的直角三角形三边之间的数量关系,能利用已知两边求直角三角形另一边的长;(2)过程与方法:在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想;(3)情感与态度:在探索勾股定理的过程中,体验获得结论的快乐,培养合作意识和探索精神。

四、教学重、难点:重点:探索和证明勾股定理难点:用拼图方法证明勾股定理五、教学过程:活动一:导入新课出示2002年国际数学家大会会标,学生观察会标上的弦图,问题1:同学们知道这是什么图案吗?它由哪些我们学过的基本图形组成?师生活动:教师引导学生寻找图形中的直角三角形、正方形,并说明直角三角形的全等关系。

教师补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.那么什么是勾股定理?怎样用弦图证明勾股定理呢?设计意图:重视引言教学,从国际数学家大会的会标说起,设置悬念,引入课题。

活动二:观察猜想探究等腰直角三角形三边之间的数量关系 问题2:多媒体出示:相传2500年前,毕达哥拉斯有一次在朋友家做客时,发现朋友家的用砖铺成的地面中反映了直角三角形的某种数量关系。

假如你就是毕达哥拉斯,请观察图案,看看能发现什么?学生活动:发现有等腰直角三角形、正方形。

追问:图中三个小正方形A 、B 、C 的面积有什么关系?学生活动:学生独立观察图形,分析、思考其中的规律,得出结论,正方形A 的面积加正方形B 的面积等于正方形C 的面积。

17.1 勾股定理 第1课时 教学设计

17.1 勾股定理  第1课时  教学设计

西藏萨迦县中学电子教案单位:西藏萨迦县中学年级:八年级学科:数学课题 18.1勾股定理(第1课时)主备教师达娃加参单元第十八章教学课时一节课时授课教师达娃加参备课时间2017.6教学目标1、通过观察、分析方格图,经历探索勾股定理的过程,会运用勾股定理进行简单的计算.2、在勾股定理探索过程中,发展合情推理能力,体会数形结合思想,激发学习热情.教学重点1.重点:探索勾股定理.教学难点2.难点:探索勾股定理.考点分析勾股定理的应用题教学准备直尺教学过程(一)创设情境,导入新课师:同学们听说过外星人吗?生:(齐答)听说过.师:外星人就是生活在别的星球上的智慧生物.长期以来,人类一直在寻找外星人,并试图与他们交流.那么怎么寻找外星人?又怎么与外星人交流呢?主要的办法是向处太空发射探测器,希望有朝一日外星人能接收到探测器发出的信号,最好能直接收到探测器.为什么要直接收到探测器?因为在探测器里有很多图片,这些图片反映了地球的情况、地球人的形象、生活和文明成果.师:在这些图片中,有一张图片特别有意思,它所反映的恰好是我们这节课要学习的内容.这是一张什么样的图片呢?(师出示下图)教学补充(二)尝试指导,讲授新课师:(指准图)在这张图片上,中间画的是一个直角三角形,这个直角三角形的一条直角边等于3,另一条直角边等于4,斜边等于5.在直角三角形的外面画了三个正方形,这三个正方形的边长分别是3、4、5,所以这个正方形的面积是9,这个正方形的面积是16,这个正方形的面积是25.师:现在要问大家的是,通过这个图形地球人想告诉外星人什么呢?如果你是外星人,你看到这个图形能发现什么呢?(让生观察思考,要给学生充足的观察思考时间)师:(指图)谁来说说从这个图形你发现了什么?生:……(多让几名同学发表看法)师:(指准图)这个正方形的面积是9,这个正方形的面积是16,这个正方形的面积是25,9+16恰好等于25,可见,这个正方形的面积加上这个正方形的面积恰好等于这个大正方形的面积(板书:一个正方形的面积+另一个正方形的面积=大正方形的面积).师:(指准图)从这三个正方形面积的关系,我们可以进一步发现这个直角三角形三边的关系.师:(指准图)看到没有?这个正方形的面积实际上就是这条直角边的平方,这个正方形的面积实际上就是这条直角边的平方,而这个正方形的面积实际上就是这条斜边的平方.可见,这条直角边的平方加上这条直角边的平方恰好等于这条斜边的平方(板书:一条直角边的平方+另一条直角边的平方=斜边的平方).师:以上我们通过观察分析图形,发现这个直角三角形的三边有这样的关系:(指准式子)一条直角边的平方+另一条直角边的平方=斜边的平方.师:发现了这个关系,我们会进一步想到一个问题,什么问题?(稍停后边讲边指准图)这个直角三角形的三边有这样的关系,那么别的三角形的三边是否也有这样的关系呢?师:下面我们就来看别的直角三角形的情况.(师出示下图)ABC师:(指准图)这个图的中间是一个直角三角形,外面是三个正方形.正方形A 以这条直角边为边长,正方形B以这条直角边为边长,正方形C以斜边为边长.现在我们来算一算正方形A、B、C的面积.师:(指准图)正方形A的面积是多少?生:(齐答)4.(师在图中注上4)师:(指准图)正方形B的面积是多少?生:(齐答)9.(师在图中注上9)师:(指准图)正方形C的面积是多少?生:……(让生思考一会儿)师:正方形C的面积不好算,怎么来计算正方形C的面积呢?(师用彩笔在上图画出大正方形,如下图所示)C BA师:(指准图)正方形C的面积等于这个大正方形的面积减去这四个直角三角形的面积.师:(指准图)这个大正方形的面积等于多少?(稍停)它的边长为5,所以面积为25.这个直角三角形的面积等于多少?(稍停)它的这条直角边为2,这条直角边为3,所以面积为12×2×3=3.其它几个直角形的面积也都等于3,所以四个直角三角形的面积等于12.师:(指准图)这个大正方形的面积为25,四个直角三角形的面积为12,所以正方形C的面积是13(在图中注上13).师:(指准图)正方形A、B、C的面积都求出来了,正方形A的面积为4,正方形B的面积为9,正方形C的面积为13.现在我们可以看到,正方形A的面积加上正方形B的面积恰好等于正方形C的面积(板书:正方形A的面积+正方形B的面积=正方形C的面积).师:(指准图)从三个正方形面积的关系,我们可以进一步得出这个直角三角形三边的关系.师:(指准图)正方形A 的面积就是这条直角边的平方,正方形B 的面积就是这条直角边的平方,正方形C 的面积就是斜边的平方.所以这个直角三角形的三边有这样的的关系:这条直角边的平方加上这条直角边的平方恰好等于斜边的平方(板书:一条直角边的平方+另一条直角边的平方=斜边的平方). 师:(指准图)可见,这个直角三角形的三边也具有我们刚才所说的那种关系. 师:下面同学们自己再来看一个直角三角形,看一看这个直角三角形的三边是否也具有这种关系.(三)试探练习,回授调节 1.探究题:如图,填空:(1)正方形A 的面积= ,正方形B 的面积= ,正方形C 的面积 ;(2)正方形A 、B 、C 的面积具有的关系是: ; (3)中间的直角三角形的三边具有的关系是: . (四)尝试指导,讲授新课师:通过上面的探索,关于直角三角形三边的关系,同学们能得出一个什么结论呢?生:……(多让几名同学发表看法,要鼓励学生用自己的语言,哪怕是不十分准确的语言,来表达他们感悟到的东西) (师出示下图)师:我们可以得出这样的结论:(指准图)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.(师出示板书:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2)师:请大家把这个结论读两遍.(生读)师:这个结论很重要,也很有用.有了这个结论,已知直角三角形的两边,我们可以求出第三边.下面我们就来看一个例题. (师出示例题)例 求出下列直角三角形中未知边的长度.(1) (2)(师边讲解边板演,解题过程如下) c ba125C B A 23A B C AB C解:(1)AB 2=AC 2+BC 2=122+52=169 AB=169=13 (2)AC 2=AB 2-BC 2=32-22=5 AC=5(五)试探练习,回授调节2.a ,b 表示直角边,c 表示斜边,填空: (1)已知a=9,b=12,则c= ; (2)已知b=5,c=7,则a= . (六)归纳小结,布置作业师:本节课我们探索了直角三角形三边的关系,通过探索得出了一个结论.请大家把这个结论再读一遍.(生读)师:利用这个结论,已知直角三角形的两边可以求出第三边板书设计图一 图二……=大正方形的面积 ……=正方形C 的面积 如果…………=斜边的平方 ……=斜边的平方 那么a 2+b 2=c2例作业设计(作业:P 28习题1)教学反思c b a。

17.1《勾股定理》(第1课时)

17.1《勾股定理》(第1课时)

17.1《勾股定理》(第1课时)教学设计一、教材分析(一)地位和作用本节课是人教版八年级下册第十七章第一节勾股定理第一课时。

本节之前学生已经学习了三角形一些知识,勾股定理研究的是直角三角形三边之间特有的数量关系,将形与数密切联系起来,是解直角三角形的主要依据,在生产和生活实际中应用广泛。

勾股定理的探究是从特殊的等腰直角三角形出发,到网格中的直角三角形,再到一般的直角三角形,体现了从特殊到一般的探探索、发现和证明的过程。

证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探索去发现图形的性质,提出一般的猜想,并获得定理的证明。

(二)教学目标1、知识与技能:掌握一个定理——勾股定理,并会用定理解决简单问题。

2、过程与方法(1)经历一次由特殊到一般的探索过程,通过观察、思考、尝试猜想结论,发展合情推理能力。

(2)体验一种利用几何图形的面积证明代数恒等式的数形结合的思想,感受数学思维的严谨性。

3、情感态度与价值观:通过对勾股定理历史的了解,感受数学文化,增添一份民族自豪感。

在探究活动中,培养学生的合作交流意识和探索精神。

(三)重点、难点重点:探究并证明勾股定理。

难点:勾股定理的探究和证明。

二、教法分析勾股定理是反映直角三角形三边关系的一个特殊的结论。

在正方形网格中比较容易发现以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系。

但要从等腰直角三角形过渡到网格中的一般直角三角形,提出合理的猜想,学生有较大困难。

学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积。

因此,在教学中需要先引导学生观察网格背景下的正方形的面积关系,然后思考没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发现和证明勾股定理。

本节课主要采用启发式、探究式教学,由浅入深,由特殊到一般的提出问题,引导学生采用观察思考、动手实践、自主探索、合作交流的学习方法,使学生主动获得知识并发展能力.三、学法分析八年级学生已经具备了一定的观察、归纳、猜想和推理能力,已经学习了一些几何图形的面积的计算方法,但是运用面积法和割补思想解决问题的意识和能力还不够,对于如何将形与数有机的结合起来还有待提高.四、教学过程设计(一)、创设情景,引入新课国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2022年在北京召开了第24届国际数学家大会.上图就是大会会徽的图案.你见过这个图案吗?这个图案有什么特别的意义?师生活动:教师引导学生观察,指出这个图案与勾股定理有关,勾股定理是我们要研究的问题.设计意图:从国际数学家大会的会徽说起,设置悬念,引入课题。

17.1.1勾股定理(第一课时)教案

17.1.1勾股定理(第一课时)教案

勾股定理(第一课时)教案一、教学内容:本节课的上课内容是人教版数学八年级下册第十七章第一节勾股定理(第一课时)二、教学目标:知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受“数形结合”的数学思想及“从特殊到一般”的认知规律.情感态度与价值观:通过介绍中国古代对勾股定理方面的成就,激发学生爱国热情,培养他们的民族自豪感和钻研精神。

体验数学的美感,从而了解数学,喜欢数学.三、重点与难点:教学重点:勾股定理及其简单应用。

教学难点:勾股定理的验证。

四、教学过程:1.情境引入相传2500年前,古希腊著名数学家毕达哥拉斯在朋友家做客时,发现朋友家的地砖铺成的地面上反映了直角三角形三边的某种数量关系……问:这三个三角形的面积有什么关系?等腰直角三角形三边有什么关系?对于一般的直角三角形是否也有这样的性质呢?2.探求新知证明命题:如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+(赵爽弦图证明勾股定理)勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么222c b a =+ 即:直角三角形两条直角边的平方和等于斜边的平方我国是最早了解勾股定理的国家之一。

早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中,以后人们就简单地把这个事实说成“勾三股四弦五”,所以在我国人们就把这个定理叫作 “商高定理”。

“勾股定理”在国外,尤其在西方被称为“毕达哥拉斯定理”或“百牛定理”.相传这个定理是公元前500多年时古希腊数学家毕达哥拉斯首先发现的。

勾股定理公式的变形:直角三角形两直角边的平方和等于斜边的平方。

3.例题讲解,巩固练习1.在Rt △ABC 中, ∠B=90°下列选项中正确的是( )练习2.求下列图中表示边的未知数x 、y 的值.例、设直角三角形的两条直角边长分别为a 和b ,斜边长为c 。

17.1勾股定理(1)教学设计2022-2023学年人教版八年级下册数学

17.1勾股定理(1)教学设计2022-2023学年人教版八年级下册数学

17.1 勾股定理(1)教学设计一、教学目标1.了解勾股定理的基本概念和原理;2.掌握勾股定理的运用方法,能够解决与勾股定理相关的问题;3.培养学生分析问题和解决问题的能力。

二、教学内容本节课的教学内容主要包括以下几个方面:1.勾股定理的概念和原理;2.三角形的直角边、斜边和斜角的关系;3.勾股定理的运用方法和例题讲解。

三、教学步骤步骤一:导入1.教师通过提问的方式引出勾股定理的概念,激发学生对于勾股定理的兴趣;2.教师通过举例子的方式,让学生感受一下勾股定理的应用场景。

步骤二:学习与讨论1.教师通过讲解勾股定理的定义和原理,引导学生理解勾股定理的内涵;2.教师通过几何图形和实际问题的分析,让学生看到勾股定理的实际应用;3.学生与教师一起探讨如何应用勾股定理解决问题,并给出解决问题的步骤。

步骤三:例题讲解1.教师选择一些典型的例题进行讲解,通过解题过程演示勾股定理的运用方法;2.教师引导学生分析题目中的信息,确定解题思路,并进行逐步解题。

步骤四:练习与巩固1.学生在教师的指导下,完成相关练习题;2.学生互相交流解题思路,激发学生的合作学习能力和解决问题的能力。

步骤五:归纳总结1.教师引导学生总结勾股定理的运用方法;2.学生以小组为单位,展示他们的解题思路和方法;3.教师进行点评和总结,强调勾股定理的重要性和实际应用。

四、教学评价1.课堂练习的完成情况,包括学生的解题过程和答案的准确性;2.学生课后作业的完成情况,包括书面作业和练习题;3.学生对于勾股定理的理解程度和应用能力的评价。

五、教学反思本节课通过理论讲解和实际问题的应用,帮助学生理解和掌握勾股定理的基本概念和运用方法。

在教学过程中,学生积极参与,课堂气氛活跃。

通过解题讲解和学生的合作学习,提高了学生的解决问题的能力。

但是在练习环节中,部分学生的思维转换还不够灵活,需要加强巩固训练。

教师在今后的教学中将重点培养学生的分析问题和解决问题的能力,多进行案例分析和实践操作,提高学生的学习兴趣和实际应用能力。

17.1《勾股定理》教案(第1课时)

17.1《勾股定理》教案(第1课时)

勾股定理
教学设计说明
“勾股定理”是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切联系起来,它有着丰富的历史背景,在理论上占有重要地位.整节课以“问题情境——分析探究——得出猜想——实践验证——总结升华”为主线,使学生亲身体验勾股定理的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.根据教材的特点,本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.
本节课运用的教学方法是“启发探索”式,采用教师引导启发、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.使学生以一个创造者或发明者的身份去探究知识,从而形成自觉实践的氛围,达到收获的目的.。

人教版八年级数学下册17.1第1课时勾股定理教学设计

人教版八年级数学下册17.1第1课时勾股定理教学设计
-定期进行课堂测验,了解学生的学习进度,针对学生的薄弱环节进行有针对性的辅导。
6.教学拓展:
-结合勾股定理,引入其他数学文化知识,如勾股定理的历史背景、勾股数在其他领域的应用等,丰富学生的数学视野。
-鼓励学生参加数学竞赛、实践活动,提高他们运用勾股定理解决实际问题的能力。
四、教学内容与过程
(一)导入新课
2.新课讲解:
-采用数形结合的方法,引导学生通过直观的图形推导出勾股定理。
-通过具体实例,讲解勾股定理在实际问题中的应用,如计算斜边长度、判断一组数是否为勾股数等。
3.教学策略:
-采用分组合作学习,让学生在小组内讨论勾股定理的推导和应用,培养他们的合作意识和解决问题的能力。
-设计梯度性练习题,针对不同层次的学生,提高他们的运算速度和准确性,巩固勾股定理的知识点。
在教学过程中,教师应以学生为主体,关注学生的个体差异,因材施教,充分调动学生的积极性、主动性和创造性。同时,注重启发式教学,引导学生通过自主探究、合作交流等方式,达到教学目标。在教学评价中,要关注学生的知识掌握、能力培养和情感态度价值观的形成,全面提高学生的数学素养。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了直角三角形的性质、三角形内角和等基本知识,具备了一定的几何图形识别和逻辑推理能力。在此基础上,学习勾股定理,学生能够更好地理解直角三角形边长之间的关系,为后续学习相似三角形、解直角三角形等知识打下坚实基础。
五、作业布置
为了巩固学生对勾股定理的理解和应用,特布置以下作业:
1.必做题:
-根据勾股定理,计算给定直角三角形的斜边长度,并简要说明计算过程。
-列举三组勾股数,并验证它们是否符合勾股定理。
-从实际生活中选取一个直角三角形的应用实例,运用勾股定理解决问题,并写出解题过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1《勾股定理》教学设计
【教学内容解析】本节课是人教版八年级下册第十八章第一节勾股定理第一课时.本节之前学生已经学习了三角形一些知识,勾股定理研究的是直角三角形三边之间特有的数量关系,将形与数密切联系起来,是解直角三角形的主要依据,在生产和生活实际中应用广泛.本节课我从学生实际出发,创设有助于学生自主学习的问题情境,引导学生自主地经历一条由观察猜想到实践验证到推理论证的科学探索之路.我期望通过本节课达成四个一,为此我确定本节课教学目标为:【教学目标】
知识与技能:掌握一个定理——勾股定理,并会用定理解决简单问题.
过程与方法:1、经历一次由特殊到一般的探索过程,通过观察、思考、尝试猜想结论,发展合情推理能力.
2、体验一种利用几何图形的面积证明代数恒等式的数形结合的思想,感受数学思维的严谨性.
情感与态度:通过对勾股定理历史的了解,感受数学文化,增添一份民族自豪感.在探究活动中,培养学生的合作交流意识和探索精神.
【学生学情】八年级学生已经具备了一定的观察、归纳、猜想和推理能力,已经学习了一些几何图形的面积的计算方法,但是运用面积法和割补思想解决问题的意识和能力还不够,对于如何将形与数有机的结合起来还有待提高.
【教学重点】勾股定理的证明与运用.
【教学难点】用拼图法证明勾股定理.
【教学策略】本节课主要采用启发式、探究式教学,由浅入深,由特殊到一般的提出问题,引导学生采用观察思考、动手实践、自主探索、合作交流的学习方法,使学生主动获得知识并发展能力.
【教学过程】
问题情境
师生活动
设计意图
教师出示情景图片提出问题,学生实践思考、探索交流等.
一、设置情景引发思考
从A地到B地有两条路,并且AC垂直于BC.
问题一:哪条路近?为什么?
问题二:你能知道走第一条比走第二条近几米吗?为什么?
那么在Rt△ABC中,已知AC=8,BC=6,能否求出AB的
长呢?
带着这个问题我们开始第十八章《勾股定理》的学习.本章我们将探索直角三角形三边之间特有的数量关系,并运用所得的结论解决问题.今天我们学习第十八章第一节——勾股定理.
从简单的生活实例入手,引领学生预知本章的研究主题,引出课题.
问题情境
师生活动
设计意图
二、探索定理获得知识
勾股定理给同学们设了三关,大家有没有信心冲过这三关!
冲过这三关,我们就能获得知识,解决问题.
使教学内容富有挑战性.
观察猜想
首先由毕达哥拉斯带领我们进入第一关.(学生读题)
2500年前,古希腊著名数学家毕达哥拉斯非常善于观察和思考,经常能够从平淡的生活现象中发现数学问题.(教师提问,学生发表见解)
观察:这个地面是由什么图形拼成的?
观察:这些直角三角形都什么关系?
毕达哥拉斯发现以直角三角形三边为边长都可做出一个正方形.
观察:图中两个小正方形与大正方形的面积之间有什么关系?
如果中间直角三角形的两直角边分别为a, b,斜边为c,
思考:直角三角形三边之间有什么关系?
问题:对于任意直角三角形如果两直角边分别为a, b,斜边为c,那么三边之间是否也有a2+b2=c2这样的关系呢?得出猜想,猜想之后进入第二关.
从观察生活中常见的地砖入手,让学生感受到数学就在身边.通过设计问题串,让探索过程由浅入深,使学生从观察中得到猜想.适时穿插毕达哥拉斯这一人文背景,使学生获得新知,同时也感染学生养成善于观察勤于思考的科学的学习品质.
2、实践验证:
图中每个小方格的面积均为1,请分别算出正方形A,B,C的面积,利用面积关系验证三边关系.(同样的图形学案中有,让学生先独立完成,再小组交流,然后全班展示)
给学生充分的自主探索、合作交流的空间,鼓励学生尝试用不同的方式解决问题. 问题情境
师生活动
设计意图
学生活动:
分别求出图1、图2中三个正方形的面积.学生动脑思考,动手做,动口说想法.
师生总结:
图1:9 + 16 = 25
图2: 4 + 9 = 13
所以: SA + SB = SC
所以: a2 +b2=c2
讨论中发表自己的看法,提高语言表达能力. 通过交流总结出用面积割补法求大正方形的面积,为定理的证明做铺垫,突破本节课的难点.
3、推理论证
特殊数据不能代表一般规律,我们猜想的这个结论要作为定理必须经过推理论证.
学生活动:
通过动手合作拼正方形,并利用所拼的图形完成此猜想的证明.学生探索交流之后展示自己的拼图,解释自己的想法.
由猜想到验证到论证,有效地启发学生的思考,使学生成为学习的主体,经历知识的形成过程.
4、总结定理
学生总结:定理的文字表达形式,和符号推理形式.
教师介绍:我国古代学者把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.早在3000年前的《周髀算经》就记载勾三股四弦五的说法。

所以我国把这个定理叫做——勾股定理.我国三国时期的赵爽利用弦图证明了勾股定理,巧妙的用图形的面积证明了代数恒等式,这种数形结合的思想,在数学史上有着非常重要的作用.这幅弦图是我国古代数学成就的象征,是我们所有中国人的骄傲!在北京召开的国际数学家大会把它作为会徽.
介绍勾股定理的历史,让学生感受数学文化,增添民族自豪感,激发学习热情.
问题情境
师生活动
设计意图
三、学以致用解决问题
勾股定理精确地刻画了直角三角形三边的数量关系,条件十分简单,只需要(直角三角形)结论却很丰富,应用非常广泛.
学生活动:
自己动手利用勾股定理已知两边求第三边.
两道计算由学生独立完成,让学生自己体会勾股定理的用途,并发现应注意的问题.
引导学生回顾引例,前后呼应,实际问题中,感受到知识的应用价值.指导学生如何把实际问题转化成数学问题,训练学生有条理的表述自己的思考过程.
解决引入问题.
利用勾股定理可以解决很多问题.教师出示两到应用,先由解决问题一总结方法,然后让学生独立分析试一试.
学生活动:想怎样通过.(模型演示).
教师指导学生解决实际问题的方法:
先根据题意画出几何图形.
再根据题意结合图形找已知什么,求什么.然后利用所学知识解决问题.
学生活动:
学生先独立分析,再同桌交流各自的想法,然后全班展示.分析后整理解题过程.教师总结:
勾股定理的应用非常广泛,下节课我们还要专门研究.
四、共享收获布置作业
勾股定理被称为人类最伟大的科学发现之一,是数学史上最完美的定理.让我们来感受它的美:图中所示的三角形都是直角三角形,四边形都是正方形,正方形M,N的面积和是多少?
请同学们想象按照此规律不断滋生下去会有什么现象?
感受数学之美
问题情境
师生活动
设计意图
欣赏美丽的勾股树,(动画演示).随着直角三角形边长的变化,勾股树的形状千变万化.
思考:不管形状怎样改变,不变的是什么?
就让我们在这课美丽的勾股树下共享收获.
(学生总结收获)
简要梳理本节课的知识点和重要的思想方法, 使学生在知识和能力上都进一步
得到提升.
(教师总结)
这节课我们在中外古人的引领下认识了一个定理——勾股定理;经历了一次探索——由特殊到一般的探索过程;体验了一种思想——数形结合的思想;通过了解勾股定理的历史,增添了一份身为中国人的自豪.
鼓励同学们在今后的学习中,不断地用自己聪明的头脑去思考,去探索,去创造.布置作业,必做题巩固定理,研究题是对勾股定理证明的再研究,拓展题丰富学生知识,提高学生能力.
作业的多层次,多元化,为学生提供不同的发展空间.
整节课的设计,我将活动带入课堂,将静态的教学内容,设计成师生积极参与、交往互动、共同发展的动态过程.从学生实际出发组织教学,充分发挥教师的引
导作用,使学生始终以积极进取的态度自主的去探索去发现,给学生更多的时间和空间,使学生真正成为课堂的主人.。

相关文档
最新文档