避雷器的选择方法 、 民熔
避雷器如何正确选择适合的避雷器

避雷器如何正确选择适合的避雷器避雷器是一种非常重要的电力设备,它可用于保护各种电气设备和电力系统中的电路。
在选择适合的避雷器时,需要考虑许多因素,包括电气参数、应用需求和环境条件等。
下面将详细介绍如何正确选择适合的避雷器。
一、避雷器的分类按照使用场合的不同,避雷器可以分为低压避雷器、中压避雷器和高压避雷器,其中低压避雷器用于家庭电路和小型工商业用电,中压避雷器用于中压电力线路,而高压避雷器则用于高压输电线路的保护。
按照动作原理的不同,避雷器可以分为气体放电避雷器和压敏电阻避雷器两种类型。
气体放电避雷器是应用气体放电原理制作而成,内部充填着惰性气体。
当系统电压升高到一定程度时,避雷器内的气氛会被激发成等离子体,以达到放电保护的作用。
压敏电阻避雷器是应用陶瓷材料的电学特性制作而成,当系统电压上升到一定值时,避雷器内的压敏电阻将发生负阻特性,起到消耗过电压的能量的作用。
二、避雷器的参数选择适合的避雷器,需要考虑以下参数:1.额定电压:额定电压是避雷器能够承受的最高电压值,必须与电力系统中的额定电压匹配。
2.击穿电压:击穿电压是避雷器放电的电压值,也就是保护作用启动的电压值。
3.额定放电电流:额定放电电流是避雷器在击穿电压作用下的放电电流值。
4.容量:容量是避雷器所能承受的过电压的能量大小,必须与所保护的设备或电路的容量匹配。
三、选择适合的避雷器选择适合的避雷器需要考虑以下因素:1.电气参数的匹配:必须满足避雷器的电气参数与实际使用环境的需求相匹配。
2.环境条件的考虑:根据实际环境条件选择合适的避雷器,如避雷器应采用防水、防尘等防护措施,以便确保设备的正常运转。
3.使用寿命的要求:不同种类的避雷器有不同的使用寿命,应根据实际使用寿命的需求选择合适的避雷器。
4.价格和性价比:在满足性能的前提下,应根据自身需求和实际预算选择性价比较高的避雷器产品。
四、安装和使用正确的安装和使用是保证避雷器正常工作的关键。
在安装时,必须遵循厂家的安装说明书并严格按照图纸要求接线。
如何正确选用防雷器

如何正确选用防雷器在选择防雷器时,我们需要考虑多种因素,包括雷电环境、保护对象、系统结构、安装方式等。
以下是正确选用防雷器的一些建议:2.确定保护对象:根据需要保护的对象,如建筑物、电气设备等,选择相应的防雷器。
常见的防雷器有避雷针、避雷带、继电保护器等。
对于不同类型的保护对象,需考虑其特性和需求,选择相应的防雷器。
3.考虑系统结构:在选择防雷器时,还需要考虑系统的结构和接地系统。
不同的系统结构需要选择适配的防雷器。
例如,在直接接触地杆接地的系统中,可选择气体放电管防雷器;而在间接接地的系统中,可选择避雷带或继电保护器等。
4.考虑安装方式:不同的防雷器有不同的安装方式。
在选择时,需要考虑其安装的便利性、适用性和维护成本。
一般来说,应选择易于安装和维护的防雷器,并确保其能够有效地接地。
5.特殊情况下的选择:在一些特殊情况下,如高海拔地区、容易产生静电的环境等,需要选择具有特殊功能的防雷器。
例如,在静电环境中需要选择具有防静电功能的继电保护器,以避免静电放电导致的雷击。
选用防雷器时还需要考虑以下几个方面:1.防雷器的品质:选择具有良好品质和可靠性的防雷器,以确保其有效地工作并延长使用寿命。
可以通过选择知名品牌或参考专业机构的推荐来确保防雷器的品质。
3.定期检测和维护:已安装的防雷器需要定期进行检测和维护,以确保其正常工作。
可以委托专业机构进行定期检测和维护,或参考相关标准和指南进行操作。
4.实际经验和专业建议:在选用防雷器时,可以参考其他实际应用案例和专业人士的建议。
他们的经验和建议可以帮助我们了解不同类型的防雷器的优缺点,并选择最适合的防雷器。
总之,选择合适的防雷器需要综合考虑多种因素,包括雷电环境、保护对象、系统结构、安装方式等。
以上建议可以帮助我们在选择防雷器时更准确、更科学的进行决策。
避雷器型号及参数 、民熔

避雷器型号及参数
Y10W2-200/520Y:表示氧化锌避雷器
10:标称放电电流
W:表示无间隙
2:表示设计序号
200:避雷器的额定电压
520:在标称放电电流下的最大残压
氧化锌避雷器主要用于电力系统保护电气设备免受雷电过电压和操作过电压的危害,具有反应灵敏,伏安特性平坦、残压低、运行可靠等优点。
产品各项技术能符合国标GB1103-2000《交流无间隙金属氧化物避雷器》的有关规定。
二、产品结构避雷器由主体元件,绝缘底座和接线板等组成,产品内部采用氧化锌非线性电阻片为主要元件。
避雷器的主体元件是密封的,出厂时
用氢质谱检漏仪逐个进行密封检查,避雷器带有压力释放装置,当产品在异常情况下而使内部压力升高时,能及时释放内部压力,避免瓷套爆炸。
无放电间隙,消除了放电时延,提高了保护性能,有防爆炸保护装置,密封结构合理,保证密封可靠。
产品标准:
GB11032- -2000《交流无间隙金属氧化物避雷器》正常使用条件:适用于户内外,环境温度不高于+40C,不低于-40°C;海拔高度不超过1000m;系统的额定频率48-62Hz;长期施加在避雷器两端间的工频电压,不得超过避雷器的持续运行电压。
线路避雷器的选择与安装 图文 民熔

线路避雷器的选择与安装目前.国外已广泛使用线路型合成绝缘氧化锌避雷器用于输电线路的防雷,取得了很好的效果。
随着我们国家科技的不断发展和进步,我国也对线路避雷器开始了研制和开发,目前线路避雷器已经广泛地应用于电力部门。
在电力配电线路中,常用的避雷器有:阀型避雷器、管型避雷器、氧化锌避雷器等,低压配电系统提倡选用低压氧化锌避雷器。
氧化锌阀片在正常运行电压下,阀片的电阻很高。
仅可通过微安级的泄漏电流。
氧化锌避雷器具有优异的非线性伏安特性。
残压随冲击电流波头时间的变化特性平稳,陡波响应特性好,没有间隙击穿特性和灭弧问题。
其电阻片单位体积吸收能量大,还可以并联使用,所以在保护超高压长距离输电系统和大容量电容器组特别有利。
对于低压配电网的保护也很适合,是低压配电网的主要保护措施。
氧化锌避雷器介绍:民熔 HY5WS-17/50氧化锌避雷器10KV高压配电型A级复合避雷器产品型号: HY5WS- 17/50额定电压: 17KV产品名称:氧化锌避雷器直流参考电压: 25KV持续运行电压: 13.6KV方波通流容量: 100A防波冲击电流: 57.5KV(下残压)大电流冲击耐受: 65KA操作冲击电流: 38.5KV(下残压)注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。
使用环境:a.海拔高度不超过2000米;b.环境温度:最高不高于+40C- -40C;C.周围环境相对湿度:平均值不大于85%;d.地震强度不超过8级;e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。
体积小、重量轻,耐碰撞运输无碰损失,安装灵活特别适合在开关柜内使用民熔 HY5WZ-17/45高压氧化锌避雷器10KV电站型金属氧化锌避雷器线路避雷器防雷的基本原理雷击杆塔时,—部分雷电流通过避雷线流到相邻杆塔,另一部分雷电流经杆塔流入大地,杆塔接地电阻呈暂态电阻特性,—般用冲击接地电阻来表征。
金属氧化物避雷器的选择 图文 民熔

避雷器避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。
避雷器牌子选择个人推荐;民熔电气1、无间隙金属氧化物避雷器的选择选择的一般要求如下:(1)、应按照使用地区的气温、海拔、风速、污染以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。
(2)、按照被保护的对象确定避雷器的类型。
(3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。
(4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。
(5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。
(6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。
(7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级及能量吸收能力。
(8)、按避雷器安装出最大故障电流,选择避雷器的压力释放等级。
(9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。
(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。
(11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。
2、主要特性参数选择(1)、持续运行电压Uc .中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。
在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc仍可按不低于选取,但由于我国大部分中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障U。
2U1后2h及以上切除故障3~10kV 1.0~1. 1U,35~66kV Uc≥UL至于10s~2h之间,可按2h以上选取,也可参照避雷器的工频电压耐受特性曲线选取。
氧化锌避雷器重要参数选择 民熔

氧化锌避雷器重要参数选择MOA有三个最重要的参数。
一个是氧化锌避雷器的额定电压,一个是氧化锌避雷器的标称残余电压,另一个是氧化锌避雷器的能量吸收能力。
MOA最重要的参数有三个。
一个是氧化锌避雷器的额定电压,一个是氧化锌避雷器的标称残余电压,另一个是氧化锌避雷器的能量吸收能力。
以hy5ws-17/50为例。
1氧化锌避雷器的额定电压,以上17种型号为额定电压。
额定电压的定义很复杂。
作为非专业厂家,可以简单理解为当过电压有效值达到17kv左右时,MOA就开始工作。
此参数不宜过低,否则容易导致氧化锌避雷器过载烧毁。
虽然旧国标将额定电压定为12.7,但实际工作值仍在17左右。
因此,旧的国标定义存在很大争议,现在没有推广。
因此,额定电压是17或16.5、17.5,其实是相同的性能水平,都是符合国家标准定义的17种产品,不买的话。
至于为什么会有17.5和16.5的东西,那是因为各厂商的具体参数以及上图所示独特车型的销售策略略有不同。
2氧化锌避雷器标称剩余电压三。
在上述模型中,50代表雷电的标称剩余电压,可以简单地理解为当发生最严重的雷击时,避雷器至少能将过电压峰值限制在50kV以下。
事实上,这个参数是避雷器最重要的参数,因为整个系统的绝缘协调基础在这里。
我们一直说低一点4良好的剩余电压是因为避雷器的残余电压降低了,相当于提高了系统内所有高压电器的安全裕度。
5但是,氧化锌电阻本身的性能限制了剩余电压的降低,这是有限的。
虽然间隙积能进一步降低残余压力,但它不是无限的,而且还有一个下限。
如果一个小厂声称其产品的残余压力低于正规的大工厂,基本上可以判断他们是在搞无序经营,不采购67.3条。
氧化锌避雷器的吸能能力。
避雷器工作时,由于通过Ka级大电流,会使避雷器发热。
如果不能承受,会导致损坏甚至爆炸。
因此,避雷器的吸能能力是一个非常重要的参数。
对于出口产品,容量用kJ/kV表示;对于国内产品,用方波电流容量表示。
该值越高,避雷器在不损坏的情况下所能承受的电流越大,性能越好。
避雷器参数讲解(图文)民熔

避雷器参数1.标称电压Un被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。
2.额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。
3.额定放电电流Isn:给保护器施加波形为8/20μs 的标准雷电波冲击10 此时,保护器所耐受的最大冲击电流峋值。
4.最大放电电流 Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
5电压保护等级上升:保护器在下列试验中的最大值:点火电压的1kV/ys斜率;额定放电电流的残余电压。
6响应时间TA:主要反映保护器中特殊保护元件的动作灵敏度和击穿时间。
在一定时间内的变化取决于Du/dt或di/dt的斜率。
7数据传输速率vs:表示每秒传输的比特数,单位为BPS,是数据传输系统中正确选择防雷装置的参考值,防雷装置的数据传输速率取决于系统的传输方式。
8插入损耗AE:在给定频率下插入保护器前后的电压比。
9回波损耗ar:表示保护设备(反射点)反射的前波所占的比例,是直接衡量保护设备是否与系统阻抗兼容的参数。
10最大纵向放电电流:当8/20us波形的标准雷电波对地一次时,保护器能承受的最大冲击电流的峰值。
11最大横向放电电流:在线路间施加波形为8/20μs的标准雷电波一次时,保护器能承受的最大冲击电流的峰值。
12线路阻抗UN为流过线路阻抗的总和。
它通常被称为“系统电阻13峰值放电电流:有两种:额定放电电流LSN和最大放电电流Imax。
13泄漏电流:指在75或80额定电压UN 下流过保护器的直流电流。
从安全运行的角度看,避雷器额定电压的选择还应遵循以下原则:1)避雷器的额定电压应高于安装现场可能出现的工频暂态电压。
在110kV及以上中性点接地系统中,可按上述方法选择。
②在110kV及以下的中性点非直接接地系统中,电力部门规程规定在单相接地情况下允许运行2h,有时甚至在断续地产生弧光接地过电压情况下运行2h以上才能发现故障,这类系统的运行特点对氧化锌避雷器在额定电压下安全运行10s构成严重威胁。
避雷器主要特性及参数选择 图文 民熔

避雷器避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。
1、无间隙金属氧化物避雷器的选择选择的一般要求如下:(1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。
(2)、按照被保护的对象确定避雷器的类型。
(3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。
(4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。
(5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。
(6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。
(7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值, 线路放电耐受试验等级及能量吸收能力。
(8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。
(9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。
(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。
(11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。
2.主要特性参数选择(1)、持续运行电压Uc中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。
在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc 何按不低于选取,但由于我国大部分中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障U。
2U132h及以上切除故障3~ 10kV 1.0~ 1.1UL, 35~ 66kV Uc2UL至于10s~2h之间,可按2h以上选取,也可参照避雷器的工频电压耐受特性曲线选取。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
避雷器的选择方法
如何选择避雷器
(1)按额定电压选择:避雷器的额定电压应与系统的额定电压一致。
(2)检查最大允许电压:检查避雷器安装处导线对地的最高电压是否不超过避雷器的最高工作电压。
导线对地最高电压与系统中性点是否接地和系统参数有关
①中性点不接地系统:导体对地最高电压为系统电压的1.1倍,一般不存在问题。
②一般情况下,避雷器的最大工作电压等于线路电压。
③中性点直接接地系统:国内避雷器中性点直接接地系统中,最大工作电压为系统电压的0.8倍,按额定电压选择无问题。
(3)检查工频放电电压:
①在中性点绝缘或阻抗接地系统中,工频放电电压应大于相电压的3.5倍。
中性点的放电电压应大于中性点电压的3倍。
②工频放电电压应大于最大工作电压的1.8倍。
避雷器又称避雷器、浪涌保护器、浪涌保护器、过电压保护器,主要包括电源防雷器和信号防雷器。
防雷装置通过现代电气等技术,可以防止雷电对设备的损坏。
避雷器中雷电的能量吸收主要是氧化锌压敏电阻和气体放电管。
1.在防雷装置保护达到理想效果的基础上,要注意“在正确的地方合理安装合适的避雷器”,避雷器的选择非常重要。
2.进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的
雷电流经外部防雷装置泄放入地,另有50%的雷电流将在整个系统的金
属物质内进行分配。
这个*估模式用于估算在LPAOA区、LPZOB区和LPZ1
区交界处作等电位连接的防雷器的通流能力和金属导线的规格。
该处的
雷电流为10/35μs电流波形。
3.在各金属物质中雷电流的分配情况下:各部分雷电流幅值取决
于各分配通道有的阻抗与感抗,分配通道是指可能被分配到雷电流的金
属物质,如电力线、信号线、自来水管、金属构架等金属管级及其它接
地,一般仅以各自的接地电阻值就可以大致估算。
在不能确定的情况下,
可以认为接是电阻相等,即各金属管线平均分配电流。
2.在电力线架空引入,并且电力线可能被直击雷击中时,进入建筑物内保护区的雷电流取决于外引线路、防雷器放电支路和用户侧线路的阻抗和感抗。
如内外两端阻抗一致,则电力线被分配到一半的直击雷电流。
在这种情况下必须采用具有防直击雷功能的防雷器。
3.后续的*估模式用于*估LPZ1区以后防护区交界处的雷电流分配情况。
由于用户侧绝缘阻抗远远大于防雷器放电支路与外引线路的阻抗,进入后续防雷区的雷电流将减少,在数值上不需特别估算。
一般要求用于后续防雷区的电源防雷器的通流能力在20kA(8/20μs)以下,不需采用大通流能力的防雷器。
后续防雷区防雷器的选择应考虑各级之间的能量分配和电压配合,在许多因素难以确定时,采用串并式电源防雷器是个好的选择。
串并式是根据现代雷电防护中许多应用场合、保护范围层次区分等特点提出的概念(相对于传统的并式防雷器而言)。
其实质是经能量配合和电压分配的多级放电器与滤波器技术的有效结合。
串并式防雷有如下特点:应用广泛。
不但可以按常规进行应用,
也适合保护区难以区别的场所。
感生退耦器件在瞬态过电压下的分压、延迟作用,以帮助实现能量配合。
减缓瞬态干扰的.上升速率,以实现低残压与长寿命以及极快的响应时间。
4.防雷器的其它参数选择取决于各个被保护物所在防雷区的级别,其工作电压以安装在引电路中所有部件的额定电压为准。
串并式防雷器还需注意其额定电流。
5.影响电子线雷电流分配的其它因素:变压器端接地电阻降低将使电子线中分配电流增大。
供电线缆的长度的增加将使电力线中分配电流减少,并使几要导线中有平衡的电流分配。
过短的电缆长度和过低的中性线阻抗将使电流不平衡,从而引起差模干扰。
供电线缆并接多用户将降低有效阻抗,导致分配电流增大,在连成网状的供电状态下,雷临时性流主要流入电力线,这是多数雷损发生在电力线处的原因。