多维随机变量及其分布考研试题及答案
(完整版)多维随机变量及其分布习题及答案

第三章多维随机变量及其分布一、填空题1、随机点落在矩形域的概率为),(Y X ],[2121y y y x x x ≤<≤< .),(),(),(),(21111222y x F y x F y x F y x F -+-2、的分布函数为,则 0 .),(Y X ),(y x F =-∞),(y F3、的分布函数为,则),(Y X ),(y x F =+),0(y x F ),(y x F4、的分布函数为,则),(Y X ),(y x F =+∞),(x F )(x F X5、设随机变量的概率密度为),(Y X ,则.⎩⎨⎧<<<<--=其其042,20)6(),(y x y x k y x f =k 816、随机变量的分布如下,写出其边缘分布.),(Y X 7、设是的联合分布密度,是的边缘分布密度,则1 .),(y x f Y X ,)(x f X X =⎰∞+∞-)(x f X8、二维正态随机变量,和相互独立的充要条件是参数 0.),(Y X X Y =ρXY0123jP ⋅10838308638108182⋅i P 818383819、如果随机变量的联合概率分布为),(Y X YX12316191181231αβ则应满足的条件是 ;若与相互独立,则 , .βα,186=+βαX Y =α184=β18210、设相互独立,,则的联合概率密度Y X ,)1.0(~),1,0(~N Y N X ),(Y X,的概率密度.=),(y x f 22221y x e +-πY X Z +==)(Z f Z 42221x e-π12、 设 ( ξ 、 η ) 的 联 合 分 布 函 数 为则 A =__1___。
()()()()⎪⎩⎪⎨⎧≥≥+-+-+++= y x y x y x A y x F 00,0111111,222二、证明和计算题1、袋中有三个球,分别标着数字1,2,2,从袋中任取一球,不放回,再取一球,设第一次取的球上标的数字为,第二次取的球上标的数字,求的联合分布律.X Y ),(Y X 解: 031}1,1{⋅===Y X P 31131}2,1{=⋅===Y X P 312132}1,2{=⋅===Y X P 312132}2,2{=⋅===Y X P 2、三封信随机地投入编号为1,2,3的三个信箱中,设为投入1号信箱的信数,为投入2X Y 号信箱的信数,求的联合分布律.),(Y X 解:的可能取值为0,1,2,3的可能取值为0,1,2,3X Y331}0,0{===Y X P 333}1,0{===Y X P 3323333}2,0{====C Y X P XY 12103123131331}3,0{===Y X P 333}0,1{===Y X P 3323}1,1{⨯===Y X P3313}2,1{⨯===Y X P 0}3,1{===Y X P 3233}0,2{C Y X P === 333}1,2{===Y X P 0}2,2{===Y X P 0}3,2{===Y X P 331}0,3{===Y X P 0}3,3{}2,3{}1,3{=========Y X P Y X P Y X P X Y123271273273271127327627322732730032710003、设 函 数 F(x , y) = ;问 F(x , y) 是 不 是 某 二 维 随 机 变 量 的⎩⎨⎧≤+>+120121y x y x 联 合 分 布 函 数 ? 并 说 明 理 由 。
概率论——多维随机变量与分布答案

概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(一)一、填空题:1、设二维随机变量(,)X Y 的联合密度函数为2,01,01(,)0,A xy x y f x y ⎧<<<<=⎨⎩其他,则常数A =6 。
2、设二维随机变量(,)X Y 的联合分布函数为arctan arctan ,0,0(,)0,A x y x y F x y ⋅>>⎧=⎨⎩其他,则常数A =24π。
二、计算题:1.在一箱子中装有12只开关,其中2只次品,在其中取两次,每次任取一只,考虑两种实验: (1)放回抽样;(2)不放回抽样。
我们定义随机变量X ,Y 如下:1X ⎧=⎨⎩若第一次出的是正品若第一次出的是次品 , 01Y ⎧=⎨⎩若第二次出的是正品若第二次出的是次品试分别就(1),(2)两种情况,写出X 和Y 的联合分布律。
(1)放回抽样(2)不放回抽样2.设二维离散型随机变量的联合分布见表:试求(1)13{,04}22P X Y <<<<, (2){12,34}P X Y ≤≤≤≤(1)1/4(2)5/163.设随机变量(,)X Y 的联合分布律如表:求:(1)a 值; (2)(,)X Y 的联合分布函数(,)F x y (3)(,)X Y 关于X ,Y 的边缘分布函数()X F x 和()Y F y (1)a=1/3(2)0x <1y<-1112,1045(,)2,10121120212,0⎧⎪⎪≤<-≤<⎪⎪⎪=≥-≤<⎨⎪⎪≤<≥⎪⎪≥≥⎪⎩x y F x y x y x y x y 或,(3)010115()12()10.2121210XY x y F x x F y y x y <<-⎧⎧⎪⎪⎪⎪=≤<=-≤<⎨⎨⎪⎪≥≥⎪⎪⎩⎩;4.设随机变量(,)X Y 的概率密度为(6)0<x <2,2<y<4(,)0k x y f x y --⎧=⎨⎩其他,求:(1)常数k ; (2)求{1,3}P X Y <<; (3){ 1.5}P X <; (4){4}P X Y +≤(1)24021(6)1;8k x y d y d x k --=⇒=⎰⎰(2)130213(1,3)(6);88PX Y x y d y d x <<=--=⎰⎰(3) 1.5402127( 1.5)( 1.5,24)(6);832P X P X Yx y d y d x <=<<<=--=⎰⎰(4)(4)P X Y +≤240212(6).83x x y d y d x -=--=⎰⎰概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(二)一、选择题:1、设随机变量X 与Y 独立,且221122(,),(,)X N Y N μσμσ ,则Z X Y =-仍服从正态分布,且有 [ D ] (A )221212(,)Z N μμσσ++ (B) 221212(,)Z N μμσσ+- (C) 221212(,)Z N μμσσ-- (D) 221212(,)Z N μμσσ-+ 2、若(,)X Y 服从二维均匀分布,则 [ B ] (A )随机变量,X Y 都服从均匀分布 (B )随机变量,X Y 不一定服从均匀分布 (C )随机变量,X Y 一定不服从均匀分布 (D )随机变量X Y +服从均匀分布 二、填空题:1、设二维随机变量(,)X Y 的密度函数为2,01,02(,)30,.xy x x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他, 则(1)P X Y +≥=6572。
第3章多维随机变量及其分布试题答案

第3章多维随机变量及其分布试题答案、选择(每小题 2分)1、设二维随机变量的分布律为则 P{ X Y = 0} = ( C ) (A) 0.2(B)0.5(C) 0.6(D) 0.7”c, —1 c x c 1,-1 < y c 12、设二维随机变量(X ,Y)的概率密度为f(x, y)=」,则常数0, otherC =( A )1 1 (A)-(B) -(C) 2 (D)4423、设二维随机变量(X ,Y )的分布律为设P jj = P{X =i,^ j}, i, j =0,1,则下列各式中错误的是( D ) (A ) P 00 :: P 01(B ) P 10 :::P 11 (C ) P 00 ::P 11 (D ) P 10 :::P 014、设二维随机变量的分布律为则 P{X 二Y}=(A ) (A)0.3(B) 0.5(C) 0.7(D)0.8• V -Ae*e y , x > 0, y a 0 门宀*..5、设二维随机变量(X ,Y )的概率密度为f(x,y),则常数A = ,0, other(D )(B) 16、设二维随机变量(X,Y )的分布律为则 P{XY =0} = (C )7、设二维随机变量)的分布律为为其联合分布函数,则 = (D )3 310、设二维随机变量(X ,Y )的分布函数为F (x, y ),则F (x, •::)=( B ) (D)2(A) (B)12(C) (D)11 (B) 12(C)1(D)4-X T e e f (x, y)= \ 0,X 0, y 0,则 P{ X 一 Y}= other(B )1123(A)—(B)-(C)-(D)—4 23 4它们取-1,1两个值的概率分别 1 31,-,则 P{ XY —1}=4 4(A)1 16(B)花(C)(D)(A) 0(B) F X (x) (C) F Y (y) (D) 1 8、设二维随机变量(X ,丫)的概率密度为 9、设随机变量X 与Y 独立同分布,11、设随机变量 X 和Y 相互独立,且 X ~ N(3,4) , Y 〜N(2,9),则Z = 3X Y ~ ( D ) (A)N(7,21)(B)N(7,27)(C)N(7,45)(D)N(11,45)12、设二维随机变量的联合分布函数为 ,其联合概率分布为则 F(0,1)=( B )则 k =( B )贝U P{XY =2} =( C )0^y 乞1时,(X,Y)关于Y的边缘概率密度为f Y (y)= ( D )(A)0.2(B)0.5(C) 0.713、设二维随机变量(X ,Y)的联合概率分布为(D) 0.8k(x y), 0 _ x _ 2,0 _ y _ 1 other(A)(B) (C) (D)(A)0.2(B) 0.3(C) 0.515、设二维随机变量(X,Y)的概率密度为(D) 0.6f (x, y)= ;4xy,b,0乞x 乞1,0乞y乞1 other,则当(A)2; (B)2x(C)1 2y(D) 2y(B) 2「=1(C) > - 1J = 2 (D) .9 93 3 3 3-7、设二维随机变量的分布律为18、设二维随机变量(X,Y )的分布律为20、设(X ,Y )的概率分布如下表所示,当 X 与Y 相互独立时,p,q )=( C )则有(B ) (A)(A)1 12(B)1 (C)3(D)(A) a = 0.2, b = 0.6 (B) a = 0.1, b = 0.9 (C)a = 0.4,b = 0.4(D) a = 0.6, b = 0.219、设二维随机变量(X,Y )的概率密度为1f (x, y) = < 40,0 :: x 2,0 :y :: 2 则 P{0:: X ::: 1,0 :: Y ::: 1} =( A )1(A)4(B)23(C)4(D) 1P{X 1X 2 =0} =1,贝y P{X 1 =X 2}= (A )24、设两个相互独立随机变量 X 和Y 分别服从正态分布 N (0,1)和N (1,1),则(B ) 1 1 (A)P{ X Y - 0}(B) P{ X Y -1} 22 1 1 (C) P{X -Y _0}(D) P{X - Y _1}=221 解:由Z = X Y ~ N(1,2),其分布密度关于1对称,故P{X Y -1}=-。
【高等数学】概率论与数理统计-多维随机变量及其分布专项试卷及答案解析

图3-8
l"-
x
x+y=l
f j f (川)1 = 了 了心产ρ dxdy = 了叫了Axe-x(l+y) dy
( =f了出 f了Ae-zo叫[x(l +川)
00
=[了dxf: A 川= Af了e-zdx = A.
rs、
H U
飞 J
FJ VS ,,‘、 y 、,,
一
pphtttt,
〕 由 中
F ZJ ,
学tJi养成笔记与�二步负挡严这边
(4)F1 (x) 与F2 (x) 是两个分布函数,F1 (x)F2 (x) 也满足分布函数的充要条件,也是分 布函数.
[F1 (x)F2 (x汀 ’= !1 (x)F2 (x)+F1 (x)/2 (工)就是概率密度 .
XIO
I (5) 【
1
-,2
1 YIO
I 1 ’
Fx(x)=F(x,+oo)=φ( 2x),Fy (y)=FC+oo,y)=φ(y-1)'
从而 F(x,y)=Fx(x)Fy (y) ,即X,Y 相互独立 .
如果X~N(µ ,a2 ), 则
{斗气 7 Fx(x)=阳ζx) =P
}=φ (平),
故φ(2x)对应X~N(O,
l_
4
)
,φ(y-1)对应Y~N(l,l).又
川川=(。,
、BJ fJ va r,‘、 y
一
rll〈l1、
nd
VJ , nu
=士 C IT )F(÷,2)
0骂王zζ1, 其他 . 。三;;: 'Y :$ζ1,
’ - X,Y 相互独立 ;
其他.
(3)(l)A=l; (Il)Jy (y)=」l_(l_十 l_y寸 )Z ,γ J >O,
第三章-多维随机变量及其分布测试题答案

第三章 多维随机变量及其分布答案 一、填空题(每空3分)1.设二维随机变量(X,Y)的联合分布函数为22213,0,0(1)(1)(1)(,)0,A x y x y x y F x y ⎧+-≥≥⎪++++=⎨⎪⎩其他,则A=_____1____. 2.若二维随机变量(X,Y)的分布函数为F(x,y)则随机点落在矩形区域[x 1《<x<x 2,y 1<y<y 2]内的概率为___ ____ _(,)(,)(,)(,)22211112F x y F x y F x y F x y -+-.3.(X,Y)的联合分布率由下表给出,则α,β应满足的条件是13αβ+=;当=α 29 ,=β 19 时X 与Y 相互独立.4.设二维随机变量的密度函数2,01,02(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他,则(1)P X Y +≥=__6572____. 5.设随机变量X,Y 同分布,X 的密度函数为23,02(,)80,x x f x y ⎧≤≤⎪=⎨⎪⎩其他,设A=(X>b )与B =(Y>b )相互独立,且3()4P A B ⋃=,则6.在区间(0,1)内随机取两个数,则事件“两数之积大于14”的概率为__ 31ln 444- .7. 设X 和Y 为两个随机变量,且34(0,0),(0)(0)77P X Y P X P Y ≥≥=≥=≥=,则(max{,}0)P X Y ≥=_57. 8.随机变量(,)(0,0,1,1,0)X Y N ,则D(3X-2Y)= _ 13 .9.设()25,()36,0.4XY D X D Y ρ===,则()D X Y += 85 ,()D X Y -= 37 .10.设随机变量2(3),()()0,()4,()16,Z aX Y E X E Y D X D Y =+====0.5XY ρ=-,则min ()E Z = 108 . 二、单项选择题(每题4分)1.下列函数可以作为二维分布函数的是( B ).A .⎩⎨⎧>+=.,0,8.0,1),(其他y x y x FB .⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt ey x F y x t s C . ⎰⎰=∞-∞---y x ts dsdt ey x F ),( D .⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x ey x F y x2.设平面区域D 由曲线1y x=及直线20,1,x y y e ===围成,二维随机变量在区域D 上服从均匀分布,则(X,Y)关于Y 的边缘密度函数在y=2处的值为(C ).A .12B .13C .14D .12-3.若(X,Y)服从二维均匀分布,则( B ).A .随机变量X,Y 都服从一维均匀分布B .随机变量X,Y 不一定服从一维均匀分布C .随机变量X,Y 一定都服从一维均匀分布D .随机变量X+Y 服从一维均匀分布 4.若D(X+Y)=D(X)+D(Y),则( A ).A .X 与Y 不相关B .(,)()()X Y F x y F x F y =⋅C .X 与Y 相互独立D .1XY ρ=-5.在[0,]π上均匀地任取两数X 和Y ,则{cos()0}P X Y +<=( D ).A .1B .12C . 23D .34三、计算题(第一题20分,第二题24分)1.已知2(),(),(1,2,3),a bP X k P Y k k X Y k k ===-==与相互独立.(1)确定a,b 的值; (2)求(X,Y)的联合分布列; (3)求X-Y 的概率分布.解:(1)由正则性()1kP X k ==∑有,612311a a a a ++=⇒= ()1kP Y k =-=∑有,3614949b b b b ++=⇒=(2)(X,Y)的联合分布律为(3) X-Y 的概率分布为2. 设随机变量(X,Y)的密度函数为(34),0,0(,)0,x y ke x y p x y -+⎧>>=⎨⎩其他(1)确定常数k ; (2)求(X,Y)的分布函数;(3)求(01,02)P X Y <≤<≤.解:(1)∵0(34)01x y ke dx dy ∞∞-+⎰=⎰∴400011433()()43||112y y x x e dx k e e dy k k e ∞-∞∞∞---=--⎰⋅==⎰∴k=12(2)143(34)(,)1212(1)(1)1200y x y xu v F x y e dudv ee ---+==⋅--⎰⎰ 43(1)(1)0,0yxeex y --=-->>∴34(1)(1),0,00,(,)x y ee x y F x y ⎧--⎪-->>⎨⎪⎩=其他(3)(01,02)(1,2)(0,0)(1,0)(0,2)P X Y F F F F <≤<≤=+--38(1)(1)ee --=--3.设随机变量X,Y 相互独立,且各自的密度函数为121,0()20,0x X e x p x x ⎧≥⎪=⎨⎪<⎩,131,0()30,0x Y e y p y y ⎧≥⎪=⎨⎪<⎩,求Z=X+Y 的密度函数 解:Z=X+Y 的密度函数()()()Z XY p z px p z x dx ∞-∞=-⎰∵()X p x 在x ≥0时有非零值,()Y p z x -在z-x ≥0即x ≤z 时有非零值 ∴()()X Y p x p z x -在0≤x ≤z 时有非零值336362000111()[]|236z zz x z x z x xzZ p z e e dx e e dx e e -------=⋅==-⎰⎰36(1)z z e e --=--当z<0时,()0Z p z =所以Z=X+Y 的密度函数为36(1),0()0,0z z Z e e z p z z --⎧⎪--≥=⎨⎪<⎩4.设随机变量X,Y 的联合密度函数为3412,0,0(,)0,x y e x y p x y --⎧>>=⎨⎩其他,分别求下列概率密度函数.(1) {,}M Max X Y =; (2) {,}N Min X Y =.解:(1)因为3430()(,)123x y x X p x p x y dy e dy e ∞∞----∞===⎰⎰3440()(,)124x y y Y p y p x y dx e dy e ∞∞----∞===⎰⎰所以(,)()()X Y p x y p x p y =即X 与Y 独立. 所以当z<0时,()0M F z =当z ≥0时,()()(,)()()M F z P M z P X z Y z P X z P Y z =≤=≤≤=≤≤34()()(1)(1)z z X Y F z F z e e --==--所以34430,0()3(1)4(1),0M z z z z z p z e e e e z ----<⎧=⎨-+-≥⎩3470,0347,0z z zz e e e z ---<⎧=⎨+-≥⎩ (2) 当z<0时,()0N F z =当z ≥0时,()()(,)1()()N F z P N z P X z Y z P X z P Y z =>=>>=->>7z e -=所以70,0()7,0M z z p z e z -<⎧=⎨≥⎩3470,0347,0zz zz e e e z ---<⎧=⎨+-≥⎩5.设随机变量X,Y 相互独立,其密度函数分别为2,01()0,X x x p x ≤≤⎧=⎨⎩其他,(5),5()0,y Y e y p y --⎧>=⎨⎩其他,求XY ρ.解:因为X,Y 相互独立,则Cov(X,Y)=E(XY)-E(X)E(Y)=0 所以0XY ρ=6.设随机变量(X,Y)的联合密度函数分别为3,01,0(,)0,x x y xp x y <<<<⎧=⎨⎩其他,求X和Y 的边际密度函数.解:20()(,)33,01xX p x p x y dy xdy x x ∞-∞===<<⎰⎰1223()(,)3(1),012Y yp y p x y dx xdx y x y ∞-∞===-<<⎰⎰ 四、证明题.1.已知二维随机变量(X,Y)的联合密度函数分布列如下表,试验证X 与Y 不相关,但X 与Y 不独立.证明:因为E(X)=-1×0.375+0×0.25+1×0.375=0 E(Y)=-1×0.375+0×0.25+1×0.375=0E(XY)=-1×0.25+0×0. 5+1×0.25=0所以E(XY)= E(X) E(Y) 即X 与Y 不相关.又因为P(X=1,Y=1)=0.125,P(X=1)=0.375,P(Y=1)=0.375 P(X=1,Y=1)≠P(X=1) P(Y=1) 所以X 与Y 不独立.2.设随机变量(X,Y)满足()()0,()()1,(,)E X E Y D X D Y Cov X Y ρ=====,证明22(max{,})1E X Y ≤证明:因为()()0,()()1,(,)E X E Y D X D Y Cov X Y ρ===== 所以2222()()()1,()()()1E X D X E X E Y D Y E Y =+==+= ()(,)()()E XY Cov X Y E X E Y ρ=+=2222221max(,)[||]2X Y X Y X Y =++-因所以2222222211(max(,))[()()(||)1(||)22E X Y E X E Y E X Y E X Y =++-=+-由柯西施瓦兹不等式有222()()()E XY E X E Y ≤所以22221(max(,))1(||)12E X Y E X Y =+-≤+又因为22222(||)(2)()()2()22E X Y E X Y XY E X E Y E XY ρ+=++=++=+ 22222(||)(2)()()2()22E X Y E X Y XY E X E Y E XY ρ-=+-=+-=-所以22(max(,))11E X Y =≤=+ 3.设二维随机变量),Y X (的联合概率密度为:1(1),1,1(,)40,xy x y p x y ⎧+<<⎪=⎨⎪⎩其他证明X 与Y 不独立,而2X 与2Y 相互独立.证明:因为1111()(,)(1),1142X p x p x y dy xy dy x ∞-∞-==+=-<<⎰⎰ 1111()(,)(1),1142Y p y p x y dx xy dx y ∞-∞-==+=-<<⎰⎰ 所以(,)()()X Y p x y p x p y ≠ 即X 与Y 不独立. 设22,U X V Y ==则22(,)(,)(F u v P X u Y v P X Y =≤≤=≤≤≤≤所以当0,0(,)0u v F u v <<=时,;当111111,1(,)(1)14u v F u v xy dxdy --≥≥=+=⎰⎰时,;当1111,01(,)(1)u v F u v xy dxdy -><<=+=⎰时,;当11101,1(,)(1)4u v F u v xy dxdy <<>=+=⎰时,当01,01(,)(1)u v F u v xy dxdy ≤<≤<=+=时,;所以1,0101,1(,)01,011,1,10,0,0u v u v F u v u v u v u v ⎧><<⎪<<>⎪=≤<≤<≥≥⎪⎪<<⎩所以0,(,)1,01p u v u v ⎧⎪=≤<≤<其他所以10()1U p u v ==≤<10()1V p v du u ==≤<故()()(,)U V p u p v p u v =所以U 与V 独立,即2X 与2Y 相互独立.。
考研数学三(多维随机变量及其分布)模拟试卷3(题后含答案及解析)

考研数学三(多维随机变量及其分布)模拟试卷3(题后含答案及解析)题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.关于随机事件{X≤a,Y≤b}与{X>a,Y>b},下列结论正确的是( )A.为对立事件.B.为互不相容事件.C.为相互独立事件.D.P{X≤a,Y≤b}>P{X>a,Y>b}.正确答案:B解析:如图3—1所示,选项(A)、(D)都是不一定成立的.如果{X≤a,Y≤b}与{X>a,Y>b}相互独立,则应P{(X≤a,Y≤b)(X>a,Y>b)}=0,不一定与P{X≤a,Y≤b}P{X>a,Y>b}相等,故(C)不正确.综上,应选(B).知识模块:多维随机变量及其分布2.设随机变量(X,Y)的分布函数为F(x,y),则(Y,X)的分布函数G(x,y)为( )A.F(x,y).B.F(y,x).C.F(-x,-y).D.F(-y,-x).正确答案:B解析:G(x,y)=P{Y≤x,X≤y}:P{X≤y,Y≤x}=F(y,x).故应选(B).知识模块:多维随机变量及其分布3.设二维随机变量(X,Y)的分布函数为则常数A和B的值依次为( ) A.B.C.D.正确答案:C解析:F(x,y)能够作为分布函数,则需满足0≤F(x,y)≤1,F(+∞,+∞)=1,F(-∞,-∞)=F(x,-∞)=F(-∞,y)=0,关于x,y单调不减且右连续,故满足此条件的只有(C).知识模块:多维随机变量及其分布4.设随机变量X和Y相互独立,且有相同的分布函数F(x),Z=X+Y,FZ(z)为Z的分布函数,则下列成立的是( )A.FZ(2z)=2F(z).B.FZ(2z)=[F(z)]2C.FZ(2z)≤[F(z)]2D.FZ(2z)≥[F(z)]2正确答案:D解析:如图3—2所示,FZ(2z)=P{Z≤2z}-P{X+Y≤2z},X+Y≤2z对应区域为A,由于X和Y相互独立,且有相同的分布函数F(x),从而[F(z)]2=F(z)F(z)=P{X≤z}P{Y≤z}=P{X≤z,Y≤z},X≤z,Y≤z对应区域B,显然故FZ(2z)≥[F(z)]2,因此选(D).知识模块:多维随机变量及其分布5.设X1和X2是两个相互独立的连续型随机变量,其概率密度分别为f1(x)和fZ(x),分布函数分别为F1(x)和F2(x),则下列说法正确的是( ),A.f1(x)+f2(x)必为某一随机变量的概率密度.B.f1(x)f2(x)必为某一随机变量的概率密度.C.F1(x)+F2(x)必为某一随机变量的分布函数.D.F1(x)F2(x)必为某一随机变量的分布函数.正确答案:D解析:由已知条件,有选项(A)不正确;例如令故选项(B)不正确;F1(+∞)+F2(+∞)=2,故选项(C)不正确,因此选(D).知识模块:多维随机变量及其分布6.已知随机变量X和Y相互独立,其概率分布为随机变量Y的概率分布为则下列式子正确的是( )A.X=YB.P{X=Y}=0.C.D.P{X=Y}=1.正确答案:C解析:知识模块:多维随机变量及其分布解答题解答应写出文字说明、证明过程或演算步骤。
第3章多维随机变量及其分布习题解答

.
16.设 X 与 Y 相互独立,且 P { X = 0} = P {Y = 0} =
1 2 , P { X = 1} = P {Y = 1} = 3 3
.
⎧1 Z =⎨ ⎩0
X +Y ≠1 ,则 Z 的分布律为 X +Y =1
P ( Z = 0) = 4 / 9, P ( Z = 1) = 5 / 9
X
1 2
Y
1 0.18 0.42 0.6
2 0.12 0.28 0.4
P( X = i)
0.3 0.7
P (Y = j )
(2) P{ X = Y } = P{ X = Y = 1} + P{ X = Y = 2} = 0.18 + 0.28 = 0.46 (3) XY 的分布律为
XY P
1 0.18
∫∫
p ( x, y )dxdy = ∫ dx ∫
0
1
1− x 2 0
2e− ( x + 2 y ) dy = 1 − 2e−1
26.设 X 与 Y 相互独立, X与Y 的概率密度分别为
⎧1, 0 ≤ x ≤ 1 p X ( x) = ⎨ , 其他 ⎩0,
⎧8 y, 0 < y < 1/ 2 pY ( y ) = ⎨ 其他 ⎩ 0,
)
,
则
X
Y
.
相
互
独
立
的
充
要
条
件
是
pij = pi. ⋅ p. j
(i, j = 1, 2, ⋅⋅⋅⋅⋅⋅)
2
⎧1 − e − x x ≥ 0 ⎪ 13 . 设 X 与 Y 相 互 独 立 , 分 布 函 数 分 别 为 FX ( x ) = ⎨ , ⎪ ⎩0 x < 0
多维随机变量及其分布测试题答案1 1

第三章 多维随机变量及其分布答案 一、填空题(每空3分)1.设二维随机变量(X,Y)的联合分布函数为22213,0,0(1)(1)(1)(,)0,A x y x y x y F x y ⎧+-≥≥⎪++++=⎨⎪⎩其他,则A=_____1____. 2.若二维随机变量(X,Y)的分布函数为F(x,y)则随机点落在矩形区域[x 1《<x<x 2,y 1<y<y 2]内的概率为_______ _(,)(,)(,)(,)22211112F x y F x y F x y F x y -+-.3.(X,Y)的联合分布率由下表给出,则α,β应满足的条件是13αβ+=;当=α 29 ,=β 19 时X 与Y 相互独立.4.设二维随机变量的密度函数2,01,02(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他,则(1)P X Y +≥=__6572____. 5.设随机变量X,Y 同分布,X 的密度函数为23,02(,)80,x x f x y ⎧≤≤⎪=⎨⎪⎩其他,设A=(X>b )与B=(Y>b )相互独立,且3()4P A B ⋃=,则6.在区间(0,1)内随机取两个数,则事件“两数之积大于14”的概率为_ _31ln 444- . 7. 设X 和Y 为两个随机变量,且34(0,0),(0)(0)77P X Y P X P Y ≥≥=≥=≥=,则(max{,}0)P X Y ≥=_57. 8.(1994年数学一)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为则随机变量max{,}Z X Y =的分布律为 .9.(2003年数学一)设二维随机变量(),X Y 的概率密度为6,01,(,)0,x x y f x y ≤≤≤⎧=⎨⎩其它. 则{1}P x y +≤= 1/4 . 二、单项选择题(每题4分)1.下列函数可以作为二维分布函数的是( B ).A .⎩⎨⎧>+=.,0,8.0,1),(其他y x y x FB .⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt e y x F y x t s C . ⎰⎰=∞-∞---y x ts dsdt ey x F ),( D .⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x ey x F y x2.设平面区域D 由曲线1y x=及直线20,1,x y y e ===围成,二维随机变量在区域D 上服从均匀分布,则(X,Y)关于Y 的边缘密度函数在y=2处的值为(C ).A .12B .13C .14D .12-3.若(X,Y)服从二维均匀分布,则( B ).A .随机变量X,Y 都服从一维均匀分布B .随机变量X,Y 不一定服从一维均匀分布C .随机变量X,Y 一定都服从一维均匀分布D .随机变量X+Y 服从一维均匀分布4.在[0,]π上均匀地任取两数X 和Y ,则{cos()0}P X Y +<=( D ).A .1B .12 C . 23 D .345.(1990年数学三)设随机变量X 和Y 相互独立,其概率分布律为则下列式子正确的是( C ).A .;X Y =B .{}0;P X Y ==C .{}12;P X Y ==D .{} 1.P X Y ==6.(1999年数学三)设随机变量101(1,2)111424i X i -⎡⎤⎢⎥=⎢⎥⎣⎦:,且满足{}1201,P X X ==则12{}P X X =等于( A ).A .0;B .14; C .12; D .1.8.(2002年数学四)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则A .12()()f x f x +必为某一随机变量的分布密度;B .12()()F x F x 必为某一随机变量的分布函数;C .12()()F x F x +必为某一随机变量的分布函数;D .12()()f x f x 必为某一随机变量的分布密度.三、计算题(第一题20分,第二题24分)1.已知2(),(),(1,2,3),a bP X k P Y k k X Y k k===-==与相互独立.(1)确定a ,b 的值; (2)求(X,Y)的联合分布律;解:(1)由正则性()1kP X k ==∑有,612311a a a a ++=⇒=()1kP Y k =-=∑有,3614949b b b b ++=⇒= (2)(X,Y)的联合分布律为2. 设随机变量(X,Y)的密度函数为(34),0,0(,)0,x y ke x y p x y -+⎧>>=⎨⎩其他(1)确定常数k ; (2)求(X,Y)的分布函数; (3)求(01,02)P X Y <≤<≤.解:(1)∵0(34)01x y ke dx dy ∞∞-+⎰=⎰∴400011433()()430||112yy x x e dx k e e dy k k e∞-∞∞∞---=--⎰⋅==⎰∴k=12(2)143(34)(,)1212(1)(1)1200y x y xu v F x y e dudv ee ---+==⋅--⎰⎰ 43(1)(1)0,0yxeex y --=-->>∴34(1)(1),0,00,(,)x y ee x y F x y ⎧--⎪-->>⎨⎪⎩=其他(3)(01,02)(1,2)(0,0)(1,0)(0,2)P X Y F F F F <≤<≤=+--38(1)(1)ee --=--3.设随机变量X,Y 相互独立,且各自的密度函数为121,0()20,0x X e x p x x ⎧≥⎪=⎨⎪<⎩,131,0()30,0x Y e y p y y ⎧≥⎪=⎨⎪<⎩,求Z=X+Y 的密度函数 解:Z=X+Y 的密度函数()()()Z XY p z px p z x dx ∞-∞=-⎰∵()X p x 在x ≥0时有非零值,()Y p z x -在z-x ≥0即x ≤z 时有非零值 ∴()()X Y p x p z x -在0≤x ≤z 时有非零值336362000111()[]|236zzz x z x z x xzZ p z e e dx e e dx e e -------=⋅==-⎰⎰ 36(1)zz e e --=--当z<0时,()0Z p z =所以Z=X+Y 的密度函数为36(1),0()0,0z zZ e e z p z z --⎧⎪--≥=⎨⎪<⎩4.设随机变量X,Y 的联合密度函数为3412,0,0(,)0,x y e x y p x y --⎧>>=⎨⎩其他,分别求下列概率密度函数.(1) {,}M Max X Y =; (2) {,}N Min X Y =.解:(1)因为3430()(,)123x yx X p x p x y dy edy e ∞∞----∞===⎰⎰3440()(,)124x y y Y p y p x y dx e dy e ∞∞----∞===⎰⎰所以(,)()()X Y p x y p x p y =即X 与Y 独立. 所以当z<0时,()0M F z =当z ≥0时,()()(,)()()M F z P M z P X z Y z P X z P Y z =≤=≤≤=≤≤34()()(1)(1)z z X Y F z F z e e --==--所以34430,0()3(1)4(1),0M z z z z z p z e e e e z ----<⎧=⎨-+-≥⎩3470,0347,0z z zz e e e z ---<⎧=⎨+-≥⎩ (2) 当z<0时,()0N F z =当z ≥0时,()()(,)1()()N F z P N z P X z Y z P X z P Y z =>=>>=->>7z e -=所以70,0()7,0M z z p z e z -<⎧=⎨≥⎩3470,0347,0zz zz e e e z ---<⎧=⎨+-≥⎩6.设随机变量(X,Y)的联合密度函数分别为3,01,0(,)0,x x y xp x y <<<<⎧=⎨⎩其他,求X和Y 的边际密度函数.解:2()(,)33,01xX p x p x y dy xdy x x ∞-∞===<<⎰⎰1223()(,)3(1),012Y yp y p x y dx xdx y x y ∞-∞===-<<⎰⎰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
PX m 1 2
则下列式子正确的是(
1 2
).
A . X Y;
m PY m
-1 1
1
1
2
2
B . P{ X Y} 0;
C . P{ X Y} 1 2;
D . P{ X Y} 1.
【解题分析】 乍看似乎答案是 A, 理由是 X 和 Y 同分布 , 但这是错误的 , 因为 , 若 X Y , 说明 X 取什么值时 , Y 也一定取相同的值 , 而这是不可能的 , 所以只能从剩下的三个答案中
第三章 多维随机变量及其分布 一、填空题
1. ( 1994 年数学一)设相互独立的两个随机变量
X ,Y 具有同一分布律,且 X 的分布
律为
X
0
1
11P2源自2则随机变量 Z max{ X , Y} 的分布律为
.
【解题分析】 首先要根据 Z 的定义确定 Z 的取值范围 , 然后求 Z 取值的概率即可 . 解 : 由于 X ,Y 仅取 0、1 两个数值,故 Z 也仅取 0 和 1 两个数值,因 X ,Y 相互独立,
1 1 FX z 1 FY z
3 / 11
出发求解即可 .
解 : 由题设 X e( )
e x , x 0,
0,
x 0.
令 1 X , 2 2,则
0,
x 0,
0, x 2,
F ( x) 1
1 e x,
x
F (x) 0, 2
1, x 2.
于是 Y min{ X ,2} min{ 1, 2} 的分布函数为
Z max{ X ,Y} 的分布函数为 Fz (z) F1( x) F2 ( y) ,可知 F1( x) F2( x) 必为某一随机变量的
分布函数 . 故选择 B .
注 :本题与 2002 年高数一中的选择题类同 . 本题也可以用赋值法求解 .
三、计算与证明题 1.(1994 年数学三 ) 假设随机变量 X1, X 2 , X3, X 4 相互独立 , 且同分
0, 其它.
【解题分析】 利用 P X,Y D
解 : 如图 10-5 所示
f x,y dxdy 求解 .
D
图 10-5 1 / 11
P(x y 1) 6xdxy
D
1 1x
2 dx 6dxdy
1.
0
x
4
二、选择题
1.(1990 年数学三 ) 设随机变量 X 和 Y 相互独立 , 其概率分布律为
m
-1
1
2 / 11
-1
p11
p12
p13
1
4
解 : 设随机变量
0
p21
p22
p23
1
X1, X 2 的联合分布为
2
1
p31
p32
p33
1
4
1
1
1
4
2
4
由 P{ X1X 2 0} P{ X1 0, X 2 1} P{ X1 0, X 2 1}
P{ X1 1, X 2 0} P{ X1 1, X 2 0} P{ X1 0, X 2 0}
p21 p23 p12 p32 p22 1
知 p11 p13 p31 p33 0,
从而有 p21 类似地 p23
进一步可知
1 p11
4 1
, p12 4
1 p22
2
1
p31
,
4
1
1
, p32
.
4
4
p12 p32 0.
即 p11 p22 p33 0.
因此有 P{ X1 X 2} 0.正确答案是 A .
101 1 1 1 (i 1,2) , 且满足 P X1X 2 0 1, 424
则 P{ X 1 X 2} 等于(
).
A . 0; B . 1 ; C . 1 ; D . 1.
4
2
【解题分析】 本题应从所给条件 P X1X 2 0 1出发 , 找出随机变量 X1, X 2 的联合分
布.
X1
X2
-1
0
选一个 , 这时只要直接计算 P X Y 即可 .
解 : 由 X 和 Y 相互独立知
P{ X Y} P{ X 1,Y 1} P{ X 1,Y 1}
P{ X 1} P{ Y 1} P{ X 1} P{Y 1}
1 1 1 1 1. 22 22 2 所以 , 正确答案是 C .
2.(1999 年数学三 ) 设随机变量 X i
3.(1999 年数学四 ) 假设随机变量 X 服从指数分布 , 则随机变量 Y min{ X ,2} 的分布
函数(
).
A .是连续函数;
C .是阶梯函数;
B .至少有两个间断点; D .恰好有一个间断点 .
【解题分析】 从公式 Fz z P min X,Y z 1 P min X,Y z
1 P X z, Y z 1 P X z P Y z
故 P{ Z 0} P{max( X ,Y) 0} P{ X 0,Y 0}
11 1
P{ X 0} P{Y 0}
,
22 4
3 P{ Z 1} 1 P{ Z 0} .
4
Z 的分布律为
Z
0
1
1
3
P
4
4
2.( 2003 年数学一)设二维随机变量
X ,Y 的概率密度为
6x, 0 x y 1,
f (x, y)
则 P{ x y 1} = .
F ( x) 1 (1 F ( x))(1 F ( x))
1
2
0, x 0, 1 e x , 0 x 2,
1, x 2.
可见其仅有一个间断点 x 2. 正确答案是 D .
4.(2002 年数学四 ) 设 X1 和 X2 是任意两个相互独立的连续型随机变量
, 它们的概率密
度分别为 f1( x) 和 f2 (x) , 分布函数分别为 F1( x) 和 F2( x) , 则
X2 X 3 的分布律 , 再求 X 的分布律 . 解 : 记 Y1 X1X4 , Y2 X 2 X 3 , 则 X Y1 Y2 . 随机变量 Y1和 Y2 独立同分布 : P{Y1 1} P{ Y2 1} P{ X 2 1, X 3 1} P X 2 1 P X 3 1 0.16. P{Y1 0} P{Y2 0} 1 0.16 0.84 .
A . f1( x) f 2( x) 必为某一随机变量的分布密度;
B . F1 (x)F2( x) 必为某一随机变量的分布函数;
C . F1( x) F2( x) 必为某一随机变量的分布函数;
D . f1( x) f2 ( x) 必为某一随机变量的分布密度.
解 : 由于若随机变量 X 与 Y 相互独立,它们的分布函数分别为 F1 (x) 与 F2( y) ,则
布, P{ X i 0} 0.6,P{ X i 1} 0.4(i 1,2,3,4,) 求行列式 X
X1 X 2 的概率分布 . X3 X4
【解题分析】 X 由 2 2 阶行列式表示 , 仍是一随机变量 , 且 X X1X 4 X2X 3 , 由于
4 / 11
X1, X 2 , X3 , X 4 独立同分布 , 故 X1X 4 与 X2 X3 也是独立同分布的 , 因此可先求出 X1 X 4 和