相遇问题专题——第一版
四年级第4讲 相遇问题(一)-学生版

相遇问题(一)知识纵横1、速度:单位时间(每分钟、每秒、每小时)行的路程就叫做速度。
2、行程的四大要素:(1)出发时间:同时,不同时(2)出发地点:同地,异地(3)运动方向:同向,相向,背向(4)运动结果:相遇,不相遇,交叉而过3、数量关系:路程和=速度和×时间时间=路程和÷速度和速度和=路程和÷时间例 1小明和小芳两人同时从各自家里出发相向而行去学校。
小明的速度是50米/分钟,小芳的速度为55米/分钟,3分钟后两人恰好在学校门口相遇,他们两家相距多远?试一试 1小丹和小南两人分别从城东和城西两地同时出发,相向而行,小丹每小时走5千米,小南每小时走8千米,4小时后她们在途中相遇。
问:城东到城西相距多少千米?例2甲、乙两车分别从相距1000千米的两地同时出发相向而行,甲车每小时行63千米,乙车每小时行37千米,问几小时后两车相遇?试一试 2甲、乙两车分别从相距480千米的两地同时出发相向而行,甲车每小时行70千米,乙车每小时行50千米,问两车出发后多长时间相遇?例3甲、乙两车同时从相距600千米的两地同时出发,相向而行,甲车每小时行60千米,5小时后两车相遇。
乙车每小时行多少千米?试一试 3甲、乙两城之间的公路长是1100千米,某日上午5点30分从甲城开出一列慢车,从乙城开出一列快车,当日下午4点30分相遇。
快车每小时行58千米,慢车每小时行多少千米?例4甲、乙两车分别从相距1000千米的两地同时出发,相向而行,甲车每小时行63千米,乙车每小时行37千米。
几小时后两车相距300千米?。
小升初数学解决问题系列——相遇问题

小升初数学解决问题系列——相遇问题1.两辆客车分别从北京和上海同时相向开出,一辆车每时行95km,另一辆车每时行105km,经过7小时两车相遇,北京到上海相距千米。
解:(95+105)×7=200×7=1400(千米)故答案为:1400。
2.王叔叔和张叔叔驾驶汽车同时从相距577.5km的两地相向开出。
王叔叔每小时行75km,张叔叔每小时行90 km。
经过小时两人相遇。
解:577.5÷(75+90)=577.5÷165=3.5(小时)故答案为:3.5。
3.张师傅和李师傅同时加工104个零件,张师傅每小时加工6个,李师傅每小时加工7个,时可以完成任务。
解:104÷(6+7)=104÷13=8(时)故答案为:8。
4.修一条长165千米的公路有甲乙两个工程队从两端同时施工,甲队每天向前修6千米,乙队每天向前修5千米,修完这条公路要用天。
解:165÷(6+5)=165÷11=15(天)故答案为:15。
5.淘气和笑笑从两地同时出发,相向而行。
淘气始终以100米/分的速度行走,笑笑先以80米/分的速度走了5分钟,后来以100米/分的速度行走,直至两人相遇。
如果从出发到两人相遇经过了8分钟。
两地路程为米。
解:(60×3)÷(28+44)=180÷72=2.5(分钟)。
故答案为:2.5。
7.甲、乙两船同时从两港口相对开出,甲船每小时行驶55 千米,乙船每小时行驶45 千米,两船经过4.5小时相遇,两港口相距千米。
解:(55+45)×4.5=100×4.5=450(千米)。
故答案为:450。
8.甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲每小时行17.5千米,乙每小时行15千米,经过小时,两人相距32.5千米。
解:第一种情况,两人没有相遇,(65-32.5)÷(17.5+15)=32.5÷32.5=1(小时)经过1小时,两人相距32.5千米。
相遇问题的应用题30道

相遇问题的应用题30道1. 甲、乙两人分别从相距 120 千米的 A、B 两地同时出发,相向而行。
甲每小时行 30 千米,乙每小时行 20 千米,几小时后两人相遇?解析:两人相向而行,他们的相对速度为甲的速度加上乙的速度,即 30 + 20 = 50 千米/小时。
根据时间 = 路程÷速度,可得相遇时间为 120÷50 = 2.4 小时。
2. 小明和小红同时从学校和家出发,相向而行,小明每分钟走 60 米,小红每分钟走 50 米,经过 10 分钟相遇。
学校到家的距离是多少米?解析:两人的速度和为 60 + 50 = 110 米/分钟,10 分钟相遇,所以路程 = 速度×时间,即 110×10 = 1100 米。
3. 甲车每小时行 40 千米,乙车每小时行 50 千米,两车同时从相距 360 千米的两地相向而行,几小时相遇?解析:相对速度为 40 + 50 = 90 千米/小时,相遇时间 = 360÷90 = 4 小时。
4. 两艘轮船同时从相距 480 千米的两个港口相对开出,甲船每小时行 35 千米,乙船每小时行 45 千米,几小时后两船相遇?解析:速度和为 35 + 45 = 80 千米/小时,相遇时间 = 480÷80 = 6 小时。
5. 甲、乙两地相距 560 千米,一辆客车和一辆货车同时从两地相对开出,客车每小时行 80 千米,货车每小时行 60 千米,几小时后两车相遇?解析:相对速度为 80 + 60 = 140 千米/小时,相遇时间 = 560÷140 = 4 小时。
6. 明明和亮亮在周长为 400 米的环形跑道上跑步,明明每秒跑 5 米,亮亮每秒跑 3 米,他们同时从同一地点出发,反向而行,多长时间后两人第一次相遇?解析:反向而行,相对速度为 5 + 3 = 8 米/秒,跑道周长为 400 米,相遇时间= 400÷8 = 50 秒。
相遇问题经典题型及变式题

相遇问题经典题型及变式题一、题型概述相遇问题是行程问题中最重要的一种类型,它研究的是物体在行进方向上相遇的问题。
行程问题中的相遇问题的特点是:两个物体同时出发,行走方向一致,行走的路程之和等于第三方的长度。
解题时,通常采用“速度和×时间=路程”的方法。
二、经典题型1. 相向而行(同时出发)例1:甲、乙两列火车从两地相对开出,甲车每小时行驶55千米,乙车每小时行驶45千米,两列火车在两地相对开出后3小时相遇,求两地的路程有多长?【分析】此题主要考查了一元一次方程的应用,关键是弄清题意,表示出两人和行的速度,根据已知相遇时间,根据路程=速度×时间,列出方程即可解答。
【解答】解:设两地的路程有x千米,由题意得:(55+45) ×3=xx=345答:两地的路程有345千米.2. 相背而行例2:小李和小张同时以4千米/时的速度相背而行,他们走了半小时后,小李调头往回走,半小时后与小张相遇,求小李的往返行程有多长?【分析】相背而行的两人在半小时后相遇时走的总路程是两倍的小李的往返行程,可求出两人的总路程,再根据小李的速度求出小李的往返行程.【解答】解:设小李的往返行程为x千米.由题意得:(4+4)×(0.5+0.5×2)=x解得:x=16.答:小李的往返行程为16千米.3. 同向而行(一前一后)例3:甲、乙两人从相距100千米的两地同时出发,甲的速度是每小时25千米,乙的速度是每小时行15千米,问经过多长时间甲、乙两人相距最近?最近距离是多少?【分析】本题属于追及问题,两人相距最近就是两人之间的距离最短,此时甲还没有追上乙.应分两种情况进行讨论:如果甲先走一小段时间,那么根据时间=路程÷速度及甲、乙的路程差等于两地之间的距离列式求解;如果乙先走一小段时间,那么根据时间=路程÷速度及甲此时还没有追上乙列式求解.【解答】解:(1)当甲先走一小段时间时,根据时间=路程÷速度可得:$t = \frac{100 - 15t}{25}$;解得:$t = \frac{40}{7}$.此时甲、乙之间的距离为$25 \times \frac{40}{7} - 100 = \frac{75}{7}$(千米).(2)当乙先走一小段时间时,根据时间=路程÷速度可得:$t = \frac{25t - 100}{25}$;解得:$t = \frac{8}{3}$.此时甲、乙之间的距离为$100 - 25 \times \frac{8}{3} = \frac{75}{3}$(千米).答:经过$\frac{40}{7}$小时或$\frac{8}{3}$小时甲、乙两人相距最近,最近距离分别是$\frac{75}{7}$千米或$\frac{75}{3}$千米.三、变式题——动态题型的讨论方式(包括等量关系)与上面几道题型的比较题型异同;经典题型的推广结果以及它们的变式;一道应用题的多种思路及一题多解在思维锻炼方面的价值等。
(完整版)相遇问题与追及问题

相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。
最新小学数学行程问题相遇问题最全版(1)

行程问题---相遇问题1、甲乙两人分别从相距27.3千米的两地同时出发相向而行,甲每小时走6.2千米,乙每小时走4.3千米。
两人几小时后相遇?2、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18.5千米,乙船每小时行驶15.6千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?3、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?4、一列快车和一列慢车分别从甲乙两地同时相向而行。
快车10小时可以到达乙地,慢车15小时可以到达甲地。
已知快车每小时比慢车多行20千米,两车出发后几小时相遇?5、甲、乙两车同时从东、西两地相向开出,甲车每小时行56.4千米,乙车每小时行48.6千米。
两车在距中点42.9千米处相遇,东、西两地相距多少千米?6、.甲、乙两汽车同时从两地出发,相向而行。
甲汽车每小时行52.6千米,乙汽车每小时行55.4千米,两车在距中点16.8千米处相遇。
求两地之间的路程是多少千米?7、一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行62.5千米,摩托车每小时行70千米,当摩托车行到两地中点处时,与汽车还相距30千米。
求A、B两城之间的距离?8、甲乙两地相距60千米,甲乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即9、快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?10、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?11.汽车从甲地开往乙地,每小时行32千米。
4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?12、甲乙两车同时从A、B两地相对开出,4小时后相遇,甲车再开3小时到达B地。
相遇问题的分类讲解讲解学习

题型一. 相遇问题甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和相遇路程÷速度和=相遇时间 相遇路程÷相遇时间=速度和题型二. 追及问题有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”。
实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程)。
如果设甲走得快,乙走得慢,在相同的时间(追及时间)内: 追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差 速度差×追及时间=追及路程追及路程÷速度差=追及时间追及路程÷追击时间=速度差【中点相遇】例1甲、乙两车分别同时从A、B两地出发,相向而行,甲车每小时行55千米,乙车每小时行45千米,两车在距中点25千米处相遇。
求A、B两地的距离。
练习1哥哥和弟弟分别从家和学校相向而行。
哥哥每分行80米,弟弟每分行60米,两人在离中点100米处相遇。
问:家到学校的距离是多少米?练习2快、慢两车同时从两城相向出发,4小时后在离中点18千米相遇,已知快车每小时行70千米,慢车每小时行多少千米?例2东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。
数学中的相遇问题

数学中的相遇问题(一)我们把研究路程、时间、速度之间关系的一类问题,称为行程问题。
行程问题的基本数量关系式是:①速度×时间=路程,②路程÷时间=速度,③路程÷速度=时间相遇问题是行程问题中的主要类型。
相遇问题中的主要数量关系式是:总路程÷速度和=相遇时间,解答相遇问题,通过画图来帮助理解题意,分析数量关系,常能收到很好的效果.例1、两辆汽车同时从甲乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时两车相遇。
甲乙两地相距多少千米?例2、甲乙两地相距135千米,小李和小刘分别从甲乙两地骑自行车同时出发,相向而行,小李每小时行15千米,小刘每小时行12千米。
几小时后两人相遇?例3、甲乙两地相距460千米,一辆公共汽车和一辆小轿车同时从甲乙两地出发,相向而行,经过5小时相遇.已知公共汽车的速度是每小时40千米,小轿车的速度是每小时多少千米?例4、一列货车和一列客车同时从某站向相反方向开出,货车每小时行34千米,客车每小时行38千米,6小时后两车相距多少千米?例5、甲乙二人同时从两地出发,相向而行,甲每分钟行68米,乙每分钟62米,15分钟后,两人过了相遇点又相距150米,两地间的路程长多少千米?例6、一列火车每小时行48千米,它从甲站开出后2小时,另一列火车以同样的速度从乙站相对开出,经过3小时与甲车相遇。
甲乙两站相距多少千米?例7、一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行。
公共汽车每小时行40千米,小轿车每小时行52千米.几小时后两车相距138千米?(考虑不同的情况)8、甲乙两队学生从相隔18千米的两地同时出发,相向而行.一个同学骑自行车以每小时14千米的速度在两队间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?9、甲乙两车同时同地背向而行,甲车每小时行50千米,乙车每小时行42千米,当甲车比乙车多行32千米时,甲乙两车相距多少千米?10、甲乙两车同时从东西两地相向开出.甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程专题目录第一讲直线上的相遇与追及问题第二讲圆周上的相遇与追及第三讲多人相遇与追及问题第四讲流水行程问题第五讲火车过桥问题第六讲时钟问题第七讲行程中的比例问题第八讲多次相遇与追及问题第九讲发车问题、接送问题、电梯问题第十讲变速与变道问题第十一讲平均速度问题、猎狗追兔问题第十二讲:第十三讲第十四讲第十五讲第一讲直线上的相遇与追及问题教学目的:1、学会行程的中,速度、时间、路程三个量的关系2、掌握相向、背向、同向等概念3、会运用追及和相遇解决简单行程问题基本知识点行程三个量的关系公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间三个概念:相向而行:面对面而行(如图)。
同向而行:面朝的方向相同而行(如图)背向而行:背靠背方向,方向相反而行(如图)。
相遇和追及问题1、相遇问题含义:两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)(甲速+乙速)=总路程÷相遇时间2、追及问题含义:两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
数量关系:追及路程=(快速-慢速)×追及时间追及时间=追及路程÷(快速-慢速)(快速-慢速)=追及路程÷追及时间3、注意点:①在处理相遇与追及问题的时候,一定要注意公式的使用时二者发生关系那一时刻时候所处的状态。
②在行程问题里面所用的时间都是时间段,不是时间点(非常重要)。
③无论在哪一类行程问题里面,只要是相遇,就与速度和有关,只要是追及,就与速度差有关。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈。
因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。
例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解“两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。
小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。
又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。
已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。
由此推知追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人。
例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解这道题可以由相遇问题转化为追及问题来解决。
从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米。
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校有多远?解要求距离,速度已知,所以关键是求出相遇时间。
从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为90×12-180=900(米)答:家离学校有900米远。
例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。
后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。
求孙亮跑步的速度。
解手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。
如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。
所以步行1千米所用时间为1÷[9-(10-5)]=0.25(小时)=15(分钟)跑步1千米所用时间为15-[9-(10-5)]=11(分钟)跑步速度为每小时1÷11/60=1×60/11=5.5(千米)答:孙亮跑步速度为每小时5.5千米。
第二讲环形跑道的相遇与追及教学目的:1、了解什么是环形跑道问题2、掌握环形跑道上相遇与追及的特点基本知识点1、环形跑道相遇问题:如上图,我们可以看到甲、乙两人背向而行会在圆周上一点相遇,相遇的时候他们刚好走过一个圆周的周长,如果在进行多次相遇的时候,与第一次相遇的情况一样,新的起点,再次相遇。
重点:因此,圆周上的相遇告诉我们,每相遇一次,他们两个人的路程和为一个圆周的周长。
相遇几次,就是几个圆周的周长。
由此,也可以建立等量关系,来进行解题公式:一个圆周的周长=(快速+慢速)×相遇时间2、环形跑道上的追及问题如上图,我们可以看到甲、乙两人同向而行,快的会再一次在圆周上追上慢的,当追上的时候,快的刚好比慢的多走一个圆周的周长,如果在进行多次追及的时候,与第一次相遇的情况一样,新的起点,再次追及。
重点:因此,圆周上的追及告诉我们,每追及一次,快的就应该比慢的多走一个圆周的周长。
追及几次,就是几个圆周的周长。
由此,也可以建立等量关系,来进行解题公式:一个圆周的周长=(快速-慢速)×相遇时间1.在400米的环形跑道上,A、B两点相距100米,。
甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟。
那么,甲追上乙需要的时间是多少秒?答案:假设没有休息那么100/(5—4)=100秒钟在100/5=20秒 100/20-1=4(次)100+4*10=140秒2.小明在360米的环形跑道上跑一圈,已知他前半时间每秒跑5米,后半时间每秒跑4米,为他后半路程用了多少时间?答案:x÷4=(360-x)÷5×=160(360÷2-160)÷5+160÷4=44分3.林琳在450吗长的环形跑道上跑一圈,已知她前一半时间每秒跑5米,后一半时间每秒跑4米,那么她的后一半路程跑了多少秒答案:设总时间为X,则前一半的时间为X/2,后一半时间同样为X/2X/2*5+X/2*4=360X=80总共跑了80秒前40秒每秒跑5米,40秒后跑了200米后40秒每秒跑4米,40秒后跑了160米后一半的路程为360/2=180米后一半的路程用的时间为(200-180)/5+40=44秒4.小君在360米长的环形跑道上跑一圈。
已知他前一半时间每秒跑5米,后一半时间每秒跑4米。
那么小君后一半路程用了多少秒?答案:设时间X秒 5X=360-4X 9X=360 X=40 后一半时间的路程=40*4=160米后一半路程=360/2=180米后一半路程用每秒跑5米路程=180-160=20米后一半路程用每秒跑5米时间=20/5=4秒后一半路程时间=4+40=44秒答:后一半路程用了44秒5.小明在420米长的环形跑道上跑了一圈,已知他前一半时间每秒跑8米,后一半时间每秒跑6米.求他后一半路程用了多少时间?答案:设总用时X秒。
前一半时间和后一半时间都是X/2。
然后前一半跑8*(X/2)米,后一半跑6*(X/2)米,总共加起来等于420米。
所以列下方程8*(X/2)+6*(X/2)=420.解得X=60。
所以后一半跑了30秒。
又因为后一半为6M/S,所以后一半跑了6*30=180M。
6.二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
问第十五次击掌时,甲走多长时间乙走多少路程?答案:前10圈甲跑一圈击掌一次,即10下此时已跑了5+5/7圈;后面2人跑了2/7时击掌一次,然后2人共一圈击掌1次耗时(4+2/7)/(1/4+1/7)=30/7*(11/28)=165/98;甲共总走了40+165/98 H 已走了(40+165/98)*(400/7) M第三讲多人相遇与追及问题教学目的:1、了解多人相遇与追及的解题技巧。