计算机组成原理实验指导书
计算机组成原理实验指导书

计算机组成原理实验指导书适用TD-CMA实验设备实验一基本运算器实验一、实验原理运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A和暂存器B,三个部件同时接受来自A和B的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3 0CN来决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU的输出。
如果是影响进位的运算,还将置进位标志FC,在运算结果输出前,置ALU零标志。
ALU中所有模块集成在一片CPLD中。
逻辑运算部件由逻辑门构成,较为简单,而后面又有专门的算术运算部件设计实验,在此对这两个部件不再赘述。
移位运算采用的是桶形移位器,一般采用交叉开关矩阵来实现,交叉开关的原理如图1-1-2所示。
图中显示的是一个4X4的矩阵(系统中是一个8X8的矩阵)。
每一个输入都通过开关与一个输出相连,把沿对角线的开关导通,就可实现移位功能,即:(1) 对于逻辑左移或逻辑右移功能,将一条对角线的开关导通,这将所有的输入位与所使用的输出分别相连,而没有同任何输入相连的则输出连接0。
(2) 对于循环右移功能,右移对角线同互补的左移对角线一起激活。
例如,在4位矩阵中使用‘右1’和‘左3’对角线来实现右循环1位。
(3) 对于未连接的输出位,移位时使用符号扩展或是0填充,具体由相应的指令控制。
使用另外的逻辑进行移位总量译码和符号判别。
原理如图1-1-1所示图1-1-1 运算器原理图运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A和暂存器B,三个部件同时接受来自A和B的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3 0决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU的输出。
如果是算术运算,还将置进位标志FC,在运算结果输出前,置ALU零标志。
《计算机组成原理》实验指导书

《计算机组成原理》实验指导书实验一、3~8译码器的设计1.实验目的和要求熟悉ispEXPERT SYSTEM 软件的原理图绘制和编程方法。
了解计算机硬件电路的设计和调试方法。
熟悉、掌握组合逻辑电路的设计方法。
2.实验内容由组合逻辑电路知识可知,采用与门实现的3线~8线译码器的逻辑方程如下: 利用组合逻辑门电路,设计一个3~8译码器,原理图如下:并验证逻辑是否正确。
3.实验提示先根据附录一熟悉ispEXPERT SYSTEM用原理图方式输入组合逻辑门电路连接计算机组成原理实验装置,编程下载ispLSI1032E 拨动开关观察记录LED 显示结果完成实验后,每位同学提交一份实验报告(手写),格式参照附件一。
注:引脚1.开关(输入):K0~K7: 53~60K8~K15 : 26~33 开关向上为1,向下为0 灯(输出):LED0~LED7 :76~83 LED8~LED15:3~10 L0~L7: 45~52 L8~L15: 34~412.输入输出都要添加缓冲器:在器件库中选择C :\…\GENERIC\IOPADS.LIB1270126012501240123012201210120a a a y a a a y a a a y a a a y a a a y a a a y a a a y a a a y ========3.引脚锁定:菜单项ADD ,选命令,出现Symbol Attribute Editor 对话框,单击需要定义属性的输入输出PAD ,在对话框中选SynarioPin 属性,输入引脚号。
(2)选择器件 (3)输入源文件(4)编译、仿真源文件 (5)适配在项目管理器窗口,点击左边窗口中的ispLSI1032E-70LJ84,右边窗口双击FitDesign,出现绿色对号,则设计正确,红色错号,存在严重错误。
(6)下载(烧录)将实验系统电源连好使用专用下载电缆将实验系统和微机连好。
计算机组成原理实验指导书CP226

目录第一章系统概述 (2)1.1DICE-CP226简介 (2)1.2DICE-CP226特点 (2)1.3实验系统组成 (3)第二章模型机模块实验 (4)2.1寄存器实验 (4)实验1:A,W 寄存器实验 (5)实验2:R0,R1,R2,R3 寄存器实验 (8)实验3:MAR 地址寄存器,ST 堆栈寄存器,OUT输出寄存器 (13)2.2运算器实验 (16)2.3数据输出实验/移位门实验 (18)实验1:数据输出实验 (20)实验2:移位实验 (21)2.4微程序计数器U PC实验 (23)实验1:uPC 加一实验 (25)实验2:uPC 打入实验 (26)2.5PC实验 (26)实验1:PC 加一实验 (29)实验2:PC 打入验 (29)2.6存储器EM实验 (30)实验1:PC/MAR 输出地址选择 (31)实验2:存储器EM 写实验 (31)实验3:存储器EM 读实验 (33)实验4:存储器打入IR指令寄存器/uPC实验 (34)实验5:使用实验仪小键盘输入EM (36)2.7微程序存储器U M实验 (36)实验1:微程序存储器uM 读出 (38)实验2:使用实验仪小键盘输入uM (38)2.8中断实验 (39)第三章CP226 模型机 (40)3.1模型机总体结构 (40)3.2模型机寻址方式 (41)3.3模型机指令集 (42)3.4模型机微指令集 (44)第四章模型机综合实验(微程序控制器) (55)实验1:数据传送实验/输入输出实验 (55)实验2:数据运算实验(加/减/与/或) (58)实验3:移位/取反实验 (60)实验4:转移实验 (62)实验5:调用实验 (60)实验6:中断实验 (61)实验7:指令流水实验 (64)实验8 RISC 模型机 (66)第五章组合逻辑控制 (68)5.1组合逻辑控制器 (68)5.2用CPLD实现运算器功能 (76)第六章设计指令/微指令系统 (79)第七章扩展实验 (83)扩展实验一:用8255 扩展I/O 端口实验 (83)扩展实验二:用8253扩展定时器试验 (84)第八章实验仪键盘使用 (87)1、观察内部寄存器: (88)2、观察、修改程序存储器内容: (88)3.观察、修改微程序存储器内容: (89)4.用小键盘调试实验一 (91)第九章CP226 集成开发环境使用 (93)1)主菜单 (94)2)快捷键图标 (95)3)调试窗口区 (95)4)结构图区 (96)5)指令/微程序/跟踪窗口 (96)6)寄存器状态 (97)附录一实验用芯片介绍 (98)第一章系统概述1.1 DICE-CP226简介DICE-CP226型计算机组成原理实验系统<以下简称系统>,是由江苏启东计算机总厂有限公司继C2000/CH2000成功开发之后,结合国内同类产品的优点,最新研制开发的超强型实验计算机装置<以下简称模型机>。
计算机组成原理实验指导书

计算机组成原理实验指导书一、实验目的。
本实验旨在通过实际操作,加深学生对计算机组成原理的理解,掌握计算机硬件的基本组成和工作原理,提高学生的动手能力和实际操作能力。
二、实验器材。
1. 计算机主机。
2. 显示器。
3. 键盘。
4. 鼠标。
5. 逻辑分析仪。
6. 示波器。
7. 电源。
8. 万用表。
9. 逻辑门集成电路。
10. 接线板。
11. 连接线。
三、实验内容。
1. 计算机硬件基本组成的实验。
通过拆卸计算机主机,了解各个硬件组件的作用和连接方式,包括主板、CPU、内存、硬盘、显卡、电源等。
并通过重新组装,加深对计算机硬件组成的理解。
2. 逻辑门电路实验。
使用逻辑门集成电路和连接线搭建基本的逻辑门电路,包括与门、或门、非门等,并通过逻辑分析仪观察输入输出的关系,加深对逻辑门原理的理解。
3. 示波器使用实验。
学习示波器的基本使用方法,观察不同信号的波形,了解数字信号和模拟信号的特点,加深对计算机输入输出原理的理解。
4. 电源电压测量实验。
使用万用表测量计算机主板各个电源接口的电压值,了解各个电源接口的作用和电压标准,加深对计算机电源原理的理解。
四、实验步骤。
1. 计算机硬件基本组成的实验步骤。
(1)拆卸计算机主机,观察各个硬件组件的位置和连接方式。
(2)了解各个硬件组件的作用和特点。
(3)重新组装计算机主机,检查各个硬件组件的连接是否正确。
2. 逻辑门电路实验步骤。
(1)根据实验指导书搭建与门、或门、非门电路。
(2)使用逻辑分析仪观察输入输出的关系,记录实验数据。
3. 示波器使用实验步骤。
(1)学习示波器的基本使用方法。
(2)使用示波器观察不同信号的波形,记录实验数据。
4. 电源电压测量实验步骤。
(1)使用万用表测量各个电源接口的电压值。
(2)比较测量结果与电压标准的差异,记录实验数据。
五、实验注意事项。
1. 在拆卸和重新组装计算机主机时,注意防止静电干扰,避免损坏硬件组件。
2. 在搭建逻辑门电路时,注意连接线的接触是否良好,避免信号传输不畅。
(完整版)《计算机组成原理》实验指导书

《计算机组成原理》实验指导书目录第一部分EL-JY-II计算机组成原理实验系统简介 (1)第二部分使用说明及要求 (5)实验一运算器实验 (12)实验二移位运算实验 (24)实验三存储器实验和数据通路实验 (29)实验四微程序控制器的组成与实现实验 (36)实验五微程序设计实验 (45)实验六、简单实验计算机组成与程序运行实验 (53)实验七、带移位运算实验计算机组成与程序运行实验 (65)实验八、复杂实验计算机组成与程序运行实验 (77)实验九、实验计算机的I/O实验 (93)实验十、总线控制实验(选做) (103)实验十一、可重构原理计算机组成实验(选做) (105)实验十二、简单中断处理实验(选做) (110)实验十三、基于重叠和流水线技术的CPU结构实验(选做) (116)实验十四、RISC模型机实验(选做) (122)第一部分EL-JY-Ⅱ计算机组成原理实验系统简介EL-JY-Ⅱ型计算机组成原理实验系统是为计算机组成原理课的教学实验而研制的,涵盖了目前流行教材的主要内容,能完成主要的基本部件实验和整机实验,可供大学本科、专科、成人高校以及各类中等专业学校学习《计算机组成原理》、《微机原理》和《计算机组成和结构》等课程提供基本的实验条件,同时也可供计算机其它课程的教学和培训使用。
一、基本特点:1、本系统采用了新颖开放的电路结构:(1)、在系统的总体构造形式上,采用“基板+ CPU板”的形式,将系统的公共部分,如数据的输入、输出、显示单片机控制及与PC机通讯等电路放置在基板上,它兼容8位机和16位机,将微程序控制器、运算器、各种寄存器、译码器等电路放在CPU板上,而CPU板分为两种:8位和16位,它们都与基板兼容,同一套系统通过更换不同的CPU板即可完成8位机或16位机的实验,用户可根据需要分别选用8位的CPU 板来构成8位计算机实验系统或选用16位的CPU板来构成16位计算机实验系统;也可同时选用8位和16位的CPU板,这样就可用比一套略多的费用而拥有两套计算机实验系统,且使用时仅需更换CPU板,而不需做任何其它的变动或连接,使用十分方便。
CCT-IV计算机组成原理实验指导书

CCT-IV计算机组成原理实验指导书目录实验一运算器实验 (3)(一) 算术逻辑运算实验 (3)(二) 进位控制实验 (7)(三) 移位运算实验 (10)实验二存储器实验 (12)实验三微控器实验 (16)实验四基本模型机设计与实现 (23)实验五带移位运算的模型机的设计与实现 (30)实验六复杂模型机的设计与实现 (37)实验七可重构原理计算机组成设计实验 (46)实验八扩展8255并行口实验 (52)实验九PLD应用实验 (57)实验一运算器实验(一)算术逻辑运算实验一. 实验目的1. 掌握简单运算器的数据传送通路。
2. 验证运算功能发生器( 74LS181)的组合功能。
二. 实验设备CCT-IV计算机组成原理教学实验系统一台,排线若干。
三. 实验内容1. 实验原理实验中所用的运算器数据通路图1-1所示。
其中运算器由两片74LS181以并/串形成构成8位字长的ALU。
运算器的输出经过一个三态门(74LS245)和数据总线相连,运算器的两个数据输入端分别由二个锁存器(74LS373)锁存,锁存器的输入连至数据总线,数据开并(“INPUT DEVICE”)用来给出参与运算的数据,并经过一三态门(74LS245)和数据总线相连,数据显示灯(“BUS UNIT”)已必数据总线相连,用来显示数据总线内容。
图中已将用户需要连接的控制信与用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信与,其它均为电平信号。
由于电路中的时序信号均已连至“W/R UNIT”的相应时序信号引出端,因此,在进行实验时,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲,而S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU-B、SW-B各电平控制信号用“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为电低电平有效,LDDR1、LDDR2为高电平有效。
实验指导书_计算机组成原理

●李英王强编●杨勇审《计算机组成原理》实验指导书东华理工学院自编教材 20080XX计算机组成原理实验指导书编写:李英王强审校:杨勇东华理工大学信工学院二○○八年十月目录实验一运算器数据通路实验 (1)实验二总线存储器实验 (11)实验三运算器仿真实验 (20)实验四存储器仿真实验 (25)实验五输入输出接口仿真实验 (29)实验六数据通路仿真实验 (34)实验七微程序实验 (38)实验一 运算器数据通路实验一、实验预习1、复习本次实验所用的各种数字集成电路的性能及工作原理。
2、复习74LS181的工作原理,熟悉各管脚的逻辑功能。
3、按实验原理要求设计运算器,画出逻辑电路图及实验连线图。
4、预先拟订好实验步骤,考虑好可能产生的故障,并想好采取哪些实验技术手段进行排除。
5、74LS181是一个带有输入函数发生器的四位并行加法器,如果要进行8位或更多位的运算,应如何处理?6、实验中挂在总线上的器件(如运算器、寄存器、开关等)向总线发信息时应注意些什么问题?二、实验目的1、熟悉74LS181函数功能发生器的功能,提高器件在系统中应用的能力。
2、熟悉运算器的数据传送通路。
3、完成几种算术/逻辑运算器操作,加深对运算器工作原理的理解。
三、实验仪器实验仪器:1、综合硬件公共箱NS-GG12、逻辑电路搭试板NS-DS13、接线工具和连接导线 实验器件:1、四位函数功能发生器74LS181 2片2、八D 锁存器74LS373 1片3、八D 触发器74LS273 2片4、八缓冲器74LS244 1片器件介绍:1、八D 锁存器74LS3732、八D 触发器74LS2733、八缓冲器74LS244图1-1 八D 锁存器74LS373四、实验原理1.运算器基本结构运算器是计算机中对数据进行加工处理的部件,是中央处理单元(CPU )的主要组成部分之一。
运算器基本结构一般由算术逻辑运算单元(ALU )、输入数据选择电路、通用寄存器组、输出数据控制电路等组成。
计算机组成原理实验指导书

TEC-4计算机组成原理实验系统TEC-4计算机组成原理实验系统由北京邮电大学计算机学院、清华大学同方教学仪器设备公司、深圳拓普威电子技术有限公司联合研制。
它是一个8位的计算机模型实验仪器,可用于大专、本科、硕士研究生计算机组成原理课程、计算机系统结构课程的教学实验。
该仪器将提高学生的动手能力,提高学生对计算机整体和各组成部分的理解,提高学生对计算机系统的综合设计能力。
一、TEC-4计算机组成原理实验系统特点1.计算机模型简单、实用,运算器数据通路、控制器、控制台各部分划分清晰。
2.计算机模型采用了数据总线和指令总线双总线体制,能够实现流水控制。
3.控制器有微程序控制器、硬联线控制器两种类型,每种类型又有流水和非流水两种方案。
4.寄存器堆由1片ispLSI1016组成,运算器由1片ispLSI1024组成,设计新颖。
5.实验台上包括了1片在系统编程芯片ispLSI1032,学生可用它实现硬联线控制器等多种设计。
6.该系统能做运算器组成、双端口存储器、数据通路、微程序控制器、中断、CPU组成与指令执行等六个基本教学实验。
7.该系统能完成流水微程序控制器、硬联线控制器、流水硬联线控制器等三个大型课程设计实验。
8.电源部分采用模块电源,重量轻,具有抗电源对地短路能力。
9.器件外部采用自锁紧累接接线方式,可靠性比面包板提高5倍。
图1 TEC-4计算机组成原理实验系统二、TEC-4计算机组成原理实验系统的组成TEC-4计算机组成原理实验系统由下述六部分组成:1.控制台2.数据通路3.控制器4.用户自选器件试验区5.时序电路6.电源部分下面分别对各组成部分予以介绍。
三、电源电源部分由一个模块电源、一个电源插座、一个电源开关和一个红色指示灯组成。
电源模块通过四个螺栓安装在实验台下面,它输出+5V电压,最大负载电流3A,内置自恢复保险功能,具有抗+5V对地短路能力。
电源插座用于接交流220V市电,插座内装有保险丝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一8位算术逻辑运算实验一、实验目的1、掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
2、掌握简单运算器的数据传送通路组成原理。
3、验证算术逻辑运算功能发生器74LSl8l的组合功能。
4、按给定数据,完成实验指导书中的算术/逻辑运算。
二、实验内容1、实验原理实验中所用的运算器数据通路如图1.1所示。
其中运算器由两片74LS181以并/串形成8位字长的ALU构成。
运算器的输出经过一个三态门74LS245 (U33)到ALUO1插座,实验时用8芯排线和内部数据总线BUSD0~D7插座BUSl~6中的任一个相连,内部数据总线通过LZDO~LZD7显示灯显示;运算器的两个数据输入端分别由二个锁存器74LS273(U29、U30)锁存,两个锁存器的输入并联后连至插座ALUBUS,实验时通过8芯排线连至外部数据总线EXD0~D7插座EXJl~EXJ3中的任一个;参与运算的数据来自于8位数据开并KD0~KD7,并经过一三态门74LS245(U51)直接连至外部数据总线EXD0~EXD7,通过数据开关输入的数据由LD0~LD7显示。
图1.1中算术逻辑运算功能发生器74LS18l(U3l、U32)的功能控制信号S3、S2、Sl、S0、CN、M并行相连后连至SJ2插座,实验时通过6芯排线连至6位功能开关插座UJ2,以手动方式用二进制开关S3、S2、S1、S0、CN、M来模拟74LSl8l (U31、U32)的功能控制信号S3、S2、S1、S0、CN、M;其它电平控制信号LDDRl、LDDR2、ALUB’、SWB’以手动方式用二进制开关LDDRl、LDDR2、ALUB、SWB 来模拟,这几个信号有自动和手动两种方式产生,通过跳线器切换,其中ALUB’、SWB’为低电平有效,LDDRl、LDDR2为高电平有效。
另有信号T4为脉冲信号,在手动方式下进行实验时,只需将跳线器J23上T4与手动脉冲发生开关的输出端SD相连,按动手动脉冲开关,即可获得实验所需的单脉冲。
2、实验接线本实验用到4个主要模块: (1)低8位运算器模块 (2)数据输入并显示模块 (3)数据总线显示模块(4)功能开关模块(借用微地址输入模块)。
根据实验原理详细接线如下: (1)ALUBUS 连EXJ3; (2)ALU01连BUSl ; (3)SJ2连UJ2;(4)跳线器J23上T4连SD ;(5)LDDRl 、LDDR2、ALUB 、SWB 四个跳线器拨在左边(手动方式);(6)AR 跳线器拨在左边,同时开关AR 拨在“1”电平。
3、实验步骤(1)连接线路,仔细查线无误后,接通电源。
(2)用二进制数码开关KD0~KD7向DRl 和DR2寄存器置数。
方法:关闭ALU4输出三态门(ALUB ’=1),开启输入三态门(SWB ’=0),输入脉冲T4按手动脉冲发生按钮产生。
设置数据开关具体操作步骤图示如下:说明:LDDRl 、LDDR2、ALUB ’、SWB ’四个信号电平由对应的开关LDDRl 、 LDDR2、ALUB 、SWB 给出,拨在上面为“1”,拨在下面为“0”,电平值由对应的显示灯显示,T4由手动脉冲开关给出。
(3)检验DRl 和DR2中存入的数据是否正确,利用算术逻辑运算功能发生器打开ALU输出三态门ALUB’=0,当置S3、S2、S1、S0、M为11111时,总线指示灯显示DR1中的数,而置成10101时总线指示灯显示DR2中的数(4)验证74LSl81的算术运算和逻辑运算功能(采用正逻辑)在给定DRl=35、DR2=48的情况下,改变算术逻辑运算功能发生器的功能设置,观察运算器的输出,填入实验报告表中,并和理论分析进行比较、验证。
三、实验电路本实验中使用的运算器数据通路如图1.1所示。
四、74LS181功能表实验中用到的运算器74LS181功能表如表1.1所示。
表1.1 运算器74LS181功能表(正逻辑)其中:“+”表示或运算;“*”表示与运算;“⊕”表示异或运算图1.1 运算器数据通路五、实验数据六、思考题1、在向DR1和DR2寄存器置数时S3、S2、S1、S0、M、Cn如何设置?2、DR1置数完成后,如果不关闭控制端,LDDR1会怎样?3.为什么在读取74LS181的输出结果时要打开输出三态门的控制端ALUB’?实验二带进位控制8位算术逻辑运算实验一、实验目的1、验证带进位控制的算术逻辑运算发生器74LSl8l的功能。
2、按指定数据完成几种指定的算术运算。
二、实验内容1、实验原理带进位控制运算器的实验原理如图2.1所示,在实验一的基础上增加进位控制部分,其中高位74LS181(U31)的进位CN4通过门UN4E、UN2C、UN3B进入UN5B 的输入端D,其写入脉冲由T4和AR信号控制,T4是脉冲信号,在手动方式下进行实验时,只需将跳线器J23上T4与手动脉冲发生开关的输出端SD相连,按动手动脉冲开关,即可获得实验所需的单脉冲。
AR是电平控制信号(低电平有效),可用于实现带进位控制实验。
从图中可以看出,AR必须为“0”电平,D型触发器74LS74(UN5B)的时钟端CLK才有脉冲信号输入。
才可以将本次运算的进位结果CY锁存到进位锁存器74LS74(UN5B)中。
2、实验接线实验连线(1)~(5)同实验一,详细如下:(1)ALUBUS~连EXJ3;(2)ALUO1连BUSl;(3)SJ2连UJ2;(4)跳线器J23上T4连SD;(5)LDDRl、LDDR2、ALUB、SWB四个跳线器拨在左边(手动方式);(6)AR、299B跳线器拨在左边,同时开关AR拨在“0’’电平,开关299B 拨在“1”电平;(7)J25跳线器拨在右边。
(8)总清开关拨在“1”电平。
若总清开关拨在“0”电平,Cy清零。
3、实验步骤(1)仔细查线无误后,接通电源。
方法:关闭ALU输出三态门ALUB=1,开启输入三态门SWB=0,输入脉冲T4按手动脉冲发生按钮产生。
如果选择参与操作的两个数据分别为55H、AAH,将这两个数存入DR1和DR2(3)开关ALUB=0,开启输出三态门,开关SWB=1,关闭输入三态门,同时让LDDR1=0,LDDR2=0。
(4)如果原来有进位,CY=1,进位灯亮,但需要清零进位标志时,具体操作方法如下:◆AR信号置为“0”电平,DRl寄存器中的数应小于FF。
◆S3、S2、S1、S0、M的状态置为0 0 0 0 0。
◆按动手动脉冲发生开关,CY=0,即清进位标志。
注:进位标志指示灯CY亮时,表示进位标志为“1”,有进位;进位标志指示灯CY灭时,表示进位位为“0”,无进位。
(5)验证带进位运算及进位锁存功能这里有两种情况:●进位标志已清零,即CY=0,进位灯灭。
✧使开关CN=0,再来进行带进位算术运算。
例如步骤(2)参与运算的两个数为55H和AAH,当S3、S2、S1、S0状态为10010,此时输出数据总线显示灯上显示的数据为DRl加DR2再加初始进位位“1”(因CN=0),相加的结果应为ALU=00,并且产生进位,此时按动手动脉冲开关,则进位标志灯亮,表示有进位。
✧使开关CN=1,当S3、S2、S1、S0状态为10010,则相加的结累ALU=FF,并且不产生进位。
●原来有进位,即CY=1,进位灯亮。
两个数为55H和AAH,当S3、S2、S1、S0、M状态为10010,此时输出数据总线显示灯上显示的数据为DRl加DR2再加当前进位标志CY,相加的结果同样为ALU=00,并且产生进位,此时按动手动脉冲开关,则进位标志灯亮,表示有进位。
三、实验电路带进位控制运算器的实验原理电路如图2.1所示。
四、验证两种操作下带进位的运算功能的实验数据记录Cy=1 进位灯亮五、思考题1、如何在进位运算操作前对进位标志清零?2、在进行进位运算操作时,在何种情况下要对进位标志清零?3、分析硬件电路说明在什么条件下,才能锁存8位运算后的进位标志?图2.1 带进位控制运算器的数据通路实验三 16位算术逻辑运算实验一、实验目的1、验证算术逻辑运算功能发生器74LS181的16位运算组合功能。
2、掌握16位运算器的数据传送通路组成原理。
3、按要求和给出的数据完成几种指定的算术逻辑运算。
二、实验内容1、实验原理16位运算器数据通路如图3.1所示,其中运算器由四片74LS181以并/串形成16位字长的ALU构成。
低8位运算器的输出经过一个三态门74LS245(U33)到ALUO1插座,实验时用8芯排线和内部数据总线BUSD0~D7插座BUS1~6中的任一个相连,低8位数据总线通过LZD0~LZD7显示灯显示;高8位运算器的输出经过一个三态门74LS245(U33’)到ALUO1’插座,实验时用8芯排线和高8位数据总线BUSD8~D15插座KBUS1或KBUS2相连,高8位数据总线通过LZD8~LZD15显示灯显示;参与运算的四个数据输入端分别由四个锁存器74LS273(U29、U30、U29’、U30)锁存,实验时四个锁存器的输入并联后用8芯排线连至外部数据总线EXD0~D7插座EXJ1~EXJ3中的任一个;参与运算的数据源来自于8位数据开并KD0~KD7,并经过一三态门74LS245(U51)直接连至外部数据总线EXD0~EXD7,输入的数据通过LD0~LD7显示。
2、实验接线本实验需用到6个主要模块:①低8位运算器模块;②数据输入并显示模块;③数据总线显示模块;④功能开关模块(借用微地址输入模块);⑤高8位运算器模;⑥高8位(扩展)数据总线显示模块。
根据实验原理详细接线如下(接线①~⑤同实验一):①ALUBUS连EXJ3;②ALUO1连BUS1;③SJ2连UJ2;④跳线器J23上T4连SD;图3.1 16位运算器数据通路图⑤ LDDR1、LDDR2、ALUB 、SWB 四个跳线器拨至左侧(手动方式); ⑥ AR 跳线器拨至左侧,同时开关AR 拨至“1”电平; ⑦ ALUBUS ’ 连EXJ2; ⑧ ALUO1’ 连KBUS1; ⑨ 跳线器J19、J25拨至左侧(16位ALU 状态); ⑩ 高8位运算器区跳线器ZI2、CN0、CN4连上短路套。
3、实验步骤(1)连接线路,仔细查线无误后,接通电源。
(2)用二进制数码开关KD7~KD0向DR1、DR2、DR3、DR4寄存器置数。
方法:关闭ALU 输出三态门应使ALUB`=1(即开关ALUB=1),开启输入三态门应使SWB`=0(即开关SWB=0),选通哪一个寄存器用对应开关LDDR1~LDDR4(高电平有效),其中LDDR3、LDDR4开关在高8位运算器上部,输入脉冲T4按手动脉冲发生按钮。
设置数据开关具体操作步骤图示如下:说明:LDDR1、LDDR2、ALUB`、SWB`、LDDR3、LDDR4六个信号电平由对应的开关LDDR1、LDDR2、ALUB 、SWB 、LDDR3、LDDR4给出,拨至上面为“1”,拨至下面为“0”,电平值由对应显示灯显示;T4由手动脉冲开关给出。