2005年考研数学一真题(解析)

合集下载

2005考研数一真题及解析

2005考研数一真题及解析

2005年全国硕士研究生入学统一考试数学一试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 曲线122+=x x y 的斜渐近线方程为(2) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为._____ (3) 设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则 )3,2,1(nu∂∂=_______________.(4) 设Ω是由锥面z =与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ___________________.(5) 设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .(6) 从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则{2}P Y == ___________ .二、选择题:7-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 设函数n nn xx f 31lim )(+=∞→,则()f x 在(,)-∞+∞内( )(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. (8) 设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”, 则必有( )(A)()F x 是偶函数⇔()f x 是奇函数. (B)()F x 是奇函数⇔()f x 是偶函数.(C)()F x 是周期函数⇔()f x 是周期函数. (D)()F x 是单调函数⇔()f x 是单调函数.(9) 设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有( )(A) 2222yux u ∂∂-=∂∂. (B) 2222y u x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. (10) 设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域, 在此邻域内该方程( )(A) 只能确定一个具有连续偏导数的隐函数(,)z z x y =.(B) 可确定两个具有连续偏导数的隐函数和(,)y y x z =和(,)z z x y =. (C) 可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y =.(D) 可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =. (11) 设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是( )(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ.(12) 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,B A 分别为A ,B 的伴随矩阵,则( )(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. (13) 设二维随机变量(,)X Y 的概率分布为( )X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则 (A) 0.2,0.3a b == (B) 0.4,0.1a b ==(C) 0.3,0.2a b == (D) 0.1,0.4a b ==(14) 设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则( )(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (I)存在),1,0(∈ξ 使得ξξ-=1)(f ;(II)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I)证明:对右半平面0x >内的任意分段光滑简单闭曲线C ,有022)(42=++⎰C y x xydydx y ϕ;(II)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I) 求a 的值;(II) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III) 求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且0AB =, 求线性方程组0Ax =的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I) (,)X Y 的边缘概率密度)(),(y f x f Y X ; (II)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I) i Y 的方差n i DY i ,,2,1, =; (II)1Y 与n Y 的协方差).,(1n Y Y Cov2005年全国硕士研究生入学统一考试数学一试题解析一、填空题 (1)【答案】.4121-=x y 【详解】由求斜渐近线公式y ax b =+(其中()limx f x a x→∞=,lim[()]x b f x ax →∞=-),得:a =22()1limlim 22x x f x x x x x →∞→∞==+, []1lim ()lim2(21)4x x x b f x ax x →∞→∞-=-==-+,所以所求斜渐近线方程为.4121-=x y(2)【答案】.91ln 31x x x y -=【详解】求方程()()dyP x y Q x dx+=的解,有公式 ()()()P x dx P x dx y e Q x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ (其中C 是常数). 将原方程等价化为 x y xy ln 2=+',于是利用公式得方程的通解 22[ln ]dx dxx x y e x e dx C -⎰⎰=⋅+⎰221[ln ]x xdx C x =⋅+⎰=211ln 39C x x x x -+, (其中C 是常数) 由91)1(-=y 得0C =,故所求解为.91ln 31x x x y -=(3)【详解】设(,,)f x yz 有连续的一阶偏导数,{}0cos ,cos ,cos l αβγ=为给定的向量l 的单位向量,则(,,)f x y z 沿l 方向的方向导数计算公式为cos cos cos f f f fl x y zαβγ∂∂∂∂=++∂∂∂∂. 因为181261),,(222z y x z y x u +++=,所以3x x u =∂∂,6y y u =∂∂,9z z u =∂∂,且向量n 的cos αβγ===于是所求方向导数为(1,2,3)ul∂∂=.33313131313131=⋅+⋅+⋅(4)【答案】3(2R π【详解】如果设函数(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,则有:()P Q Rdv Pdydz Qdxdz Rdxdy x y zΩ∑∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰,其中∑是Ω的整个边界曲面的外侧.以Ω表示由22y x z +=与222y xR z --=所围成的有界闭区域,由高斯公式得⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3利用球面坐标得⎰⎰⎰Ωdxdydz 3=2233403sin 2(1(22Rd d d R R ππρρϕϕθππ=-=⎰⎰⎰(5)【答案】2 【详解】方法1:因为1231231()(,,)11αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,1231231(24)(,,)24αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦, 1231231(39)(,,)39αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,故 12312312(,24,39)B ααααααααα=++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,记123(,,)A ααα=,两边取行列式,于是有.221941321111=⨯=⋅=A B方法2:利用行列式性质(在行列式中,把某行的各元素分别乘以非零常数加到另一行的对应元素上,行列式的值不变;从某一行或列中提取某一公因子行列式值不变)123123123,24,39B ααααααααα=++++++[2][1]1232323[3][1],3,28ααααααα--====++++[3]2[2]123233====,3,2αααααα-+++123233=2,3,αααααα+++[1][3]1223[2]3[3]====2,,αααα--+[1][2]123====2,,ααα-又因为123,,1A ααα==,故B 2A =2=. (6)【答案】4813 【详解】 由全概率公式:}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X PX 表示从数1,2,3,4中任取一个数,故X 是等可能取到1,2,3,4,所以1()4P X i ==,1,2,3,4i = 而Y 表示从X ,,2,1 中任取一个数,也就是说Y 是等可能取到X ,,2,1 也就是说Y X 在的条件下等可能取值,即{21}0P Y X ===(X 取1的条件下,Y 取2是不可能事件)1{22}2P Y X ===(X 取2的条件下,Y 在1,2等可能取值) 1{23}3P Y X ===(X 取3的条件下,Y 在1,2,3等可能取值)1{24}4P Y X ===(X 取4的条件下,Y 在1,2,3,4等可能取值)故 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P 111113(0).423448=⨯+++=二、选择题 (7)【答案】C【详解】分段讨论,并应用夹逼准则,当||1x <时,≤≤,命n →∞取极限,得1n =,lim 1n →∞=,由夹逼准则得()1n f x ==;当||1x =时,()1n n f x ===;当||1x >时,33||||x x =<≤,命n →∞取极限,得3||n x =,由夹逼准则得13331()lim ||(1)||.||n n n f x x x x →∞=+= 所以 31,||1(),||1x f x x x <⎧⎪=⎨≥⎪⎩再讨论()f x 的不可导点. 按导数定义,易知1x =±处()f x 不可导,故应选(C).(8)【答案】A 【详解】方法1:应用函数奇偶性的定义判定,函数()f x 的任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当()F x 为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即)()(x f x f =--,亦即)()(x f x f -=-,可见()f x 为奇函数;反过来,若()f x 为奇函数,则0()()xF x f t dt C --=+⎰,令t k =-,则有dt dk =-,所以 0()()()()()xxxF x f t dt C f k dk C f k dk C F x --=+=--+=+=⎰⎰⎰,从而 ⎰+=x C dt t f x F 0)()( 为偶函数,可见(A)为正确选项.方法2:排除法,令()1f x =, 则取()1F x x =+, 排除(B)、(C); 令()f x x =, 则取21()2F x x =, 排除(D);(9)【答案】B 【详解】因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222y u x u ∂∂=∂∂,应选(B).(10)【答案】D【详解】隐函数存在定理:设(,,)F x y z 在点0000(,,)M x y z 的某领域内具有连续的一阶偏导数,且000000(,,)0,(,,)0z F x y z F x y z '=≠.则存在点0M 的某邻域,在此邻域内由方程(,,)0F x y z =可以确定唯一的连续偏导数的函数(,)z z x y =满足000(,)z x y z =,且(,,)(,,),(,,)(,,)y x M M z z M M F x y z F x y z zz x yF x y z F x y z ''∂∂=-=-∂∂''同理,如果000000(,,)0,(,,)0y F x y z F x y z '=≠,可确定(,)y y x z =满足000(,)y y x z =;000000(,,)0,(,,)0x F x y z F x y z '=≠,可确定(,)x x y z =满足000(,)x x y z =.本题中可令(,,)ln 1xzF x y z xy z y e =-+-, 则z e y F xz x +=', yz x F y -=',x e y F xzz +-='ln , 所以 (0,1,1)20x F '=≠,(0,1,1)10y F '=-≠,0)1,1,0(='z F .由于0)1,1,0(='z F ,所以由隐函数存在定理知,不一定能确定具有连续偏导数的函数(,)z z x y =,所以排除(A)、(B)、(C),而(0,1,1)20x F '=≠和(0,1,1)10y F '=-≠,所以可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =,故应选(D).(11)【答案】B 【详解】方法1:利用线性无关的定义12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.设有数12,k k ,使得0)(21211=++αααA k k ,则022211211=++αλαλαk k k 1211222()0k k k λαλα⇒++=.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,则⎩⎨⎧==+.0,022121λλk k k 当122100λλλ=≠时,方程只有零解,则0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法2:将向量组的表出关系表示成矩阵形式12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由于()()()1112111221221,(),,0A λααααλαλαααλ⎛⎫+=+= ⎪⎝⎭,因12λλ≠,因不同特征值对应的特征向量必线性无关,知21,αα线性无关. 若1α,)(21αα+A 线性无关,则()112,()2r A ααα+=,则()()11112122221112,min ,,2000r r r r λλλααααλλλ⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=≤≤≤ ⎪⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭,故121220r λλ⎛⎫≤≤⎪⎝⎭,从而12120r λλ⎛⎫= ⎪⎝⎭,从而122100λλλ=≠ 若122100λλλ=≠,则12120r λλ⎛⎫= ⎪⎝⎭,又21,αα线性无关,则 ()11122211,200r r λλααλλ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()()11121221,(),20r A r λαααααλ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭从而1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).方法3:利用矩阵的秩12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,又121122()A ααλαλα+=+,故1α,)(21αα+A 线性无关112(,())2r A ααα⇔+=又因为()()211122122,,αλαλαλααλα+=11将的-倍加到第列则111221222(,)(,)20r r αλαλααλαλ+==⇔≠(若20λ=,与122(,)2r αλα=矛盾) 方法4:利用线性齐次方程组12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,112,()A ααα+线性无关11122,αλαλα⇔+线性无关⇔11122,0αλαλα+≠,⇔()11122,0X αλαλα+=只有零解,又()()1111221221,,0λαλαλαααλ⎛⎫+= ⎪⎝⎭ ⇔()1112221,00x x λααλ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭只有零解⇔12,αα线性无关时()12,0Y αα=只有零解,故1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,只有零解,⇔1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭的系数矩阵是个可逆矩阵,⇔122100λλλ=≠,故应选(B)方法5:由12λλ≠,21,αα线性无关12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.向量组()12I :,αα和向量组()1121122II :,()A αααλαλα+=+. 显然向量组()II 可以由向量组()I 线性表出;当20λ≠时,不论1λ的取值如何,向量组()I 可以由向量组()II 线性表出11αα=,112111*********11()()()A λλααλαλααααλλλλ=-++=-⋅++, 从而()I ,()II 是等价向量组⇒当20λ≠时,()()1211122,,2r r αααλαλα=+=(12)【答案】(C) 【详解】方法1:由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得B A E =12,(A 进行行变换,故A 左乘初等矩阵),于是 ****1212()B E A A E ==,又初等矩阵都是可逆的,故 *1121212E E E -=, 又121E E =-=-(行列式的两行互换,行列式反号),11212E E -=,故****1*1*1212121212B A E A E E A E A E --==⋅=-=-,即*12*B E A -=,可见应选(C).方法2:交换A 的第一行与第二行得B ,即12B E A =.又因为A 是可逆阵,121E E =-=-,故12120B E A E A A ===-≠, 所以B 可逆,且1111212()B E A A E ---==.又11,A B A B A B **--==,故12B A E B A**=,又因B A =-,故*12*B E A -=.(13)【答案】B 【详解】方法1:由二维离散型随机变量联合概率分布的性质1ijijp=∑∑,有0.40.11a b +++=, 可知0.5a b +=,又事件}0{=X 与}1{=+Y X 相互独立,于是由独立的定义有:}1{}0{}1,0{=+===+=Y X P X P Y X X P ,而 {0,1}{0,1}P X X Y P X Y a =+====={1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=由边缘分布的定义:{0}{0,0}{0,1}0.4P X P X Y P X Y a ====+===+代入独立等式,得(0.4)0.5a a =+⨯,解得0.4,0.1a b ==,方法2:如果把独立性理解为:{10}{1}P X Y X P X Y +===+=(因为独立,所以}1{=+Y X 发生与}0{=X 发不发生没有关系),即{1|0}{1}0.5;P Y X P X Y a b ===+==+=所以 {00}1{10}10.50.5P Y X P Y X ===-===-=; 因此 {1|0}{00}0.5P Y X P Y X ======上式两边同乘以{}0P X =,有{}{}{1|0}0{00}0P Y X P X P Y X P X =======由乘法公式:()(|)()P AB P A B P B =,上式即为{0,0}{0,1}P X Y P X Y ===== 即0.4a =. 又因为0.5a b +=,得0.1b =.(14)【答案】D【概念】F 分布的定义:若21~()X n χ,22~()Y n χ,则1122(,)X n F n n Y n2χ分布的定义:若1,,n Z Z 相互独立,且都服从标准正态分布(0,1)N ,则221~()ni i Z n χ=∑ 正态分布标准化的定义:若2~(,)Z N μσ,则~(0,1)Z uN σ-【详解】因)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,独立正态分布的线性组合也服从正态分布,故111~(0,)n i i X X N n n==∑.~(0,1)X N =,故(A)错~(1)X t n S =-,故(C)错;而222222(1)(1)(1)~(1)1n S n S n S n χσ--==--,不能断定(B)是正确选项. 又 ∑=-ni in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是221122221(1)~(1,1).(1)nniii i X n X F n Xn X==-=--∑∑ 故应选(D).三、解答题 (15)【详解】方法1:令 }0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .于是有 12221,,)[1]2,,)x y D x y x y D ∈⎧++=⎨∈⎩当(当(从而⎰⎰++Ddxdy y x xy ]1[22=122D D xydxdy xydxdy +⎰⎰⎰⎰(二重积分对区域的可加性) 122D D xydxdy xydxdy =+⎰⎰⎰⎰(用极坐标把不同区域上的二重积分化为累次积分)1332201sin cos 2sin cos d r dr d dr ππθθθθθθ=+⎰⎰⎰(根据牛—莱公式)44122000sin cos |2sin cos 44r r d d ππθθθθθθ=+⎰⎰ 220011sin cos 2sin cos 44d d ππθθθθθθ=+⨯⎰⎰ (凑微分) 2222001111sin |sin |4222ππθθ=⨯+⨯=113.848+=方法2:用极坐标⎰⎰++Ddxdy y x xy ]1[22322sin cos [1]d r dr πθθθ=+⎰322sin cos [1]d r dr πθθθ=+⎰(根据牛—莱公式)2322001sin |[1]2r dr πθ=+3201[1]2r dr =+.而2101[1]21r r r ≤<⎧⎪+=⎨≤<⎪⎩从而 ⎰⎰++Ddxdy y x xy ]1[2213311()2r dr r dr =+⎰(定积分对区域的可加性)44101(|2244r r =+⨯(根据牛—莱公式) 111((21))242=+-38=(16)【详解】因为2222121(1)(1)(1)(21)1(21)(1)(21)limlim 1(1)(21)(21)1(1)(1)(21)n n n n n nx n n n n n n x x n n n n x n n +→∞→∞--++++-++==++-+-+-, 所以,由比值判别法知,当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1). 另外,当1x =±时由于通项极限不为零,故原幂级数在1x =±处为发散的.212121111()(1)(1)(1)(1)(21)(21)n n n n n n n n x f x x x n n n n ∞∞---===-+=-+---∑∑ 1221211(1)()()()(21)n nnn n x x S x S x n n -∞∞==-=--+=+-∑∑,(1,1)x ∈-对1()S x ,由等比级数求和公式2011,(1,1)1n n n x x x x x x∞==+++++=∈--∑得 1()S x 222111()1()1n n x x x∞=-=--=-=--+∑, (1,1)x ∈- 对2()S x ,则由幂级数在收敛区间上可导并有逐项求导公式得121212()(1),(1,1)21n n n S x x x n ∞--='=-∈--∑,同理可得1222122111()(1)22()21n n n n n S x xx x ∞∞---==''=-=-=⋅+∑∑,(1,1)x ∈- 可得22(0)0,(0)0,S S '== 所以,由牛—莱公式得222202()(0)()2arctan ,1xxS x S S t dt dt x t ''''=+==+⎰⎰(1,1)x ∈-同理得2220()(0)()2arctan x xS x S S t dt tdt '=+=⎰⎰2arctan |2arctan xx t t td t =-⎰ (分部积分)20=2arctan 21xtx x dt t -+⎰(计算出微分)2201=2arctan (1)1x x x d t t-++⎰ (凑微分)20=2arctan ln(1)|xx x t -+ (基本积分表中的公式) 22arctan ln(1)x x x =-+ (1,1)x ∈-从而 22122()()()2arctan ln(1)1x f x S x S x x x x x=+=+-++ , (1,1)x ∈-.(17)【详解】由直线1l 过(0,0)和(2,4)两点知直线1l 的斜率为2. 由直线1l 是曲线C 在点(0,0)的切线,由导数的几何意义知(0)2f '=. 同理可得(3)2f '=-. 另外由点(3,2)是曲线C 的一个拐点知(3)0.f ''=由分部积分公式,332200()()()()x x f x dx x x df x '''''+=+⎰⎰3320()()()(21)x x f x f x x dx ''''=+-+⎰ 322(33)(3)(00)(0)()(21)f f f x x dx ''''''=+-+-+⎰=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(3(231)(3)(201)(0)2()f f f x dx '''=-⨯++⨯++⎰=.20)]0()3([216=-+f f(18)【详解】(I) 令x x f x F +-=1)()(,则()F x 在[0,1]上连续,且(0)10F =-<, (1)10F =>,于是由闭区间连续函数的介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II) 在],0[ξ和]1,[ξ上对()f x 分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(19)【详解】(I) 如图,将C 分解为:21l l C +=,另作一条曲线3l 围绕原点且与C 相接,则24()22Cy dx xydyx y φ++⎰1324()22l l y dx xydyx yφ++=+⎰2324()202l l y dx xydyx yφ++-=+⎰.(II) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(I)知,曲线积分24()22Ly dx xydyx yϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 经计算, 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4()(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2()4()2 y yy y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)【详解】 (I) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A ,由二次型的秩为2,知()23r A =<,所以0A =,110110002a a A a a -+=+-33112(1)11a a a a⨯-+ ⋅-⋅+-按第3行展开③ ④221122[(1)(1)]11a aa a a a-+==⨯--++-80a =-=,得0a =.(II) 当0a =时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 所以 110110110110002002E A λλλλλλλ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-=--⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 两边取行列式,E A λ-1111002λλλ--=---3311(2)(1)11λλλ⨯--=-⋅-⋅--2(2)[(1)1]λλ=--- 22(2)(2)(2)λλλλλ=--=-令0E A λ-=,解得0,2321===λλλ,故A 有特征值为0,2321===λλλ.当122λλ==时,根据特征值的定义,有(2)0E A X -=,即1231101100000x x x -⎛⎫⎛⎫ ⎪⎪-=⎪⎪ ⎪⎪⎝⎭⎝⎭,1101101000r -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,因为未知数个数为3,故1231101100000x x x -⎛⎫⎛⎫⎪⎪-= ⎪⎪ ⎪⎪⎝⎭⎝⎭的基础解系中含有2个(未知数的个数-系数矩阵的秩)线性无关的解,同解方程组为120x x -=,选23,x x 为自由未知量,分别取231,0x x ==和230,1x x ==,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,(根据特征向量的定义,12,αα即为特征值12,λλ所对应的特征向量)因为120αα⋅=,故12,αα正交.当30λ=时,由(0)000E A X AX AX -=⇒-=⇒=,即1231101100002x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭, 对系数矩阵作初等行变换,11011011021000002002⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭行行, 故1101101100002002002r r ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 基础解系中含有1个(未知量的个数—系数矩阵的秩)线性无关的解向量,同解方程组12320x x x +=⎧⎨=⎩, 选1x 为自由未知量,取11x = (选取任意非零常数都可,因为特征向量必须为非零向量,不能选0) ,得特征向量为:.0113⎪⎪⎪⎭⎫⎝⎛-=α由于实对称矩阵对应于不同特征值的特征向量是相互正交的,故21,αα,3α两两正交,将21,αα,3α单位化,3121231231011,0,1010αααηηηααα⎛⎫⎛⎫⎛⎫⎪ ⎪⎪======-⎪ ⎪⎪⎪ ⎪⎪⎭⎝⎭⎭,其中1α==21α==,α 3==取[]123Q ηηη=,即为所求的正交变换矩阵,故T Q Q E =,则1Q Q -=,令x Qy =,则1123220T Q AQ Q AQ diag λλλ-⎛⎫⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 可化原二次型为标准形:1232(,,)()20T T T T T f x x x x Ax Qy AQy y Q AQy y y ⎡⎤⎢⎥====⎢⎥⎢⎥⎣⎦=.222221y y +(III) 方法1:由),,(321x x x f ==+222122y y 0,得120,0y y ==(因为方程中不含有3y )则3y k =(k 为任意常数). 从而所求解为:x Qy ==[]12312330110001100k k k k ηηηηηηη⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥'=⋅+⋅+==-=-⎪ ⎪⎢⎥⎪ ⎪⎢⎥⎣⎦⎭⎝⎭,其中k '=为任意常数. 方法2:用配方法,方程2222212312312122(,,)22()0f x x x x x x x x x x x =+++=++=,得1230x x x +=⎧⎨=⎩ , 系数矩阵110001000⎛⎫ ⎪⎪ ⎪⎝⎭的秩为2,因为未知数的个数为3,故它的基础解系中含有1个(未知数的个数—系数矩阵的秩)线性无关的解向量,选13,x x 为自由未知量,取11x =,解得[1,1,0]T-,所以,0f =的解为[1,1,0]Tk -,k 为任意常数.(21)【详解】 由0AB =知,B 的每一列均为0Ax =的解,且.3)()(≤+B r A r (3是A 的列数或B 的行数)(1) 若9k ≠,13,ββ不成比例,12,ββ成比例,则()2r B =, 方程组0Ax =的解向量中至少有两个线性无关的解向量,故它的基础解系中解向量的个数2≥,又基础解系中解向量的个数=未知数的个数()r A -3()r A =-,于是()1r A ≤.又矩阵A 的第一行元素(),,a b c 不全为零,显然()1r A ≥, 故()1r A =. 可见此时0Ax =的基础解系由3()2r A -= 个线性无关解向量组成,13,ββ是方程组的解且线性无关,可作为其基础解系,故0Ax = 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若9k =,则123,,βββ均成比例,故()r B =1, 从而.2)(1≤≤A r 故()1r A =或()2r A =.①若()2r A =, 则方程组的基础解系由一个线性无关的解组成,1β是方程组0Ax =的基础解系, 则0Ax =的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.②若()1r A =, 则A 的三个行向量成比例,因第1行元素(),,a b c 不全为零,不妨设0a ≠,则0Ax =的同解方程组为:0321=++cx bx ax , 系数矩阵的秩为1,故基础解系由312-=个线性无关解向量组成,选23,x x 为自由未知量,分别取231,0x x ==或230,1x x ==,方程组的基础解系为121,001b c a a ξξ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则其通解为121210,,01b c a a x k k k k ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.(22)【详解】(I)由边缘密度函数的定义:()(,)X f x f x y dy +∞-∞=⎰,()(,)Y f y f x y dx +∞-∞=⎰则关于X 的边缘概率密度为:)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x =.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (因为01,02x y x <<<<,故x 的取值范围为12yx <<) (II)由分布函数的定义: }2{}{)(z Y X P z Z P z F Z ≤-=≤=(1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z (由定义域为01x <<,02y x <<,故20X Y ->,则{20}X Y -≤是不可能事件)(2) 当20<≤z 时, 如图转换成阴影部分的二重积分(){2}Z F z P X Y z =-≤2-(,)x y zf x y dxdy ≤=⎰⎰2-1(,)x y zf x y dxdy >=-⎰⎰=12-021x zz dx dy -⎰⎰=241z z -; (3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z (因X 最大取1,Y 最小取0,故2X Y -最大就只能取到2,所以22X Y -≤是必然事件)所以分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z由密度函数与分布函数的关系:()()f x F x '=故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z(23)【详解】由题设)2(,,,21>n X X X n 为来自总体2(0,)N σ的简单随机样本,知)2(,,,21>n X X X n 相互独立,且20,(1,2,,)i i EX DX i n σ===,11100nin i i i EX n E X E X n n n ==⨯⎛⎫==== ⎪⎝⎭∑∑222111111()n nn i i i i i i DX DX D X D X DX n n n n n σ===⎛⎫=====⎪⎝⎭∑∑∑ (方差的性质:2()D cX c DX =,()D X Y DX DY +=+(,X Y 独立))()0,1,2,,.i i i EY E X X EX EX i n =-=-==(根据期望的性质:,()EcX cEX E X Y EX EY =+=+)y -(I)111()[(1)]ni i i j j j iDY D X X D X X n n =≠=-=--∑(由于i X X 与不独立,所以把X 中含有i X 的剔出来,则i X 与剩下的就相互独立)=22111(1)n i j j j iDX DX n n =≠-+∑=222222(1)1(1)n n n n n n σσσ--+⋅-= (方差的性质:2()D cX c DX =,()D X Y DX DY +=+(,X Y 独立))(II)由协方差的定义:)])([(),(111n n n EY Y EY Y E Y Y Cov --==1()n E YY (0i EY = ,1,2,,i n =)1[()()]n E X X X X =--=)(211X X X X X X X E n n +-- 211()()()n n E X X E X X E X X EX =--+又 11()000n n E X X EX EX ==⨯=(因1,n X X 独立)2222()0EX DX E X nnσσ=+=+=2211111112211111()[][]n n n j j j j j j E X X E X X E X X X EX EX EX n n n n n =====+=+∑∑∑2221111(())0(0)DX EX n n nσσ=++=+=同理 2()n E X X nσ=(因1j X X 与独立 2,j n =)所以 22222111(,)()()()0n n nC o vY Y E X X E X X E X X E X nnnnσσσσ=--+=--+=-。

2005年数一真题、标准答案及解析(超强版)

2005年数一真题、标准答案及解析(超强版)

2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](10)设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ](14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解..(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II )Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可. 【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ B ]【分析】 先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 (E) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(F) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (G) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(H)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xze y z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A EA A EB -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(B) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(B) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ]【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可. 【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SX n nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y xxy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdydr r d dr r d ⎰⎰⎰⎰+=202131320cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑, 122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)0,S S '== 所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线l=++⎰Cy x xydydx y 4222)(ϕ-++⎰+314222)(l l y x xydydx y ϕ022)(3242=++⎰+l l y x xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2. y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.③ ④【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

2005考研数一真题答案及详细解析

2005考研数一真题答案及详细解析

当F(x) 为偶函数时,有 F(— x)=F(x),
于是 F'(- X) • (—1) = F'(x),
即— f(— X) = j(x), 也即八— x) = — f(x),
可见 f(x) 为奇函数;
I: f +-c 勹 反过来,若 f(x) 为奇函数,则 f (t)dt 为偶函数,从而 F(x) = Ct)dt
1
x2
X
2 'xE(—1,1)'
I。厂 r 从而
(17)解
X2 f(x)=2S(x)+
l+x
=2xarctanx

lnCl
+x
2
x2 )+
1 +x
2
'
+x)广(x)dx=(x 2 +x)广(x) 3 - (2x+1)广(x)心
�-f'.<zx + 1)广!:)dx"
xE(-1,1).
『+ 。 = — (2x+1)f'(x)
g(�)=f(�)+� — 1=0,
c II)根据拉格朗日中值定理 , 存在r;E (0,�),1;E C�,1),使得
f'( 1/ )
= J(n
-f(O)

l—
=

e
'
�' J'烤)=
J(l) 1
— /CO -�
=1
-Cl -�) 1—�
= 1


从而
e f' J'(沪
1-� 烤)= �

� 1—

考研数学一真题含解析

考研数学一真题含解析

2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ρ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y, 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ] (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂.(C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (10)设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y). (B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z). [ ] (11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ] (12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(A) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B . (C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 a 1 b 已知随机事件}0{=X与}1{=+Y X 相互独立,则(A) a=, b= (B) a=, b=(C) a=, b= (D) a=, b= [ ](14)设)2(,,,21≥n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nSχ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D,]1[22y x ++表示不超过221y x ++の最大整数.计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Lyx xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cy x xydydx y ϕ;(II )求函数)(y ϕの表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2. (I ) 求a の值; (II ) 求正交变换Qy x=,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0の解. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解..(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z-=2の概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-=求:(I ) i Y の方差n i DY i ,,2,1,Λ=; (II )1Y 与n Y の协方差).,(1n Y Y Cov2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'の通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ρ,则)3,2,1(n u∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =nρ}の方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z+=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵の形式,再用方阵相乘の行列式性质进行计算即可. 【详解】 由题设,有=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有.221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y, 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验の各种两两互不相容の结果即为完备事件组或样本空间の划分.【详解】 }2{=YP =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)の表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ; 当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ]【分析】 本题可直接推证,但最简便の方法还是通过反例用排除法找到答案. 【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22y u∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222y u x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(E) 只能确定一个具有连续偏导数の隐函数z=z(x,y). (F) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (G) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(H) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z). [ D ] 【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应の隐函数.【详解】 令F(x,y,z)=1ln -+-xze y z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应の隐函数x=x(y,z)和y=y(x,z).故应选(D).(11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ] 【分析】 讨论一组抽象向量の线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关の充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(B) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B .(C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换の概念与初等矩阵の性质,只需利用初等变换与初等矩阵の关系以及伴随矩阵の性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵の第1行与第2行所得),使得B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 a 1 b 已知随机事件}0{=X与}1{=+Y X 相互独立,则(B) a=, b= (B) a=, b=(C) a=, b= (D) a=, b= [ B ]【分析】 首先所有概率求和为1,可得a+b=, 其次,利用事件の独立性又可得一等式,由此可确定a,b の取值.【详解】 由题设,知 a+b= 又事件}0{=X与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P ,即 a=))(4.0(b a a ++, 由此可解得 a=, b=, 故应选(B).(14)设)2(,,,21≥n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(B) )1,0(~N X n (B) ).(~22n nSχ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ]【分析】 利用正态总体抽样分布の性质和2χ分布、t 分布及F 分布の定义进行讨论即可. 【详解】 由正态总体抽样分布の性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D,]1[22y x ++表示不超过221y x ++の最大整数.计算二重积分⎰⎰++Ddxdy y xxy .]1[22【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy =.874381=+ (16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数の收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,由于 (0)0,(0)0,S S '== 所以 2001()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰又21221(1),(1,1),1n nn x xx x∞-=-=∈-+∑ 从而 22()2()1x f x S x x=++ (17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0の函数值与导数值,在x=3处の函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f由分部积分,知 =dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数の介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同の点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕの表达式.【分析】 证明(I )の关键是如何将封闭曲线C 与围绕原点の任意分段光滑简单闭曲线相联系,这可利用曲线积分の可加性将C 进行分解讨论;而(II )中求)(y ϕの表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线3l=++⎰Cyx xydydx y 4222)(ϕ-++⎰+314222)(l l yx xydydx y ϕ23242+⎰+l l yx (II ) 设2424()2,22y xyP Q x yx y ϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂.24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++g ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式の右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2. (I ) 求a の值; (II ) 求正交变换Qy x=,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0の解.【分析】 (I )根据二次型の秩为2,可知对应矩阵の行列式为0,从而可求a の值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步の结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型の秩为2,知02011011=-++-=a a a a A ,得a=0.(II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α③ ④由于21,αα已经正交,直接将21,αα,3α单位化,得: 令[]321ααα=Q ,即为所求の正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解.【分析】 AB=O, 相当于告之B の每一列均为Ax=0の解,关键问题是Ax=0の基础解系所含解向量の个数为多少,而这又转化为确定系数矩阵A の秩.【详解】 由AB=O 知,B の每一列均为Ax=0の解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0の基础解系所含解向量の个数为3-r(A)=2, 矩阵B の第一、第三列线性无关,可作为其基础解系,故Ax=0 の通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0の通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 の同解方程组为:0321=++cx bx ax ,不妨设0≠a,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ;(II )Y X Z-=2の概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数の概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应の概率密度.【详解】 (I ) 关于X の边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y の边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-==241z z -; 3) 当2≥z时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求の概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-=求:(I ) i Y の方差n i DY i ,,2,1,Λ=; (II )1Y 与n Y の协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立の随机变量求和,再用方差の性质进行计算即可;求1Y 与n Y の协方差),(1n Y Y Cov ,本质上还是数学期望の计算,同样应注意利用数学期望の运算性质.【详解】 由题设,知)2(,,,21>n X X X n Λ相互独立,且),,2,1(1,0n i DX EX i i Λ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

考研数一真题及解析

考研数一真题及解析

2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu ∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)至少有三个不可导点 (8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数 (C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222y u y x u ∂∂=∂∂∂(D)222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C)交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx y φ+=+⎰.(2)求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2. (1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y = 10 01,02x y x<<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q ey dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z+=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可. 【详解】 由题设,有=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有.221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ; 当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案. 【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22y u∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y). (B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ] 【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则 (A) )1,0(~N X n (B) ).(~22n nSχ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ]【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可. 【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy =.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n-∞=-=∈--∑, 则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,由于 (0),(0)S S '== 所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰又21221(1),(1,1),1n nn x xx x∞-=-=∈-+∑ 从而 22()2()1x f x S x x=++(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知 =dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线3l=++⎰Cy x x y d ydx y 4222)(ϕ-++⎰+314222)(l l y x x y d ydx y ϕ23242+⎰+l l y x (II ) 设2424()2,22y xyP Q x yx y ϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)③ ④已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2. (I ) 求a 的值; (II ) 求正交变换Qy x=,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知02011011=-++-=a a a a A ,得a=0.(II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得: 令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y +(III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z-=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-==241z z -; 3) 当2≥z时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

2005年考研数学一真题(含解析)

2005年考研数学一真题(含解析)

精品文档2005 年考研数学一真题一、填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)x 2( 1)曲线 yの斜渐近线方程为 _____________.2x1( 2)微分方程 xy 2 yx ln x 满足 y(1)1 の解为 . ____________.9( 3)设函数u(x, y, z)x 2y 2 z 2 ,单位向量 n1,则112 18 {1,1,1}63un=.________.(1,2 ,3)( 4)设是由锥面 zx 2 y 2 与半球面 zR 2 x 2y 2 围成の空间区域,是の整个边界の外侧,则xdydz ydzdxzdxdy____________.(5)设 1, 2,3 均为 3 维列向量,记矩阵A (1,2,3),B (123 ,122 43,1329 3),如果 A 1,那么 B..( 6)从数 1,2,3,4 中任取一个数,记为X, 再从 1,2, , X 中任取一个数,记为Y, 则P{ Y2} =____________.二、选择题 (本题共 8 小题,每小题 4 分,满分 32 分 . 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)( 7)设函数 f (x)lim n 1 x3 n,则 f(x) 在 (, ) 内n(A) 处处可导 .(B) 恰有一个不可导点 .(C) 恰有两个不可导点 .(D)至少有三个不可导点 .[]( 8)设 F(x)是连续函数 f(x) の一个原函数," MN" 表示“ M の充分必要条件是N ”,则必有(A) F(x) 是偶函数f(x) 是奇函数 . ( B ) F(x) 是奇函数f(x) 是偶函数 .(C) F(x) 是周期函数 f(x) 是周期函数 .(D)F(x) 是单调函数f(x) 是单调函数 .[]( 9)设函数 u(x, y)(x y) (xy) x y(t)dt , 其中函数 具有二阶导数,具有一阶导x y数,则必有(A)2u2u.( B )2u2ux 2y 2x 2y 2.2u 2u2 u2u..精品文档( 10)设有三元方程xy zln y e xz 1 ,根据隐函数存在定理,存在点(0,1,1) の一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数の隐函数z=z(x,y).(B)可确定两个具有连续偏导数の隐函数x=x(y,z) 和 z=z(x,y).(C)可确定两个具有连续偏导数の隐函数y=y(x,z) 和 z=z(x,y).(D)可确定两个具有连续偏导数の隐函数x=x(y,z) 和 y=y(x,z).[]( 11)设1,2是矩阵 A の两个不同の特征值,对应の特征向量分别为1, 2,则1,A( 12 ) 线性无关の充分必要条件是(A)10 .(B)20. (C)10 .(D)20 .[]( 12)设A为n(n2)阶可逆矩阵,交换 A の第 1 行与第 2 行得矩阵 B,A* , B*分别为A,Bの伴随矩阵,则(A)交换 A*の第1列与第2列得B*.(B) 交换A*の第 1行与第 2行得B*.(C)交换 A*の第 1 列与第 2 列得B*.(D)交换 A*の第 1 行与第 2 行得B*.[]( 13)设二维随机变量(X,Y)の概率分布为X Y0100.4a1b0.1已知随机事件 { X0} 与{ X Y1} 相互独立,则(A)a=0.2, b=0.3(B)a=0.4, b=0.1(C)a=0.3, b=0.2(D)a=0.1, b=0.4[](14)设X1, X2,, X n (n2) 为来自总体N(0,1) の简单随机样本,X为样本均值,S2为样本方差,则(A)nX ~ N (0,1)(B)nS2~2 ( n).(C)(n1) X~ t (n1)(D)(n n1)X12~ F (1, n1).[]S X i2i2三、解答题(本题共9 小题,满分 94分 .解答应写出文字说明、证明过程或演算步骤.)( 15)(本题满分11 分)设 D{( x, y) x2y 22, x0, y0} ,[1x 2y 2 ] 表示不超过 1x 2y 2の最大整数.计算二重积分xy[1 x2y 2 ]dxdy.D( 16)(本题满分12 分)精品文档求幂级数( 1)n 1(11 ) x 2nの收敛区间与和函数 f(x).n 1n(2n 1)( 17)(本题满分 11 分)如图,曲线C の方程为 y=f(x) ,点 (3,2)是它の一个拐点,直线l 1 与 l 2 分别是曲线 C 在点 (0,0)与 (3,2)处32x) f ( x) dx.の切线,其交点为 (2,4). 设函数 f(x) 具有三阶连续导数,计算定积分( x( 18)(本题满分 12 分)已知函数 f(x) 在 [0, 1]上连续,在 (0,1) 内可导,且 f(0)=0,f(1)=1. 证明:( I )存在(0,1), 使得 f () 1;( II )存在两个不同の点,(0,1) ,使得 f ( ) f ( ) 1.( 19)(本题满分 12 分)设函数( y) 具有连续导数, 在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分( y)dx 2xydyL2x 2y 4の值恒为同一常数 .( I )证明:对右半平面 x>0 内の任意分段光滑简单闭曲线C ,有( y)dx 2xydy 0 ;C2x 2y 4( II )求函数 ( y) の表达式 . ( 20)(本题满分 9 分)已知二次型 f ( x 1 , x 2 , x 3 ) (1 a) x 12 (1 a) x 222x 32 2(1 a)x 1 x 2 の秩为 2.( I ) 求 a の值;( II ) 求正交变换 x Qy ,把 f ( x 1 , x 2 , x 3 ) 化成标准形; ( III ) 求方程 f ( x 1 , x 2 , x 3 ) =0 の解 . ( 21)(本题满分 9 分)12 3已知 3 阶矩阵 A の第一行是 (a,b, c), a,b, c 不全为零, 矩阵 B24 6 ( k 为常数),且 AB=O, 求36 k线性方程组 Ax=0 の通解 ..( 22)(本题满分 9 分)设二维随机变量 (X,Y) の概率密度为1, 0 x 1,0 y 2x,f ( x, y)0,其他 .求:( I ) (X,Y) の边缘概率密度 f ( x), f ( y) ;精品文档( II )Z 2 X Y の概率密度 f Z ( z).( 23)(本题满分9 分)设X1,X 2,, Xn(n2)为来自总体N(0,1)の简单随机样本,X为样本均值,记Y i X i X ,i 1,2,, n.求:( I)Y iの方差 DY i ,i 1,2, , n;( II )Y1与Y nの协方差Cov (Y1,Y n).精品文档2005 年考研数学一真题解析一、填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)( 1)曲线 yx 2 の斜渐近线方程为 y 1 x1 .2x 124【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】f ( x)limx 21,因为 a= lim x 2x 2 x 2xxblim f ( x) axlimx1 ,xx2( 2x 1)4于是所求斜渐近线方程为y1 x 1 .24( 2)微分方程 xy2 y x ln x 满足 y(1) 1 1 19の解为 yxln xx. .39【分析 】直接套用一阶线性微分方程yP( x) yQ( x) の通解公式:y e P ( x)dxP( x) dx[ Q(x)edx C ] ,再由初始条件确定任意常数即可.【详解 】 原方程等价为y2y ln x , x2 2 dx1dxx 2于是通解为xy e[ ln x e dx C ]x 2 [x ln xdx C]= 1x ln x1 xC1,13 9x 21x ln x1x.由 y(1)得 C=0 ,故所求解为 y 939( 3)设函数 u(x, y, z)1 x 2y 2 z 2,单位向量 n 1{1,1,1} ,则 u612 183 n【分析 】 函数 u(x,y,z)沿单位向量 n {cos , cos , cos } の方向导数为:uucos ucosucosnxyz因此,本题直接用上述公式即可 .【详解】 因为u x , u y , uz,于是所求方向导数为=3.(1,2 ,3)3u = 11 1 1 1 1 3 . n(1,2 ,3)33 33 3 33( 4)设是由锥面 zx 2 y 2 与半球面 zR 2x 2y 2 围成の空间区域,是 の整个边界の外侧,则xdydzydzdx zdxdy2 (12)R 3.2【分析 】本题是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可 .【详解】xdydz ydzdx zdxdy3dxdydzR 2d 4sin d2 2 (12)R 3.= 3d2(5)设1, 2 , 3 均为 3 维列向量,记矩阵A ( 1, 2, 3),B ( 123,1224 3 ,13 29 3),如果 A 1,那么 B2 .【分析 】 将 B 写成用 A 右乘另一矩阵の形式,再用方阵相乘の行列式性质进行计算即可 .【详解】由题设,有B( 123 ,12 24 3 ,132 93)1 1 1 =(1,2,3)123 ,14 91 1 1于是有BA1 2 3 1 2 2.1 4 9( )从数 1,2,3,4 中任取一个数,记为X, 再从 1,2, , X 中任取一个数,记为Y,则6P{Y2} =13 .48【分析 】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验の各种两两互不相容の结果即为完备事件组或样本空间の划分 .【详解】P{ Y2}=P{X1}P{Y 2 X 1}+P{X 2}P{Y 2 X2}+ P{X3} P{Y 2 X3}+ P{X4} P{Y2 X4}11 1 1 13=(0).42 3 448二、选择题 (本题共 8 小题,每小题 4 分,满分 32 分 . 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)( 7)设函数 f (x)lim n1 x 3 n ,则 f(x) 在 (,) 内n(A) 处处可导 .(B) 恰有一个不可导点 .(C)恰有两个不可导点 .(D) 至少有三个不可导点.[C]【分析 】 先求出 f(x) の表达式,再讨论其可导情形 .【详解】当x 1 时,( )lim n 13n1 ;f xnx当 x1 时, f ( x)lim n 1 1 1 ;n31 13当 x1 时, f ( x)lim x1)n.(3nxnxx 3 , x 1,即 f ( x)1, 1 x1, 可见 f(x) 仅在 x=1 时不可导,故应选 (C).x 3 ,x 1.( 8)设 F(x)是连续函数 f(x) の一个原函数, " MN" 表示“ M の充分必要条件是N ”,则必有(B) F(x) 是偶函数f(x) 是奇函数 . ( B ) F(x) 是奇函数f(x) 是偶函数 .(C) F(x) 是周期函数 f(x) 是周期函数 .(D)F(x) 是单调函数f(x) 是单调函数 .[ A]【分析 】 本题可直接推证,但最简便の方法还是通过反例用排除法找到答案.【详解】方法一:任一原函数可表示为F ( x)x f (t) dt C ,且 F ( x)f ( x).当 F(x) 为 偶 函 数 时 , 有 F ( x) F ( x) , 于 是 F ( x) ( 1) F ( x) , 即f (x) f ( x) , 也 即f ( x)f (x) , 可 见 f(x) 为 奇 函 数 ; 反 过 来 , 若 f(x) 为 奇 函 数 , 则xf (t )dt为偶函数,从而x f (t )dt C 为偶函数,可见 (A) 为正确选项 .F (x)方法二:令 f(x)=1,则取 F(x)=x+1,排除 (B)、 (C); 令 f(x)=x, 则取 F(x)=1x 2 , 排除 (D); 故应选 (A).2( 9)设函数 u(x, y)(xy)(xy)x y (t)dt ,x y其中函数具有二阶导数,具有一阶导数,则必有(A)2u2u(B )2u2ux2y2 .x 2y 2.2u2u2u2 u.【分析】先分别求出2 u、2u2u,再比较答案即可 .x 2 、x yy 2【详解】因为u (x y)(xy)( xy)(x y) ,xu (xy)(x y)(xy)(x y) ,y于是2u( x y)(x y)( x y)( x y) ,x22u( x y) ( x y)( x y)( x y) ,x y2u( x y)( xy)(xy)(x y) ,y22u2u,应选 (B).可见有y 2x 2( 10)设有三元方程 xyzln ye xz1,根据隐函数存在定理,存在点内该方程精品文档(0,1,1) の一个邻域,在此邻域(E) 只能确定一个具有连续偏导数の隐函数 z=z(x,y).(F) 可确定两个具有连续偏导数の隐函数 x=x(y,z) 和 z=z(x,y). (G)可确定两个具有连续偏导数の隐函数 y=y(x,z) 和 z=z(x,y).(H) 可确定两个具有连续偏导数の隐函数x=x(y,z) 和 y=y(x,z).[ D ]【分析 】 本题考查隐函数存在定理,只需令F(x,y,z)= xy z ln ye xz1 , 分别求出三个偏导数F z , F x , F y ,再考虑在点 (0,1,1) 处哪个偏导数不为0,则可确定相应の隐函数 .【详解 】 令 F(x,y,z)= xyzln ye xz1 , 则F xy e xzz , F yxz, F zln y e xz x ,y且 F x (0,1,1) 2 , F y (0,1,1) 1, F z (0,1,1)0 . 由此可确定相应の隐函数x=x(y,z) 和 y=y(x,z). 故应选(D).( 11)设 1, 2 是矩阵 A の两个不同の特征值, 对应の特征向量分别为1,2,则 1,A( 1 2 ) 线性无关の充分必要条件是(A) 0.(B)0.(C)0.(D)0.[ B ]【分析】讨论一组抽象向量の线性无关性,可用定义或转化为求其秩即可.【详解】方法一:令k1 1k2 A(1 2)0 ,则k1 1k2 1 1k2 2 20 ,( k1k2 1)1k2 2 20 .由于1, 2线性无关,于是有k1k2 10, k220.当20时,显然有 k10, k20 ,此时1,A(12 )线性无关;反过来,若1,A( 12)线性无关,则必然有20(,否则, 1 与A(12)= 11线性相关 ),故应选 (B).方法二:由于[ 1,A(12)] [1,1122][1,2]11,21可见1,A( 12 ) 线性无关の充要条件是010.故应选(B).22( 12)设A为n(n 2 )阶可逆矩阵,交换 A の第 1 行与第 2 行得矩阵B,A* , B*分别为A,Bの伴随矩阵,则(B)交换 A*の第1列与第2列得 B*.(B) 交换A*の第 1行与第 2行得B*.(C)交换 A*の第1列与第2列得B*.(D) 交换A*の第 1行与第 2行得B*.[C]【分析】本题考查初等变换の概念与初等矩阵の性质,只需利用初等变换与初等矩阵の关系以及伴随矩阵の性质进行分析即可 .【详解】由题设,存在初等矩阵E12(交换n阶单位矩阵の第 1 行与第 2 行所得),使得E12A B,于是B*(E12 A)*A* E*A*1A*E12,即12E12E12A* E12B*,可见应选 (C).( 13)设二维随机变量(X,Y)の概率分布为X Y0100.4a1b0.1已知随机事件 { X0} 与{X Y1} 相互独立,则(B)a=0.2, b=0.3(B)a=0.4, b=0.1(C)a=0.3, b=0.2(D)a=0.1, b=0.4[B]【分析】首先所有概率求和为1,可得 a+b=0.5, 其次,利用事件の独立性又可得一等式,由此可确定a,b の取值 .【详解】由题设,知a+b=0.5又事件 {X0}与{X Y1} 相互独立,于是有P{X 0,X Y1} P{X0}P{X Y1} ,即a= (0.4a)(a b) ,由此可解得a=0.4, b=0.1,故应选 (B).(14)设X1, X2,, X n (n2) 为来自总体N(0,1) の简单随机样本,X 为样本均值,S2为样本方差,则(B)nX ~ N (0,1)(B)nS2 ~2 ( n).(C)(n1) X~ t (n 1)(D)(n n1)X12~ F (1, n 1).[D]S X i2i2【分析】利用正态总体抽样分布の性质和2分布、 t 分布及 F 分布の定义进行讨论即可 .【详解】由正态总体抽样分布の性质知,X0nX ~ N (0,1),可排除 (A); 1n又选项 .X 0nX~ t(n1) ,可排除(C);而(n 1) S2(n 1) S2 ~2 (n 1) ,不能断定(B)是正确S S12nn n因为X12 ~2 (1),X i2 ~2 (n1),且X12~2 (1)与 X i2 ~2 (n1)相互独立,于是i2i 2X121( n1)X 121).故应选 (D).n n~ F (1, nX i2X i2i 2ni2 1三、解答题(本题共9 小题,满分94 分 .解答应写出文字说明、证明过程或演算步骤.)( 15)(本题满分11 分)设 D{( x, y) x2y 22, x0, y 0} ,[1 x 2y 2 ] 表示不超过 1x 2y 2の最大整数.计算二重积分 xy[1x2y 2 ]dxdy.D【分析】首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】令{(, )0221,0,0},D1x y x yx y精品文档D 2{( x, y) 1 x 2 y 22 , x 0, y 0} . 则xy[1 x 2y 2 ]dxdy =xydxdy 2xydxdyDD 1D 22sin cos d 1 3 dr 2 2sin cos d2 3drr r 01= 13 7 .84 8( 16)(本题满分 12 分)求幂级数( 1)n 1 (11 ) x 2n の收敛区间与和函数 f(x).n 1n(2n 1)【分析 】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到 .【详解】 因为 lim( n1)(2n 1) 1n(2n 1) 1 ,所以当 x 2 1时,原级数绝对收敛, 当 x 2 1n(n 1)(2n 1)n(2n 1) 1时,原级数发散,因此原级数の收敛半径为1,收敛区间为(- 1,1)记S( x)( 1n )1 2n ,1 2n ( n2 x , x ( 1 , 1 )n1 )则S ( x)( 1)n 1 x 2 n 1, x ( 1,1),n 1 2n 1S ( x)(1)n 1 x 2 n 21 12 , x (1,1).n 1x由于 S( 0 )S0 ,( 0 )所以xx 1S (x) 0 S (t )dt1t 2 dtarctanx,1ln(1S( x)xS (t) dtxx arctanxx 2 ).arctantdt2又( 1)n 1 x 2 n1 x2 2 , x ( 1,1),n 1x从而f ( x)2S (x )x 21 x 22x arctan xln(12x 22 , x ( 1,1).x ) 1 x( 17)(本题满分 11 分)如图,曲线 C の方程为 y=f(x) ,点 (3,2)是它の一个拐点,直线 l 1 与 l 2 分别是曲线 C 在点 (0,0)与 (3,2)处精品文档(2,4). 设函数 f(x) 具有三阶连续导数,计算定积分3x) f( x) dx.の切线,其交点为( x 2【分析】题设图形相当于已知f(x) 在 x=0 の函数值与导数值,在 x=3 处の函数值及一阶、二阶导数值 .【详解】由题设图形知, f(0)=0,f( 0) 2 ; f(3)=2, f (3)2, f(3)0.由分部积分,知3x) f(x)dx3x)df( x)( x2x) f33(x)(2x1)dx(x 2( x2( x)f000031)df( x)(2x1) f33 f ( x)dx=( 2x(x)2000= 162[ f (3) f (0)]20.( 18)(本题满分 12 分)已知函数 f(x) 在 [0, 1]上连续,在 (0,1) 内可导,且 f(0)=0,f(1)=1.证明:( I)存在(0,1), 使得 f ()1;( II )存在两个不同の点,(0,1),使得 f () f () 1.【分析】第一部分显然用闭区间上连续函数の介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】( I)令F (x) f ( x) 1 x ,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0, 于是由介值定理知,存在(0,1),使得 F()0,即 f ( )1.(II)在[0,] 和 [,1] 上对f(x)分别应用拉格朗日中值定理,知存在两个不同の点(0, ),( ,1),使得 f (f () f (0)()f (1) f ())0,f1于是 f ( ) f( )f ( ) 1 f ()11.11( 19)(本题满分12 分)设函数 ( y) 具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分( y)dx 2xydy2x2y4Lの值恒为同一常数 .( I)证明:对右半平面 x>0 内の任意分段光滑简单闭曲线C,有( y)dx 2xydy0 ;C2x2y4(II )求函数( y)の表达式 .【分析】证明( I )の关键是如何将封闭曲线C 与围绕原点の任意分段光滑简单闭曲线相联系,这可利用曲线积分の可加性将C 进行分解讨论;而( II )中求( y) の表达式,显然应用积分与路径无关即可.Y【详解】 (I )l 1l 2Co Xl 3如图,将 C 分解为: Cl 1 l 2 ,另作一条曲线 l 3 围绕原点且与 C 相接,则( y)dx 2x y d yl 1 l 3 ( y)dx 2x y d yl 2 l( y)dx 2x y d y0 .C2x 2y 42x 2 y 432x 2 y 4(II ) 设 P( y), Q2xy, P, Q 在单连通区域x 0 内具有一阶连续偏导数,由(Ⅰ)知,2x 2 y 42y 42x曲线积分( y) dx2xydy在该区域内与路径无关,故当x 0 时,总有Q P .L2x 2y 4xyQ 2 y(2 x 2y 4 ) 4x 2xy4x 2 y 2 y 5x(2 x2y 4 )2(2 x2y 4 ) 2 ,①P ( y)(2 x 2y 4 ) 4 ( y) y 32x 2 ( y)( y) y 44 ( y) y 3y(2 x 2 y 4 )2(2 x 2 y 4 ) 2. ②比较①、②两式の右端,得( y) 2 y,③( y) y 44 ( y) y 3 2y5 . ④由③得 ( y)y 2 c ,将 ( y) 代入④得2 y 5 4cy3 2 y 5 ,所以 c0 ,从而( y)y 2 .( 20)(本题满分 9 分)已知二次型 f ( x 1 , x 2 , x 3 )(1 a) x 12 (1 a) x 22 2x 32 2(1 a)x 1 x 2 の秩为 2.( I ) 求 a の值;( II ) 求正交变换 x Qy ,把 f ( x 1 , x 2 , x 3 ) 化成标准形;( III ) 求方程 f ( x 1 , x 2 , x 3 ) =0 の解 .【分析】 ( I )根据二次型の秩为2,可知对应矩阵の行列式为0,从而可求 a の值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换;( III )利用第二步の结果,通过标准形求解即可 .【详解 】 ( I ) 二次型对应矩阵为1 a 1 a 0 A 1 a1 a0 ,0 21 a1 a 0 由二次型の秩为2,知A1 a1 a0 0,得 a=0.21 1 0(II )这里A 11 0 , 可求出其特征值为 122, 3 0 .0 0 2解 ( 2E A) x 0 ,得特征向量为:解 (0E A) x 0 ,得特征向量为:111, 20 , 0113 1 .由于1, 2 已经正交,直接将1 ,2,3 单位化,得:110 111 1 ,20 , 3 12 21令 Q123,即为所求の正交变换矩阵,由 x=Qy ,可化原二次型为标准形:f ( x 1 , x 2 , x 3 ) = 2 y 12 2 y 22 .( III ) 由 f ( x 1 , x 2 , x 3 ) = 2 y 122 y 220,得 y 1 0, y 2 0, y 3k ( k 为任意常数) .c从而所求解为: x=Qy=1230 k 3c ,其中 c 为任意常数 .k( 21)(本题满分 9 分)1 2 3已知 3 阶矩阵 A の第一行是 (a,b, c), a,b, c 不全为零, 矩阵 B2 4 6 ( k 为常数),且 AB=O, 求36 k线性方程组 Ax=0の通解 .【分析 】 AB=O, 相当于告之 B の每一列均为 Ax=0 の解,关键问题是 Ax=0 の基础解系所含解向量の个数为多少,而这又转化为确定系数矩阵A の秩.【详解 】 由 AB=O 知, B の每一列均为 Ax=0 の解,且 r ( A) r ( B) 3.( 1)若 k9 , 则 r(B)=2, 于是 r(A)1, 显然 r(A) 1, 故 r(A)=1.可见此时 Ax=0 の基础解系所含解向量の个数为3-r(A)=2, 矩阵 B の第一、第三列线性无关,可作为其基础解系,故Ax=0 の通解为:13x k 1 2k 2 6 , k 1 , k 2 为任意常数 .3k(2) 若 k=9 ,则 r(B)=1, 从而 1 r ( A) 2.11) 若 r(A)=2, 则 Ax=0 の通解为: xk 1 2 , k 1 为任意常数 .32) 若 r(A)=1, 则 Ax=0の 同 解 方 程 组 为 : ax 1 bx 2 cx 30 , 不 妨 设 a 0 , 则 其 通 解 为b caax k 1 1k 2 0 , k 1 , k 2 为任意常数 .0 1( 22)(本题满分 9 分)设二维随机变量 (X,Y) の概率密度为1, 0 x 1,0 y 2x, f ( x, y)其他 .0,求:( I ) (X,Y) の边缘概率密度 f X ( x), f Y ( y) ;(II ) Z2 X Y の概率密度 f Z ( z).【分析 】 求边缘概率密度直接用公式即可;而求二维随机变量函数の概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应の概率密度.【详解 】 ( I ) 关于 X の边缘概率密度2xx1,f X (x) =f ( x, y)dy =dy,0其他 .0,2x, 0 x 1, =其他 .0,关于 Y の边缘概率密度1f Y ( y) =ydx, 0y 2, f ( x, y) dx = 20,其他 .精品文档1y,0y2,=2其他 .0,( II )令F Z( z)P{ Z z}P{ 2X Y z} ,1)当z0 时,F Z( z)P{ 2X Y z} 0 ;2)当0z 2 时,F Z( z) P{ 2 X Y z}= z 1 z2;43)当 z 2 时,F Z(z)P{ 2X Y z} 1.0,z0,即分布函数为:F Z ( z)z1z2 , 0 z2,4z 2.1,故所求の概率密度为: f Z (z)11z, 0z2,2其他.0,( 23)(本题满分9 分)设 X1, X2,, X n (n2)为来自总体N(0,1)の简单随机样本,X为样本均值,记Y i X i X ,i1,2,, n.求:( I)Y iの方差DY i,i1,2,, n;(II )Y1与Y nの协方差Cov (Y1,Y n).【分析】先将 Y i表示为相互独立の随机变量求和,再用方差の性质进行计算即可;求Y1与 Y nの协方差 Cov(Y1 ,Y n ) ,本质上还是数学期望の计算,同样应注意利用数学期望の运算性质.【详解】由题设,知 X1, X2,, X n (n 2)相互独立,且EX i 0, DX i1(i1,2,, n) , EX 0.( I)DY i D ( X i X )1) X i1nD[(1X j ]n n j i= (11) 2 DX i 1 n DX j n n2j i精品文档(n 1) 21(n n1=n 2n21).n( II )Cov(Y1,Y n)E[( Y1EY1 )(Y n EY n )]= E(Y1Y n)E[( X1X )( X n X )]= E( X1X n X 1 X X n X X 2 )= E( X1X n) 2E( X1X ) EX22E[ X12n= 0X 1 X j ] D X ( EX ) 2 n j 2=211.n n n。

2005考研数学一真题及答案解析

2005考研数学一真题及答案解析

2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数(C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C)交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =1001,02x y x <<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln ,且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ] 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可.【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy dr r d dr r d ⎰⎰⎰⎰+=20213132cos sin 2cos sin ππθθθθθθ=.834381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)0,S S '==所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,应用零点定理,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线3l=++⎰Cy x xydydx y 4222)(ϕ-++⎰+314222)(l l y x xydydx y ϕ022)(3242=++⎰+l l y x xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ①243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:③ ④⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

2005年考研数学试题答案与解析(数学一)

2005年考研数学试题答案与解析(数学一)

(C)可确定两个具有连续偏导数的隐函数 y = y(x, z) 和 z = z(x, y)
(D)可确定两个具有连续偏导数的隐函数 x = x(y, z) 和 y = y(x, z)
(11)设 1,2 是矩阵 A 的两个不同的特征值,对应的特征向量分别
为 α1,α2 ,则 α1 , A(α1 + α2) 线性无关的充分必要条件是
xy y 2
(D)
2u xy
=
2u x 2
(10)设有三元方程 xy − z ln y + exz =1 ,根据隐函数存在定理,存在点
(0,1,1) 的一个邻域,在此邻域内该方程
(A)只能确定一个具有连续偏导数的隐函数 z = z(x, y)
(B)可确定两个具有连续偏导数的隐函数 x = x(y, z) 和 z = z(x, y)
A = (1, 2 , 3 ) ,B = ( 1 + 2 + 3 , 1 + 2 2 + 4 3 , 1 + 3 2 + 9 3 ) ,
如果 A = 1 ,那么 B = 2 .
【分析】 将 B 写成用 A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即 可.
【详解】 由题设,有
B = ( 1 + 2 + 3 , 1 + 2 2 + 4 3 , 1 + 3 2 + 9 3 )
证明: (1)存在 (0,1), 使得 f () = 1− .
(2)存在两个不同的点, (0,1) ,使得 f () f ( ) = 1.
(19)(本题满分 12 分)
设函数(y) 具有连续导数,在围绕原点的任意分段光滑简单闭曲
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ρ,则)3,2,1(n u∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](10)设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y).(B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(D)可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(A) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B . (C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ](14)设)2(,,,21≥n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕの表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2.(I ) 求a の值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0の解. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解..(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ;(II )Y X Z -=2の概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-=求:(I ) i Y の方差n i DY i ,,2,1,Λ=; (II )1Y 与n Y の协方差).,(1n Y Y Cov2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'の通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ρ,则)3,2,1(n u∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n ρ}の方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵の形式,再用方阵相乘の行列式性质进行计算即可. 【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y , 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验の各种两两互不相容の结果即为完备事件组或样本空间の划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)の表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便の方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ B ]【分析】 先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程 (E) 只能确定一个具有连续偏导数の隐函数z=z(x,y).(F) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (G) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(H)可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xze y z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应の隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应の隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量の线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关の充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(B) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B .(C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -. [C ]【分析】 本题考查初等变换の概念与初等矩阵の性质,只需利用初等变换与初等矩阵の关系以及伴随矩阵の性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵の第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A EA A EB -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(B) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件の独立性又可得一等式,由此可确定a,b の取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(B) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布の性质和2χ分布、t 分布及F 分布の定义进行讨论即可. 【详解】 由正态总体抽样分布の性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SX n nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y xxy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdydr r d dr r d ⎰⎰⎰⎰+=202131320cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数の收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑, 122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)0,S S '== 所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0の函数值与导数值,在x=3处の函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数の介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同の点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕの表达式.【分析】 证明(I )の关键是如何将封闭曲线C 与围绕原点の任意分段光滑简单闭曲线相联系,这可利用曲线积分の可加性将C 进行分解讨论;而(II )中求)(y ϕの表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线l=++⎰Cy x xydydx y 4222)(ϕ-++⎰+314222)(l l y x xydydx y ϕ022)(3242=++⎰+l l y x xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++g ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式の右端,得435()2,()4()2. y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2.(I ) 求a の值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0の解.【分析】 (I )根据二次型の秩为2,可知对应矩阵の行列式为0,从而可求a の值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步の结果,通过标准形求解即可.③ ④【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型の秩为2,知 020011011=-++-=aa a a A ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求の正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解.【分析】 AB=O, 相当于告之B の每一列均为Ax=0の解,关键问题是Ax=0の基础解系所含解向量の个数为多少,而这又转化为确定系数矩阵A の秩.【详解】 由AB=O 知,B の每一列均为Ax=0の解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0の基础解系所含解向量の个数为3-r(A)=2, 矩阵B の第一、第三列线性无关,可作为其基础解系,故Ax=0 の通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0の通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 の同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2の概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数の概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应の概率密度.【详解】 (I ) 关于X の边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y の边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求の概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-=求:(I ) i Y の方差n i DY i ,,2,1,Λ=; (II )1Y 与n Y の协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立の随机变量求和,再用方差の性质进行计算即可;求1Y 与n Y の协方差),(1n Y Y Cov ,本质上还是数学期望の计算,同样应注意利用数学期望の运算性质.【详解】 由题设,知)2(,,,21>n X X X n Λ相互独立,且),,2,1(1,0n i DX EX i i Λ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

相关文档
最新文档