ospf虚链路的配置实验
合并不同的OSPF网络之虚链路

C
12.1.1.0 is directly connected, Serial2/0
13.0.0.0/24 is subnetted, 1 subnets
O IA 13.1.1.0 [110/128] via 12.1.1.1, 00:31:01, Serial2/0
// R2 学习 1.1.1.0 以及 2.2.2.0 的路由信息是通过类型 1 的方式,学习 3.3.3.0 的路由信息是通 过类型 3 的方式。其他的网段学习不到。
O
4.4.4.0 [110/65] via 24.1.1.4, 00:26:23, Serial1/0
24.0.0.0/24 is subnetted, 1 subnets
C
24.1.1.0 is directly connected, Serial1/0
12.0.0.0/24 is subnetted, 1 subnets
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route
实验6 配置OSPF虚链路

实验6 配置OSPF虚链路一、实验拓扑图,如图1.1所示:图1.1 OSPF虚链路实验拓扑图二、路由器初始配置:1.R1上的初始配置R1(config-line)#int s2/1R1(config-if)#ip add 12.0.0.1 255.255.255.0R1(config-if)#no shR1(config-if)#int lo 0R1(config-if)#ip add 1.1.1.1 255.255.255.0R1(config-if)#router os 1R1(config-router)#router-id 1.1.1.1R1(config-router)#net 1.1.1.1 0.0.0.0 a 0R1(config-router)#net 12.0.0.1 0.0.0.0 a 02.R2上的初始配置:R2(config-line)#int s2/1R2(config-if)#ip add 12.0.0.2 255.255.255.0R2(config-if)#no shR2(config-if)#int s2/2R2(config-if)#ip add 23.0.0.2 255.255.255.0R2(config-if)#no shR2(config-if)#int lo 0R2(config-if)#ip add 2.2.2.2 255.255.255.0R2(config-if)#router os 1R2(config-router)#router-id 2.2.2.2R2(config-router)#net 2.2.2.2 0.0.0.0 a 0R2(config-router)#net 12.0.0.2 0.0.0.0 a 0R2(config-router)#net 23.0.0.2 0.0.0.0 a 13.R3上的初始配置:R3(config-line)#int s2/1R3(config-if)#ip add 23.0.0.3 255.255.255.0R3(config-if)#no shR3(config-if)#int s2/2R3(config-if)#ip add 34.0.0.3 255.255.255.0R3(config-if)#no shR3(config-if)#int lo 0R3(config-if)#ip add 3.3.3.3 255.255.255.0R3(config-if)#router os 1R3(config-router)#router-id 3.3.3.3R3(config-router)#net 3.3.3.3 0.0.0.0 a 0R3(config-router)#net 23.0.0.3 0.0.0.0 a 1R3(config-router)#net 34.0.0.3 0.0.0.0 a 04.R4上的初始配置:R4(config-line)#int s2/1R4(config-if)#ip add 34.0.0.4 255.255.255.0R4(config-if)#no shR4(config-if)#int lo 0R4(config-if)#ip add 4.4.4.4 255.255.255.0R4(config-if)#router os 1R4(config-router)#router-id 4.4.4.4R4(config-router)#net 4.4.4.4 0.0.0.0 a 0R4(config-router)#net 34.0.0.4 0.0.0.0 a 05.在R1上查看路由表信息R1(config-router)#do sh ip routCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback02.0.0.0/32 is subnetted, 1 subnetsO 2.2.2.2 [110/65] via 12.0.0.2, 00:06:09, Serial2/123.0.0.0/24 is subnetted, 1 subnetsO IA 23.0.0.0 [110/128] via 12.0.0.2, 00:06:09, Serial2/112.0.0.0/24 is subnetted, 1 subnetsC 12.0.0.0 is directly connected, Serial2/1以上输出表明,R1不能获知分割开的Area 0的路由信息,需要将Area 0 连在一起。
7.配置OSPF虚链路

F0/2 172.17.1.2/24
172.16.1.1/24
RB
F0/0
Area 0
Area 0
F0/0
172.17.1.1/24
RC
RB能学习到 ,RC也能学习到 ,但是 和RC之间不能相互学习。 能学习到RA, 也能学习到 也能学习到RA,但是RB和 之间不能相互学习 之间不能相互学习。 能学习到
《网络设备》课程授课
计算机工程学院
李锋
RB和RC配置 和 配置 配置OSPF
RB(config)# router ospf 1 RB(config-router)# network 172.16.1.0 RC(config)# router ospf 1 RC(config-router)# network 172.17.1.0 0.0.0.255 0.0.0.255 aera 0 aera 0
F0/2 172.16.1.2/24
F0/3 F0/2 192.168.3.2/24 172.17.1./0
172.17.1.1/24 F0/0
RB
RC
Area 0
《网络设备》课程授课 计算机工程学院 李锋
配置OSPF虚链路( P71) 配置OSPF虚链路(实P71) 虚链路
192.168.1.1/24 F0/0 192.168.1.2/24 F0/1
Area 100
192.168.2.1/24 F0/1 192.168.2.2/24 F0/1
RID:192.168.100.29 :
SW1
X
F0/3 192.168.3.1/24
SW2
RID:192.168.100.33 :
SW1与SW2断开时,骨干区域 与 断开时, 被分割, 断开时 骨干区域Aera 0被分割,会产生非骨干区域连接两个骨干区域, 被分割 会产生非骨干区域连接两个骨干区域, 由于非骨干区域不能转发路由通告,导致RA和 路由学习不完整 路由学习不完整。 由于非骨干区域不能转发路由通告,导致 和RC路由学习不完整。 RA
OSPF虚链路(virtual-link)配置实例

OSPF虚链路(virtual-link)配置实例这个配置将验证一个OSPF虚电路(Virtual-Link)的过程,重点在观察虚链路连接的临时网络与正常区域间路由有何区别。
上图中区域4(area 4)没有和area 0直接相连。
在R2与R3之间配置了一条虚链路。
// R1 //int lo0ip ad 1.1.1.1 255.255.255.0int e0ip ad 192.1.1.1 255.255.255.0router os 1network 192.1.1.0 0.0.0.255 area 0// R2 //int lo0ip ad 2.2.2.2 255.255.255.0int e0ip ad 192.1.1.2 255.255.255.0int e1ip ad 193.1.1.2 255.255.255.0router os 1network 192.1.1.0 0.0.0.255 area 0network 193.1.1.0 0.0.0.255 area 1// R3 //int lo0ip ad 3.3.3.3 255.255.255.0int e1ip ad 193.1.1.3 255.255.255.0int e0ip ad 194.1.1.3 255.255.255.0router os 1network 193.1.1.0 0.0.0.255 area 1network 194.1.1.0 0.0.0.255 area 4// R4 //int lo0ip ad 4.4.4.4 255.255.255.0int e0ip ad 194.1.1.4 255.255.255.0router os 1network 194.1.1.0 0.0.0.255 area 4基本配置完成后,我们在每台路由器上分别来验证一下:r1#sh ip os neiTime Address Interface2.2.2.2 1 FULL/BDR 00:00:33 192.1.1.2 Eth ernet0/0r1#r1#sh ip ro1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback0O IA 193.1.1.0/24 [110/20] via 192.1.1.2, 00:00:19, Ethernet0/0C 192.1.1.0/24 is directly connected, Ethernet0/0//注意R1上有关于193.1.1.0的路由条目,是属于IA类型(域间路由)r2#sh ip os neiNeighbor ID Pri State DeadTime Address Interface1.1.1.1 1 FULL/DR 00:00:35 192.1.1.1 Eth ernet0/03.3.3.3 1 FULL/BDR 00:00:35 193.1.1.3 Eth ernet1/0r2#r2#r2#sh ip ro2.0.0.0/24 is subnetted, 1 subnetsC 2.2.2.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0C 192.1.1.0/24 is directly connected, Ethernet0/0r3#sh ip os neiNeighbor ID Pri State DeadTime Address Interface2.2.2.2 1 FULL/DR 00:00:32 193.1.1.2 Eth ernet1/04.4.4.4 1 FULL/DR 00:00:34 194.1.1.4 Eth ernet0/0r3#sh ip ro3.0.0.0/24 is subnetted, 1 subnetsC 3.3.3.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0O IA 192.1.1.0/24 [110/20] via 193.1.1.2, 00:02:49, Ethernet1/0C 194.1.1.0/24 is directly connected, Ethernet0/0//注意R3中有关于192.1.1.0的路由是属于IA类型(域间路由)r4#sh ip os neiTime Address Interface3.3.3.3 1 FULL/BDR 00:00:33 194.1.1.3 Eth ernet0/0r4#sh ip ro4.0.0.0/24 is subnetted, 1 subnetsC 4.4.4.0 is directly connected, Loopback0C 194.1.1.0/24 is directly connected, Ethernet0/0//R4上没有关于AREA 0内的任何路由信息我们下面在R2、R3上添加Virtual-link的配置:R2:router os 1area 1 virtual-link 3.3.3.3R3:router os 1area 1 virtual-link 2.2.2.2对比之前的路由信息,看有何区别:r1#sh ip ro1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback0O IA 193.1.1.0/24 [110/20] via 192.1.1.2, 00:00:01, Ethernet0/0C 192.1.1.0/24 is directly connected, Ethernet0/0O IA 194.1.1.0/24 [110/30] via 192.1.1.2, 00:00:01, Ethernet0/0//多了一条194网段的路由,类型IA(区域间)r2#sh ip ro2.0.0.0/24 is subnetted, 1 subnetsC 2.2.2.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0C 192.1.1.0/24 is directly connected, Ethernet0/0O IA 194.1.1.0/24 [110/20] via 193.1.1.3, 00:00:06, Ethernet1/0//多了一条194网段路由,类型为IA(区域间)r3#sh ip ro3.0.0.0/24 is subnetted, 1 subnetsC 3.3.3.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0O 192.1.1.0/24 [110/20] via 193.1.1.2, 00:02:56, Ethernet1/0C 194.1.1.0/24 is directly connected, Ethernet0/0//R3的192路由原本为IA类型(区域间),现在转为O类型(区域内),说明R3认为自已与192网段是直连的。
W3L300040 OSPF虚连接和验证配置 教师参考

实验5 OSPF虚连接和验证配置实验任务一:虚连接的配置步骤一:建立物理连接步骤二:IP地址配置步骤三:配置OSPF协议在RTA上启用OSPF协议,并在G0/0和Loopback0接口上使能OSPF,将它们加入OSPF 的Area0。
在RTB上启用OSPF协议,并在G0/0、G0/1和Loopback0接口上使能OSPF,将G0/0加入OSPF的Area0,将G0/1、Loopback0加入OSPF的Area1。
在RTC上启用OSPF协议,并在G0/0、G0/1和Loopback0接口上使能OSPF,将G0/1、Loopback0加入OSPF的Area1,将G0/0加入OSPF的Area2。
在RTD上启用OSPF协议,并在G0/0和Loopback0接口上使能OSPF,将它们加入OSPF的Area2。
请在下面填入配置RTA的命令:[RTA]ospf 1[RTA-ospf-1]area 0[RTA-ospf-1-area-0.0.0.0]network 1.1.1.1 0.0.0.0[RTA-ospf-1-area-0.0.0.0]network 10.0.0.0 0.0.0.255请在下面填入配置RTB的命令:[RTB]ospf 1[RTB-ospf-1]area 0[RTB-ospf-1-area-0.0.0.0]network 10.0.0.0 0.0.0.255[RTB-ospf-1-area-0.0.0.0]area 1[RTB-ospf-1-area-0.0.0.1]network 2.2.2.2 0.0.0.0[RTB-ospf-1-area-0.0.0.1]network 20.0.0.0 0.0.0.255请在下面填入配置RTC的命令:[RTC]ospf 1[RTC-ospf-1]area 1[RTC-ospf-1-area-0.0.0.1]network 3.3.3.3 0.0.0.0[RTC-ospf-1-area-0.0.0.1]network 20.0.0.0 0.0.0.255[RTC-ospf-1-area-0.0.0.1]area 2[RTC-ospf-1-area-0.0.0.2]network 30.0.0.0 0.0.0.255请在下面填入配置RTD的命令:[RTD]ospf 1[RTD-ospf-1]area 2[RTD-ospf-1-area-0.0.0.2]network 4.4.4.4 0.0.0.0[RTD-ospf-1-area-0.0.0.2]network 30.0.0.0 0.0.0.255配置结束后,在RTD上观察路由表,RTD的路由表中是否存在1.1.1.1/32这条路由?为什么?步骤四:_不存在。
OSPF实验报告-CCNP

Page 4
4
配置
R5: interface Serial1/1 no ip address encapsulation frame-relay serial restart-delay 0 ! interface Serial1/1.1 multipoint ip address 172.8.100.5 255.255.255.0 ip ospf network broadcast frame-relay map ip 172.8.100.4 504 broadcast frame-relay map ip 172.8.100.6 506 broadcast no frame-relay inverse-arp R6: interface Serial1/1 ip address 172.8.100.6 255.255.255.0 encapsulation frame-relay ip ospf network broadcast ip ospf priority 0 serial restart-delay 0 frame-relay map ip 172.8.100.5 605 broadcast no frame-relay inverse-arp 5 R4: interface Serial1/1 ip address 172.8.100.4 255.255.255.0 encapsulation frame-relay ip ospf network broadcast serial restart-delay 0 frame-relay map ip 172.8.100.5 405 broadcast no frame-relay inverse-arp
Page 18
18
OSPF虚链路--远离区域 0 的虚链路

OSPF虚链路--远离区域 0 的虚链路1.实验目的通过本实验可以掌握:(1)远离区域0 虚链路的特征(2)虚链路的配置2.实验拓扑本实验的拓扑结构如图7-7 所示。
图7-7 远离区域0 虚链路3.实验步骤(1)步骤1:配置路由器R1R1(config)#router ospf 1R1(config-router)#router-id 1.1.1.1R1(config-router)#network 1.1.1.0 0.0.0.255 area 2R1(config-router)#network 192.168.12.0 0.0.0.255 area 2 (2)步骤2:配置路由器R2R2(config)#router ospf 1R2(config-router)#router-id 2.2.2.2R2(config-router)#network 2.2.2.0 0.0.0.255 area 1R2(config-router)#network 192.168.12.0 0.0.0.255 area 2 R2(config-router)#network 192.168.23.0 0.0.0.255 area 1 R2(config-router)#area 1 virtual-link 3.3.3.3(3)步骤3:配置路由器R3R3(config)#router ospf 1R3(config-router)#router-id 3.3.3.3R3(config-router)#network 3.3.3.0 0.0.0.255 area 0R3(config-router)#network 192.168.23.0 0.0.0.255 area 1 R3(config-router)#network 192.168.34.0 0.0.0.255 area 0 R3(config-router)#area 1 virtual-link 2.2.2.2(4)步骤4:配置路由器R4R4(config)#router ospf 1R4(config-router)#router-id 4.4.4.4R4(config-router)#network 4.4.4.0 0.0.0.255 area 0R4(config-router)#network 192.168.34.0 0.0.0.255 area 04.实验调试在路由器R4 上查看路由表:R4#show ip routeCodes: C –connected, S –static, R –RIP, M –mobile, B –BGPD –EIGRP, EX –EIGRP external, O –OSPF, IA –OSPF inter areaN1 –OSPF NSSA external type 1, N2 –OSPF NSSA external type 2 E1 –OSPF external type 1, E2 –OSPF external type 2i –IS-IS, L1 –IS-IS level-1, L2 –IS-IS level-2, ia –IS-IS inter area * –candidate default, U –per-user static route, o –ODRP –periodic downloaded static routeGateway of last resort is not setO IA 192.168.12.0/24 [110/192] via 192.168.34.3, 00:02:19, Serial0/0/0 1.0.0.0/32 is subnetted, 1 subnetsO IA 1.1.1.1 [110/193] via 192.168.34.3, 00:02:19, Serial0/0/02.0.0.0/32 is subnetted, 1 subnetsO IA 2.2.2.2 [110/129] via 192.168.34.3, 00:02:19, Serial0/0/03.0.0.0/32 is subnetted, 1 subnetsO 3.3.3.3 [110/65] via 192.168.34.3, 00:02:19, Serial0/0/04.0.0.0/24 is subnetted, 1 subnetsC 4.4.4.0 is directly connected, Loopback0O IA 192.168.23.0/24 [110/128] via 192.168.34.3, 00:02:19, Serial0/0/0 C 192.168.34.0/24 is directly connected, Serial0/0/0从R4 的路由表的输出,可以看出路由器R1 能够通过使用转接区域1 的虚拟链路到达区域0。
OSPF虚链路实验研究

OSPF虚链路实验研究一.实验目的理解OSPF虚链路原理及何时需要使用虚链路掌握OSPF虚链路配置方法(1)使用虚链路将区域连接到骨干区域的配置方法;(2)使用虚链路将不连续的区域0连接起来的配置方法二、实验拓扑图使用虚链路将区域连接到骨干区域的拓扑图使用虚链路将不连续的区域0连接起来的拓扑图三、实验步骤及要求(一)使用虚链路将区域连接到骨干区域1.R2、R3、R4配置OSPFR2(config)#router ospf 1R2(config-router)#network 172.16.255.4 0.0.0.3 area 2R2(config-router)#exitR2的f0/1接口先不要宣称networkR3(config)#router ospf 1R3(config-router)#network 172.16.255.4 0.0.0.3 area 2R3(config-router)#network 172.16.255.8 0.0.0.3 area 0R4(config)#router ospf 1R4(config-router)#network 172.16.255.8 0.0.0.3 area 0R4(config-router)#network 172.16.16.0 0.0.0.255 area 12.查看R2的路由表R2#show ip route172.16.0.0/16 is variably subnetted, 4 subnets, 2 masksC 172.16.255.0/30 is directly connected, FastEthernet0/1C 172.16.255.4/30 is directly connected, FastEthernet0/0O IA 172.16.255.8/30 [110/2] via 172.16.255.6, 00:06:42, FastEthernet0/0O IA 172.16.16.1/32 [110/3] via 172.16.255.6, 00:06:09, FastEthernet0/03.再次配置R1和R2的OSPF协议R1(config)#router ospf 1R1(config-router)#network 172.16.255.0 0.0.0.3 area 3R1(config-router)#network 172.16.1.0 0.0.0.255 area 3R1(config-router)#exitR2(config)#router ospf 1R2(config-router)#network 172.16.255.0 0.0.0.3 area 3R2(config-router)#exit4. 查看R1与R2的OSPF的邻居表R1#show ip ospf neighborNeighbor ID Pri State Dead Time Address Interface 172.16.255.5 1 FULL/BDR 00:00:39 172.16.255.2 FastEthernet0/0 R2#show ip ospf neighborNeighbor ID Pri State Dead Time Address Interface 172.16.255.9 1 FULL/BDR 00:00:36 172.16.255.6 FastEthernet0/0 172.16.1.1 1 FULL/DR 00:00:30 172.16.255.1 FastEthernet0/1 5. 查看R1的路由表R1#show ip route172.16.0.0/16 is variably subnetted, 2 subnets, 2 masksC 172.16.255.0/30 is directly connected, FastEthernet0/0C 172.16.1.0/24 is directly connected, Loopback0通过观察R1的路由表,R1的路由器无法学习到骨干区域、area 1和area 2区域的路由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ospf虚链路的配置实验
一、目的:Area 2经过Area 1与Area 0之间建立虚链路.
此拓扑中,virtual-link在R4与R2之间建立,从而使得Area 2与Area 0之间进行直接连接,virtual-link配置在R2与R4实施。
通过实验,R4就变成一个特别的ABR。
virtual-link 上面转发的是LSA – 3。
二、思想:R2与R4路由器互指对方的Router-ID。
三、问题:如何确认虚连接的对端IP地址?
中间连接area 0的过渡area 1上的ABR之间存在lsa-1与lsa-2的传递,确认对端的IP 地址。
通过邻居地址指定,
R2上的邻接状态:
R4上的邻接状态:
四、配置内容:
4.1、R2:
sh ip ospf database self-originate 可以看到Summary Net Link States 。
注意R2是个ABR,它的一个接口连接Area 0,另一个接口连接Area 1,所以R2会产生两区域的Summary Net Link States (lsa-3),通过Summary Net Link States (Area 0)中可以看到R2把23.1.1.0与34.1.1.0网段Upward(转发)到Area 0中;把1.1.1.0与12.1.1.0网段Upward(转发)到Area 1中,使得Area 0与Area 1中都有相互之间的路由,从而23.1.1.0、34.1.1.0 、1.1.1.0、12.1.1.0网段之间互通。
4.2、R4:
R4为什么说是一个特殊的ABR呢?通过Virtual-Link 后,R4跨了Area 0, Area 1、Area 2三个区域,R4把学习到相关网段进行汇总,然后分发到了不同区域中。
Summary Net Link States (Area 1):
R4把源Area 2中的5.5.5.0、45.1.1.0网段Upward到Area 1。
Summary Net Link States (Area 0):
由于R4与R2建立了Virtual-Link,R2的一个口在Area 1中,R4自然也就学习到了源Area 1中的23.1.1.0、34.1.1.0网段,同样也通过Virtual-link,R4把5.5.5.0、45.1.1.0、23.1.1.0、34.1.1.0网段Upward到了Area 0中。
在此,有同学要问,那么不是和R2宣告进Area 0中的23.1.1.0、34.1.1.0网段重复了吗?跨了三Area 的特殊性就体现在这里!
同理,通过R2与R4之间的virtual-link,R4把源Area 0与Area 1中的路由信息汇总传递到Area 2中。
五、小结:
由于R4通过Virtual-Link横跨了area 0,area 1,area 2三个区域,那么把Area 0、Area 1区域中的路由信息通过Area 1传递给了Area 2,把Area 1、Area 2 传递给了Area 0,通过配置Virtual-Link,Area 2 就与Area 0进行直连。