第三讲多维随机变量及其分布

合集下载

第三章多维随机变量及其分布

第三章多维随机变量及其分布

§3.1 二维随机变量
P{X 1,Y 1} 1312

8 2


3 14
,
P{ X

0,Y

2}

2 2

82

1 28
,
P{X 1,Y 0} 1313

8 2

6/45
§3.1 二维随机变量
分布函数的性质:
1°F(x,y)是变量x,y的不减函数 2°0≤F(x,y)≤1且
对任意的y,当x2>x1时F(x2,y)≥F(x1,y) 对任意的x,当y2>y1时F(x,y2)≥F(x,y1)
对任意固定的y,F(-∞,y)=0 (边界无限向左,趋于不可能事件)
其 它.
(1) 求分布函数F ( x, y); (2) 求概率 P{Y X }.
19/102
§3.1 二维随机变量

y
(1) F( x, y)
x
f (x, y)d x d y



y 0
x 2e(2x y) d x d y, x 0, y 0,
0
0,
二元函数: F(x,y)=P{(X≤x)∩(Y≤y)},记做P{X≤x,Y≤y} 称为二维随机变量(X,Y)的分布函数,或称为随机 变量X和Y的联合分布函数。
5/45
§3.1 二维随机变量
二维随机变量分布函数的意义
将(X,Y)看成是平面上随机点的坐标,则分布函数F(x,y) 在点(x,y)处的函数值是随机点(X,Y)落在以(x,y)为顶点的 左下方的无穷矩形区域内的概率
记P{X=xi,Y=yj}=pij,i,j=1,2,…,则由概率的定义有:

第三章多维随机变量及其分布.doc

第三章多维随机变量及其分布.doc
(2)正则性 ;
可以证明,凡满足性质(1)的任意一个二元函数f(x,y),必可作为某个二维随机变量的联合密度函数。
(3)若f(x,y)在点(x,y)处连续,则
证明
(4)设G是xOy平面上的一个区域,则有
在几何上z=f(x,y)表示空间的一张曲面。由性质(1)知,介于该曲面和xOy平面之间的空间区域的体积是1。由性质(3)知, 的值等于以G为底,以曲面z=f(x,y)为顶的曲顶柱体的体积。
3.1.3联合分布列
定义3.1.3若二维随机变量(X,Y)的所有可能取的值是有限多对或可列无限多对(xi,yj),则称(X,Y)为二维离散型随机变量。称
,i,j=1,2,…,n,
为二维离散型随机变量(X,Y)的联合分布列,也可用如下表格记联合分布列。
Y
联合分布列的基本性质:
(1)非负性
(2)正则性
例1盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到白球的只数,求X,Y的联合分布列和 。
解(1) 的分布函数为
(2)将 的共同分布函数 代入上式得
(3)Y的分布函数仍为上式,密度函数可对上式关于 求导得
(4)将指数分布的分布函数和密度函数代入(2)和(3)的结果中得
二、最小值分布设 是相互相互独立的n个随机变量,若 ,在以下情况下求Y的分布。(1) ~ ;(2) 同分布,即 ~ ;(3) 为连续随机变量,且 同分布,即 的密度函数为 , ;(4) ~ 。
0.216 0 0 0
二、多维超几何分布
袋中有N只球,其中有Ni只 号球, ,记 。从中任意取出n只,若记Xi为取出的n只球中 号球的个数, ,则
其中 。
例4在例3中改为不放回抽样,求二维随机变量(X,Y)的联合分布列。

高等数学之多维随机变量及其分布

高等数学之多维随机变量及其分布
f (x, y)d xd y
YX
G
2e(2 x y) d x d y 0y
G
O
x
1. 3
练习题
1. 设二 维随 机变量( X ,Y ) 具有 概率 密度
f
(
x,
y)
ce
x2
y
,
0,
x 1, y 0, 其 它.
(1) 确 定 常 数c; (2) 求P{ X 2Y 1};
2.设随机变量X和Y的联合分布函数为F (x, y), 而F1(x)和F2 ( y)分别为X和Y的分布函数,则 a,b, P{X a,Y b} B
a
3.设二维随机变量( X ,Y )的概率密度为
ey ,0 x y
f (x, y) 0,
其它
求P{X Y 1}.
解:
P{X Y 1} f (x, y)dxdy
y
y=x
G
1/2 dx 1x eydy 1 2 1
0
x
e1/ 2 e
1
0 1/2 1
x
x+y=1
4.设 二 维 随机 变 量( X ,Y )的 分 布 函数 为
例3 设二 维随 机变 量( X , Y ) 具有 概率 密度
2e (2 x y) , x 0, y 0,
f (x, y) 0,
其 它.
(1) 求分 布函 数F ( x, y); (2) 求概 率 P{Y X }.
解: (1) F ( x, y) y
x
f (u, v)d ud v
yx
F ( x, y)
f (u, v) d ud v
则 称( X ,Y )是 连 续 型 的 二 维 随 机 变量,函 数f ( x, y)

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布

例 已知二维随机变量(X,Y)的分布函数为 (1)求常数A,B,C; (2)求P{0<X<2,0<Y<3} 解: F (∞
, ∞ ) = A[B +
x y F ( x , y ) = A[ B + arctg ( )][ C + arctg ( )] 2 3
π
2
][ C +
π
2
] = 1 ( y )] = 0 3
设(X,Y)的概率密度
c x 2 ≤ y < x f ( x, y ) = others 0
(1)求常数c;(2)求关于X的边缘概率密度. 解:(1)由归一性
1 x
∫ dx ∫ cdy
0 x2
=1 c = 6

(2) f X ( x) =
0 x < 0 or x > 1 = x ∫ 6dy = 6 ( x x 2 ) 0 ≤ x ≤ 1
x2

∫ f ( x, y)dy
§4 相互独立的随机变量
定义 设F(x,y)及FX(x),FY(y)称分别是二维随机变 量(X,Y)的分布函数及边缘分布函数,如果对任意 实数x, y,有 P{X≤x,Y≤y}=P{X≤x}P{Y≤y} 即事件 {X≤x}与事件 {Y≤y}独立,则称随机变量X 与Y相互独立。 显然,上述定义表明随机变量X与Y独立的充分必 要条件是 F(x,y)=FX(x)FY(y)
二维离散型随机变量的分布律也可列表表示如下:
X Y y1 y2 p11 p21 ... pi1 ... p12 p22 ... pi2 ... … ... ... ... yj … P1j ... P2j ... ... Pij ... ...

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布
i 1 n
则称X 1 , X 2 , , X n相互独立。
3.3
多维随机变量函数的分布
一、多维离散随机变量函数的分布 二、最大值与最小值的分布
三、连续场合的卷积公式
四、变量变换法
一、多维离散随机变量函数的分布
泊松分布的可加性
设X P(1 ), Y P(2 ),且X 与Y 独立,则Z X Y P(1 2 ).
二项分布的可加性
设X b(n, p), Y P(m, p),且X 与Y 独立,则Z X Y b(n m, p).
二、最大值和最小值的分布
最大值分布
设X1 , X 2 , , X n是相互独立的n个随机变量,若Y max( X1 , X 2 , , X n ), 则Y的分布称为最大值分布。
y y
0
1
U g1 ( X , Y ) V g2 ( X , Y )
则(U ,V )的联合分布函数为 p( , ) p( x( , ), y( , )) | J |
积的公式
设X 与Y 相互独立,其密度函数分别为p X ( x)和pY ( y )。则 U XY的密度函数为 pU ( )

P( X x , Y y ) P( X x ), i 1, 2,
j 1 i j i
被称为X 的边际分布列,类似地,对i求和所得的分布列
P( X x , Y y ) P(Y y ), j 1, 2,
i别地, 当n 2时( X , Y )为二维随机变量。
其联合分布函数为( F x, y) P (X x, Y y)
若F(x,y)是二维随机变量(X,Y)的分布函数, 则 它表示随机点(X,Y)落在二维区域D内的概率, 其中D 如下图所示:

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布

求概率 (1)PX 1,Y 3;(2)PX Y 3
解 PX 1,Y 3 f (x, y)dxdy
D

1
dx
3 1 (6 x y)dy
0 28

11 08
(6 y

xy

1 2
y2)
3 2
dx

3 8
4 2
12
续解 ……….
PX Y 3 f (x, y)dxdy
1. 3
y
y x
o
x
四、小结
在这一节中,我们与一维情形相对照,介绍了 二维随机变量的分布函数 ,离散型随机变量的分 布律以及连续型随机变量的概率密度函数.
例 已知二维随机变量(X,Y)的分布密度为
f
(x,
y)

1 8
(6

x

y),
0 x 2, 2 y 4
0,
其他
解答 PX Y 4 X 1
4
PX Y 4, X 1
2

PX 1
12
2
dx
4x 1 (6 x y)dy
1 2 8
7 48 7
2
dx
4 1 (6 x y)dy
1 28
3 8 18
第二节 边缘分布
边缘分布函数 离散型随机变量的边缘分布律 连续型随机变量的边缘概率密度 小结
称为二维随机变量 X ,Y 的分布函数, 或者称为随机
变量 X 和 Y 的联合分布函数.
分布函数的函数值的几何解释
将二维随机变量 X ,Y 看成是平面上随机点的 坐标, 那么,分布函数 F x, y在点 x, y 处的函数值 就是随机点 X ,Y 落在下面左图所示的,以点 x, y

第3章 多维随机变量及其分布 (NXPowerLite)

第3章  多维随机变量及其分布 (NXPowerLite)
y 0
x +1
0 0
dv 2du ( x 1)2
v 1
x
当x 0, 0 y 1时, F ( x, y) dv 2du 2 y y 2
v 1
当x 0, y 1时, F ( x, y) 1
F ( x, y)
14
例5:设二维随机变量(X,Y)具有概率密度
2 F ( x, y) 4.在f ( x, y)的连续点(x, y),有 f ( x, y) xy
注: 在几何上,z f ( x, y )表示空间一个曲面,介于它和 xoy平面 1 的空间区域的体积为1
G
2 P(( X , Y ) G )等于以G为底,以曲面z f ( x, y )为顶面的柱体体积。 所以 X,Y 落在面积为零的区域的概率为零。
i 1
4
j 1, 2,3, 4
7
例2:某足球队在任何长度为 t 的时间区间内得黄牌 或红牌 的次数N t 服从参数为t 的Possion分布, 记X i 为比赛进行 ti 分钟后的得牌数, i 1, 2 t2 t1 。试写出X 1 , X 2的联合分布。
t
解:P N t k
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 ) 0
5
二维离散型随机变量
定义:若二维随机变量(X,Y)全部可能取到的不同值是有限 对或可列无限对,则称(X,Y)是离散型随机变量。
离散型随机变量的联合概率分布: X Y y1 x1 p11 设 X , Y 所有可能取值为 xi , yi , i, j 1, 2, 称 P X xi , Y y j pij , i, j 1, 2, 为二维离散型随机变量 X, Y 的联 合概率分布。可用如右表格表示.

第三章多维随机变量及其分布

第三章多维随机变量及其分布

【注】边缘分布律可由联合分布律表所决定:
Y
X
y1
y2
yj
pi.
x1 x2
p11
p21
p12 p22
p1 j
p1. p2.
p2 j
xi
pi1
pi 2
pij
pi.
p. j
p.1
p.2
p. j
1
即 pi. 是联合分布律表中 x 所在行的概率之和
i
p. j 是联合分布律表中 y j 所在列的概率之和
• 例:令随机变量X表示在1,2,3,4中等可能地 取一个值,令随机变量Y表示在1~X中等可 能地取一个值。求(X,Y)分别关于X和Y的边 缘分布律。 • 解:P{X=i,Y=j}=(1/i)(1/4),(i≥j) 于是(X,Y)的分布律及关于X和Y的边缘分布 1 2 3 4 P{Y=j} 律为 Y X
F ( x, y ) P ( X x, Y y ) pij
xi x y j y
其中和式是对一切满足xi≤x,yj≤y的来求和的
• 例:令随机变量X表示在1,2,3,4中等可能地 取一个值,令随机变量Y表示在1~X中等可能 地取一个值。求(X,Y)的联合分布律及F(3,2)。 • 解: P{X=i,Y=j}=(1/4)(1/i)(i≥j) 于是(X,Y)的分布律为
其中1, 2 ,1 0, 2 0, 1 1为常数,称(X,Y)服 2 2 , , , 从参数为 1 2 1 2 , 的二维正态分布,记 为 ( X , Y ) ~ N (1, 2 ,12 , 22 , ) 。
§2 边缘分布
• 二维随机变量(X,Y)作为一个整体有分布函 数F(x,y),而其分量X和Y是一维随机变量, 它们各有其分布函数,记作FX(x)和FY(y)称 为二维随机变量(X,Y)分别关于X和Y的边缘 分布函数。 • 边缘分布函数可以由X、Y的联合分布函数 F(x,y)确定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 .4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.一、 各种分布与随机变量的独立性1. 各种分布(1)一般二维随机变量 F (x , y )=P { X ≤ x , Y ≤ y }, x ∈ (−∞, +∞), y ∈ (−∞, +∞)的性质F (x , y )为联合分布函数 ⇔ 1) 0 ≤F (x , y )≤1 , ∀x ∈ (−∞, +∞),, y ∈ (−∞, +∞);2) F (−∞, y )= F (x , −∞)=0, F (+∞,+∞)=1;3) F (x , y )关于x , y 均为单调不减函数; 4) F (x , y )关于x , y 均分别右连续.(2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 P {X = x i , Y = y j } = p i j , i , j =1, 2 ,⋅⋅⋅ , p i j ≥ 0,1=∑∑ijji p.边缘分布律 p i • = P {X = x i }=∑jji p, i =1, 2 ,⋅⋅⋅ , p • j = P { Y = y j }=∑iji p, j =1, 2 ,⋅⋅⋅ ,条件分布律 P {X = x i |Y = y j } =jj i p p •, P { Y = y j | X = x i } =•i j i p p .二维连续型随机变量的联合概率密度、边缘密度和条件密度f (x , y )为联合概率密度 ⇔ 1︒ f (x , y )≥0,2︒1=⎰⎰∞+∞-∞+∞- ),(dxdy y x f .设( X , Y )~ f (x , y )则 分布函数:⎰⎰∞-∞-=xydxdy y x f y x F ),(),(;边缘概率密度: ⎰∞+∞-=),()(dy y x f x f X , ⎰∞+∞-= ),()(dx y x f x f Y .条件概率密度: )(),()|(|y f y x f y x f Y Y X =, )(),()|(|x f y x f x y f X X Y =.⎰⎰=∈Ddxdy y x f D Y X P ),(}),{(.),(),(yx y x F y x f ∂∂∂=22. 随机变量的独立性和相关性X 和Y 相互独立 ⇔ F (x , y )= F X (x )F Y (y );⇔ p i j = p i • ⨯ p • j (离散型)⇔ f (x , y )= f X (x )f Y (y ) (连续型)【注】 1︒ X 与Y 独立, f (x ), g (x )为连续函数 ⇒ f (X )与g (Y )也独立.2︒ 若X 1, ⋅⋅⋅⋅, X m , Y 1, ⋅⋅⋅⋅, Y n 相互独立, f , g 分别为m 元与 n 元连续函数 ⇒ f (X 1, ⋅⋅⋅⋅, X m )与g (Y 1, ⋅⋅⋅⋅, Y n )也独立. 3︒ 常数与任何随机变量独立. 3. 常见的二维分布(1)二维均匀分布 (X , Y )~ U (D ), D 为一平面区域. 联合概率密度为⎪⎩⎪⎨⎧∈=.,.),(,)(),(其他01D y x D S y x f (2)二维正态分布 (X , Y )~ N (μ1 , μ2, σ12 ,σ22, ρ ), −∞ <μ1, μ2 < +∞, σ1>0, σ2 > 0, | ρ| <1. 联合概率密度为221121ρσπσϕ-=),(y x ⎥⎥⎦⎤⎢⎢⎣⎡-+------22222121212122121σμσσμμρσμρ)())(()()(y y x x e性质:( a ) X ~ N (μ1, σ12 ), Y ~ N (μ2, σ22 ) ( b ) X 与Y 相互独立 ⇔ ρX Y =0 , 即 X 与Y 不相关.( c ) C 1X +C 2Y ~ N (C 1 μ1+ C 2 μ2, C 12 σ12 + C 22σ22 +2C 1C 2 ρ σ1 σ2 ). ( d ) X 关于Y=y 的条件分布为正态分布: )](),([22122111ρσμσσρμ--+y N 【 例1 】 设A ,B 为事件,且P (A )=41, P (B |A )=21, P (A |B )=12令 X =⎩⎨⎧否则发生若,0,1A , Y =⎩⎨⎧否则发生若,0B ,1(1) 试求(X , Y )的联合分布律; (2)计算Cov ( X , Y ); (3) 计算 22(2,43)Cov X Y +.【 例2 】设随机变量X 与Y 相互独立,下表列出了二维随机变量(X , Y )联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.【 例3 】设随机变量X 与Y 独立同分布, 且X 的概率分布为313221PX 记{}{}Y X V Y X U ,m in ,,m ax ==.(I )求(U , V )的概率分布;(II )求(U , V )的协方差C ov (U , V ). 【详解】(I )易知U , V 的可能取值均为: 1, 2. 且{}{}})1,m in ,1,(m ax )1,1(=====Y X Y X P V U P)1,1(===Y X P 94)1()1(====Y P X P , {}{}0})2,m in ,1,(m ax )2,1(======Y X Y X P V U P , {}{}})1,m in ,2,(m ax )1,2(=====Y X Y X P V U P)2,1()1,2(==+===Y X P Y X P)2()1()1()2(==+===Y P X P Y P X P 94=, {}{}})2,m in ,2,(m ax )2,2(=====Y X Y X P V U P)2()2()2,2(======Y P X P Y X P 91=, 故(U , V )的概率分布为:(II ) 9122941209411)(⨯⨯+⨯⨯++⨯⨯=UV E 916=, 而 914952941)(=⨯+⨯=U E , 910912981)(=⨯+⨯=V E .故 814910914916)()()(),(=⨯-=-=V E U E UV E V U Cov .【 例4】 设随机变量X 在区间(0, 1)上服从均匀分布, 在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布, 求(Ⅰ)随机变量X 和Y 的联合概率密度;(Ⅱ)Y 的概率密度; (Ⅲ)概率}1{>+Y X P .二、 二维(或两个)随机变量函数的分布1.分布的可加性(1)若X ~B (m, p ), Y ~B (n, p ), 且X 与Y 相互独立,则 X +Y ~ B (m +n , p ). (2)若X ~P (λ1), Y ~P (λ2), 且X 与Y 相互独立,则 X+Y ~ P (λ1+λ2).(3)若X ~N (211,μσ), Y ~P (222,μσ), 且X 与Y 相互独立,则 X+Y ~ N (221212,μμσσ++).一般地,若X i ~N (2,i i μσ), i =1, 2, …, n , 且X 1,X 2,…,X n 相互独立,则Y =C 1X 1+C 2X 2+…+C n X n +C 仍服从正态分布,且此正态分布为2211(,),n ni i i i i i N C C Cμσ==+∑∑ 其中C 1,…,C n 为不全为零的常数.2. 两个随机变量函数的分布. 【例5】 设X与Y相互独立, 且~(1),~(2),X P Y P 则{max(,)0}______;P X Y ≠={min(,)0}__________.P X Y ≠=【 例6】 设X 与Y 相互独立, 其密度函数分别为:1,01,()X x f x <<⎧=⎨⎩0,其他. ,0,()y Y e y f x -⎧>=⎨⎩0,其他.求Z =2X +Y 的概率密度.【 例7】设二维随机变量(X , Y )的概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它.(I )求{}Y X P 2>;(II )求Z =X+Y的概率密度)(z f Z . 【详解】(I ){}Y X P 2>⎰⎰>=yx dxdy y x f 2),(⎰⎰--=1221)2(ydx y x dy 247=. (II )方法一: 先求Z 的分布函数: ⎰⎰≤+=≤+=zy x Z dxdy y x f Z Y X P z F ),()()(当z <0时, 0)(=z F Z ; 当10<≤z 时, ⎰⎰=1),()(D Z dxdy y x f z F ⎰⎰---=yz zdx y x dy 0)2(3231z z -=; 当21<≤z 时, ⎰⎰-=2),(1)(D Z dxdy y x f z F ⎰⎰-----=111)2(1yz z dx y x dy3)2(311z --=;当2≥z 时, 1)(=z F Z . 故Z =X+Y的概率密度)(z f Z =)(z F Z '⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z方法二: ⎰∞+∞--=dx x z x f z f Z ),()(,⎩⎨⎧<-<<<---=-.,0,10,10),(2),(其他x z x x z x x z x f ⎩⎨⎧+<<<<-=.,0,1,10,2其他x z x x z 当z ≤0 或z ≥ 2时, 0)(=z f Z ; 当01z <<时, ⎰-=zZ dx z z f 0)2()()2(z z -=;当21<≤z 时, ⎰--=11)2()(z Z dx z z f 2)2(z -=;故Z =X+Y的概率密度)(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z【例8】 设随机变量X 与Y 相互独立, X 有密度函数f (x ), Y 的分布律为()i i P Y a p ==, i =1,2. 试求Z =X +Y 的概率分布.。

相关文档
最新文档